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1.1 Introduction

The discovery of biomolecular sequences and exploring their roles, interplay, and common
evolutionary history is fundamental to the study of molecular biology. Three types of se-
quences fill complementary roles in the cell: DNA sequences, RNA sequences, and protein
sequences. DNA sequences are the basis of genetic material and act as the hereditary mech-
anism, providing the recipe for life. RNA sequences are derived from DNA sequences and
play many roles in protein synthesis. Protein sequences carry out most essential processes
such as tissue building, catalysis, oxygen transport, signaling, antibody defense, and tran-
scription regulation. The first part of this book will describe the alignment algorithms used
to compare these sequences.

For the benefit of the reader unfamiliar with molecular biology, we provide a more detailed
introduction to biological sequences. A DNA molecule is composed of simpler molecules
known as nucleotides. The nucleotides are differentiated by the differences in their bases
— Adenine, Cytosine, Guanine and Thymine, represented by A, C, G, and T, respectively.
DNA naturally occurs as a double-stranded helix-shaped molecule, with each nucleotide
in one strand pairing with a corresponding nucleotide in the other strand, with A pairing
with T and G pairing with C and vice versa. Each strand has a direction, with the two
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strands having opposite directions. The DNA molecule is represented by the sequence of
nucleotides of one strand in that strand’s direction. Given one strand, the sequence of the
other strand is obtained by reversing the known strand and substituting A for T, C for
G, etc. This process is called generating the reverse complement and is important when
comparing DNA sequences as either strand might be given for the DNA being compared.

Several different terms are used to describe DNA sequences. Each cell in an organism
contains the same set of chromosomes, which are long DNA sequences. The set of chro-
mosomes in an organism constitutes its genome. A gene is a contiguous stretch of DNA
along a chromosome that codes for a protein or RNA. Genes consist of one or more coding
regions called exons separated by non-coding regions called introns. The terms promoter,
enhancer, and silencer are used to describe DNA sequences involved in regulating gene ex-
pression through protein interactions and are often located upstream of the gene. Genes and
regulatory regions are often conserved (show high similarity or homology) across species.

An important function of DNA sequences is to code for protein sequences. Like DNA
sequences, proteins are also sequences of simpler molecules, in this case amino acids. Amino
acids are differentiated by their side chains. There are twenty possible side chains that
distinguish the twenty different amino acids found in protein sequences. As with DNA,
each of the twenty amino acids is represented by a unique character.

A protein is derived from a gene through an RNA intermediary. Similar to DNA, RNA
is a sequence of nucleotides with the base Thymine replaced by Uracil. First, an RNA
called pre-mRNA containing both exons and introns is copied from the DNA in a process
called transcription. The introns are excised and the exons are spliced to form an mRNA.
The mRNA is then translated into an amino acid sequence. A codon is three consecutive
nucleotides in the mRNA that is translated to an amino acid in the corresponding protein.
The mRNA is used as a template to generate an amino acid sequence of one third the length
of the coding region. The code mapping the 64 possible codons to the 20 possible amino
acids is common to almost all of life. The two step process of transcribing DNA to RNA and
translating RNA to protein is popularly known as the central dogma of molecular biology.

Multiple forms of the same gene, known as alleles, cause genetic differences between
individuals and are responsible for the genetic diversity of a species. Sometimes, variations
in alleles lead to undesirable outcomes such as genetic diseases or increased susceptibility to
diseases. The differences between alleles are often quite small. Sometimes a single nucleotide
change can have a large effect on the resulting protein. DNA sequences are typically modified
through insertions, deletions or substitutions. These underlying evolutionary mechanisms
provide a starting point for sequence alignment algorithms.

Sequence alignments are intended to discover and illustrate the similarities, differences, or
evolutionary relationships between sequences. The algorithms used for sequence comparison
vary depending on the types of sequences being compared and the question being asked,

basic sequence alignment algorithms, broadly characterized as global alignment, semiglobal
alignment, and local alignment. Global alignment can be used to compare two protein
sequences from a closely related gene family, two homologous genes, or two gene alleles.
Semiglobal alignment can be used to piece together fragments of DNA from shotgun DNA
reads and create a longer inferred sequence, useful in genome assembly. Local alignment

motif among protein sequences or conserved promoter sites in gene sequences.
presents spliced alignments, which are important when aligning DNA with RNA transcripts.

parameters affect alignment results.
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can be used as a part of multiple local alignment, presented in Chapter 3, to find a common

giving rise to a variety of sequence alignment algorithms. In this chapter, we will present the

Chapter 2

Finally, Chapter 4 addresses the characteristics of the problem space, and how changing
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1.2 Global Alignment

The global sequence alignment problem for two sequences is defined as follows. We call
the set of unique characters in the input sequences an alphabet Σ. In the case of DNA
sequences, that alphabet is Σ = {a, g, c, t}. A stringX of length n is a sequence of characters
〈x1, x2, ..., xn〉 such that xi ∈ Σ. A prefix of X is a string of the form 〈x1, x2, ..., xi〉, 1 ≤
i ≤ n. A substring of X is a string of the form 〈xi, xi+1, ..., xj−1, xj〉, 1 ≤ i ≤ j ≤ n.
For example ‘aggctga’ is a string with substrings ‘aggc’ and ‘gctg’, with ‘aggc’ also being a
prefix of ‘aggctga’.

A string of characters is the term traditionally used in computer science literature, and
it is equivalent to the concept of a sequence in biology. We will use the term string almost
exclusively in this chapter. However, it is important to adapt the string algorithms to the
specific biological sequences of interest. For example, when comparing DNA sequences, it
is important to compare the two input sequences, as well as the reverse complement of one
sequence with the other input sequence.

Consider two strings A = 〈a1, a2, ..., an〉 and B = 〈b1, b2, ..., bm〉. Conceptually we wish
to create an alignment between the two strings, matching similar regions by aligning each
character in string A with a character in string B. Additionally, we can insert gaps in each
string (allowing for the possibility of deletions or insertions of sequences of characters).
More formally, an alignment between A and B is the production of two new strings of
equal length, AL derived from A and BL derived from B through insertions of a special gap
character ‘-’. AL = 〈a1, a2, ..., al〉 and BL = 〈b1, b2, ..., bl〉, where l is the alignment length,
max(n,m) ≤ l ≤ n +m. Both ai and bi may not be gap characters. ai and bi are said to
be aligned with each other. If ai is a gap, then bi is said to be aligned with a gap in A,
and vice versa. An example alignment between two strings ‘aggctga’ and ‘agcttg’ is shown
below.

aggct-ga
ag-cttg-

The quality of the alignment is measured by its score, which can be thought of as a
measure of how similar the two strings are. The score is the summation of the score of
each pair of characters ai and bi. We will choose a simple scoring function that has roots
in our evolutionary model. A character aligned with the same character, a match, is given
a score α. This corresponds to a conserved character. A character aligned with any other
character, a mismatch, is given a score β, and corresponds to a substitution. Finally,
a character aligned with a gap, a gap, is given a score γ, and corresponds to either an
insertion or a deletion in one of the strings.

score(L) =
l∑

i=1

score(ai, bi)

score(x, y) =






α x = y

β x �= y

γ x = ‘−′ or y = ‘−′

Typically α is positive and γ and β are negative. We will consider the values α = 2, β =
−1, γ = −1. Given these values, the example alignment has a total score of 7.

We wish to find an alignment between the two strings that results in the highest score,
called an optimal alignment between the two strings. A simplistic solution would be to
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score all possible alignments and chose (from) the highest scoring, but the number of such
possibilities is exponential.

1.3 Dynamic Programming Solution

The solution can be sped up using dynamic programming. We see that the problem exhibits
an optimal substructure. Consider an optimal alignment L between A and B. If we look
at some part of that optimal alignment L′ that aligns a substring A′ of A with a substring
B′ of B, we wish to say, for optimal substructure, that L′ is an optimal alignment between
A′ and B′. The proof is simple, using contradiction. If the alignment L′ is not optimal,
then there exists an alignment Lnew between A′ and B′, with score(Lnew) > score(L′).
However, Lnew can be substituted for L′ in L, increasing the score of L. Therefore L is not
optimal, a contradiction.

We can use the optimal substructure property to solve the problem more efficiently using
the following formulation. In order to find the optimal alignment between the two strings,
we find the optimal alignment between each prefix Ai of A and each prefix Bj of B, where
Ai is the prefix of length i of A and Bj is the prefix of length j of B. Let ai be the last
character in Ai and bj be the last character in Bj . There are three possibilities that can
produce the optimal score.

1. Align ai with bj and optimally align Ai−1 with Bj−1.
2. Align ai with a gap and optimally align Ai−1 with Bj .
3. Align bj with a gap and optimally align Ai with Bj−1.

We will denote the optimal score of aligning Ai with Bj as S[i, j]. Think of a table
that records the maximum score of aligning all possible pairs of Ai and Bi. The following
recurrence describes how to fill the table using the ideas presented above.

S[i, j] = max






S[i− 1, j − 1] + δ(ai, bj)
S[i, j − 1] + γ

S[i− 1, j] + γ

δ(x, y) =

{
α x = y

β x �= y

All that remains is to specify the starting conditions. The score of aligning some prefix of
A with none of B is the length of that prefix times the gap penalty. Formally, S[0, j] = γj
and S[i, 0] = γi.

first row corresponding to the empty string. Columns in S correspond to characters in B
with the first column corresponding to the empty string. We can initialize the first row and
first column of the table as described in the previous paragraph.

Notice that to fill a cell of the table using the recursive definition above, we need to know
the value of three other cells — the cell to the north, the cell to the west, and the cell to
the northwest. Therefore, if we start to fill the table row by row, from top to bottom and
left to right, we will have already filled in these three cells before reaching the current cell.

The amount of time to fill in each cell is constant, so the total time to fill out the table
is equal to the number of cells, or O(nm). The space requirement is the same. When the
algorithm is finished, the best alignment score is recorded in S[n,m].

© 2006 by Taylor & Francis Group, LLC
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FIGURE 1.1: a) The score table for strings “agcttg” and “aggctga” with α = 2, β = −1, γ = −1.
The optimal alignment is found by starting at the southeast cell in the table and
tracing the path back to the northwest cell. For these strings, more than one
alignment produces the score, resulting in more than one possible path. (b) The
score table for strings “aggcgg” and “gggctggcga” showing a local alignment. The
alignment path through the table is shown with arrows. The optimal alignment is
found by searching the table for the maximum value and then tracing a path until
reaching a cell with score 0.

The table shown in Figure 1.1 aligns our two sample strings using the parameters α =
2, β = −1, γ = −1. As indicated in the southeast corner cell, the best alignment has a score
of 7.

We also wish to construct an alignment corresponding to this score, as it provides infor-
mation about how the two strings are similar and different, or equivalently it illustrates the
homology between the two sequences. We can think of the score in each cell as having a
corresponding move, indicating which neighboring cell — north, northwest, or west — was
used in producing that cell’s score. If we trace these moves from S[n,m] to S[0, 0], called
traceback, we can construct the alignment. Let’s consider cell S[i, j].

1. A diagonal move to S[i, j] corresponds to aligning ai and bj.
2. A horizontal move to S[i, j] corresponds to inserting a gap in A after ai.
3. A vertical move to S[i, j] corresponds to inserting a gap in B after bj.

One possible way to complete the traceback is to store the moves made for each cell in
addition to the score. However, this is unnecessary as the possible moves can be deduced
from the score table by considering three cases for each cell.

1. If S[i, j] − δ(ai, bj) = S[i − 1, j − 1], a diagonal move could have been used to
reach S[i, j].

2. If S[i, j]−γ = S[i, j−1], a horizontal move could have been used to reach S[i, j].
3. If S[i, j]− γ = S[i− 1, j], a vertical move could have been used to reach S[i, j].

Multiple move possibilities imply that there are multiple alignments that produce the op-
timal score. Figure 1.1 shows that the example strings have more than one alignment that
produce a score of 7.

© 2006 by Taylor & Francis Group, LLC
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1.4 Semiglobal and Local Alignment

Our dynamic programming solution to the sequence alignment problem resulted in aligning
all of A with all of B. This is called a global alignment, and was first applied in computa-
tional biology by Needleman and Wunsch [34]. However, in some cases, a global alignment
is not that interesting. Consider the two strings ‘agctgctatgataccgacgat’ and ‘atcata’. An
optimal global alignment matches each character perfectly:

agctgctatgataccgacgat
a--t-c-at-a----------

But a more interesting alignment produces a mismatch and therefore a lower global score,
but is much more biologically meaningful. Variations on the global alignment algorithm
address this intuition, and were first presented in the context of biological sequences by
Smith and Waterman [39].

agctgctatgataccgacgat
-------atcata--------

1.4.1 Semiglobal Alignment

The first variation is called a semiglobal, or end gaps free alignment. In this type of align-
ment, all gaps inserted before or after the string do not affect the score of the alignment. In
other words, we are allowed to ignore a prefix of A or a prefix of B but not both. We are also
allowed to ignore a suffix of A or a suffix of B but not both. This type of alignment might
be interesting if we were assembling a genome from shotgun reads. We would expect high
similarity between overlapping ends of two reads, but would not want to incur a penalty for
ignoring the non-overlapping ends.

In the following discussion, we will use the term exhausted to describe the way in which
After calculating S[i, j], the algorithm is

said to have exhausted the first i characters from A and the first j characters from B.
The semiglobal alignment is achieved through two small modifications to the global align-

ment algorithm. The first modification addresses inserting gaps at the beginning of a string,
or ignoring either a prefix of A or a prefix of B. In a global alignment, we started with an
alignment score of 0 only when we had exhausted no characters from both A and B. This
corresponded to initializing S[0, 0] to 0. Now we wish to be able to start with a score of 0
after ignoring either a prefix of A or a prefix of B. This condition holds as long as we have
not exhausted any characters from either A or B, which corresponds to the first row or first
column of the table. Therefore we can achieve the result by initializing the first row and
column of the table to 0.

The second modification addresses inserting gaps at the end of a string, or ignoring either
a suffix of A or a suffix of B. Because we can only ignore a suffix of either A or B, the
alignment must exhaust all the characters of either A or B. In terms of the table, this is
the case in the last row or column. In a global alignment, we were required to exhaust the
characters from both A and B, so the score appeared in the southeast corner of the table.
In semiglobal alignment, the score is the maximum over the last row and column of the
table.

The traceback of the alignment path through the table proceeds as in global alignment,
however the traceback starts at the found maximum and ends at any cell in the first row or
column.

© 2006 by Taylor & Francis Group, LLC

Genome assembly is covered more thoroughly in Part

the algorithm uses up characters from A and B.

III.
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1.4.2 Local Alignment

The second variation to global alignment allows even more flexibility than semiglobal align-
ment. In a local alignment, we wish to choose some substring A′ of A and some substring
B′ of B such that A′ aligned with B′ produces the maximum score. In other words, while
for semiglobal alignment we could ignore a prefix of either A or B and a suffix of either A
or B, for local alignment we can ignore a prefix and suffix of both A and B.

Possible uses of local alignment include identifying a conserved exon in two genomic
sequences and identification of a conserved regulatory region upstream of two genes. We are
highly interested in the similar region shared between the two sequences, but are indifferent
to remainder of the sequences. In this case, a local alignment would allow us to ignore the
parts of the sequence that do not align well, while focusing on the region with the best local
similarity.

We create a local alignment by extending the ideas used in semiglobal alignment. Instead
of only starting our score at zero in the first row or column (allowing A or B to ignore
prefix), we now have the possibility of starting our alignment score at zero in any cell in the
table, allowing both A and B to ignore a prefix. This is done by modifying the equation
presented in section 1.3.

S[i, j] = max






S[i− 1, j − 1] + δ(ai, bj)
S[i, j − 1] + γ

S[i− 1, j] + γ

0

We do not allow any cell in the table to take on a negative value. Setting the score of
S[i, j] to zero when it would have been negative corresponds to ignoring the prefixes Ai and
Bj .

We can deal with ignoring suffixes as an extension of semiglobal alignment as well. Instead
of looking for the maximum value over the last row and column, which restricts us to ignoring
a suffix of either A or B, we search for the maximum value over the entire table, equivalent
to ignoring a suffix of both A and B.

To do a traceback of the local alignment, start at the cell containing the maximum value
and traceback until reaching a cell with value 0. An example local alignment with traceback

The differences between global, semiglobal, and local alignments
are summarized in Table 1.1.

Global Semiglobal Local
Ignore Suffix no A or B A and B
Ignore Prefix no A or B A and B
Reset to Zero S[0, 0] S[i, 0], S[0, j] S[i, j]
Maximum In S[n, m] S[i, m], S[n, j] S[i, j]

TABLE 1.1 Differences between global, semiglobal, and local alignments

1.5 Space Saving Techniques

We have finished introducing the concept of string alignment. With the basics covered,
the rest of the chapter will cover two classes of modifications on this initial concept. The
first class are algorithmic improvements, modifications that improve the runtime or space
complexity of the algorithms. Space saving techniques, the k-band formulation, and sub-

© 2006 by Taylor & Francis Group, LLC
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quadractic alignments fall into this class. We will also cover qualitative modifications such
as substitution matrices, normalized alignment, and different gap penalty functions. These
modifications often introduce complexities that result in the algorithms taking more time
or space, but have the benefit of producing more biologically valid results.

The first modification we discuss is quite important. As mentioned above, the dynamic
programming solution described takes O(nm) time and O(nm) space, where n and m are
the sizes of the strings. While the O(nm) runtime is quite fast on any reasonably modern
computer for string sizes up to a few hundred thousand characters, the space will become
a factor before that. Two strings of size 20,000 will require around 1.6 GB of RAM for the
dynamic programming table if each cell is a 4 byte integer. For this reason we are interested
in reducing the space required to run the algorithm.

We will discuss a technique introduced by Hirschberg [21] that reduces the space require-
ment from O(nm) to O(n + m) while maintaining the runtime. Obviously, achieving a
reduction in space required to hold the table to 160 KB from 1.6 GB is a useful improve-
ment. The space requirement is the theoretical minimum because at the very least the input
and output require O(n+m) space to hold the strings themselves. We will first discuss the
technique within the context of global alignment.

1.5.1 Preliminaries

If we are looking for the alignment score without producing the alignment, it is easy to
reduce the space requirement to O(n+m). Consider filling the table row by row, from top
to bottom. To fill any row, we need access to values from the previous and current rows
only. It is easy to envision an algorithm which uses two arrays of size m, corresponding
to the previous and current rows. When the current row is complete, the two arrays swap
roles and the algorithm continues.

If we store only two rows of the table, we cannot proceed with path traceback, because
we have lost most of the information needed for this step. While the entire path cannot be
found, there is a way to discover a small part of the path; there is enough information in
the last two rows to construct the last bit of the path. This observation will serve as the
basis for the first naive space optimal algorithm.

one for each row of the table. Each interval can be defined by its endpoints. Notice that the
endpoints of each subsequent interval either overlap or touch through the diagonal. This
is because alignment path must move on either a diagonal or a vertical path from row i
to row i − 1. We will call the left endpoint of row i and the right endpoint of row i − 1
the path intersection for row i. We can define the alignment path as n − 1 intersections,
if we consider that the northwest corner and southwest corner of the matrix will always be
endpoints in the interval list.

Each intersection can be discovered using data from only two rows. To construct the
entire path, we will build the interval list intersection by intersection. A naive approach
finds one intersection per iteration, starting at the bottom of the table and working up to
the top. For each iteration, the algorithm calculates the last two rows of the submatrix for
Ai and Bj . It uses this information to discover the intersection for row i. This algorithm
uses O(n+m) space but runs in O(n2m) time.

1.5.2 Using Hirschberg’s Recursion

The naive space saving algorithm has a harsh runtime penalty. Hirschberg introduced a
divide and conquer approach that was first applied to the biological sequence alignment

© 2006 by Taylor & Francis Group, LLC

As shown in Figure 1.2, the path of the alignment can be described as a list of n intervals,
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FIGURE 1.2: (a) The alignment path through the table S can be represented as a list of intervals,
one per row. (b) Hirschberg’s recursion allows us to construct the list in O(nm)
time using only O(n + m) space. The black arrows represent the direction the DP
algorithm is run on each sub matrix. The gray boxes represent the cells in memory
at the end of each step. Partially known intervals are deduced from these cells, as
shown by gray dots. In the last stage of the recursion, alignment is run forward in
all sub matrices to complete the alignment path.

© 2006 by Taylor & Francis Group, LLC
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problem by Myers and Miller [33]. Instead of finding the intersections from bottom to top,
we find the intersection in the center of the table first. This will allow us to eliminate more

To find the intersection for the center row, divide the table in half, with the centerline of
the table t = �n

2 �+ 1. The top half of the table is S[0...t− 1, 0...m] and the bottom half of
the table is S[t...n, 0...m]. On the top half of the table, run the space-saving algorithm to
find the scores along the bottom row of the top half of the table, row t− 1.

On the bottom half of the table, run the algorithm backwards. In other words, initialize
the bottom row and right column and run the algorithm from right to left and bottom to
top. This is the same as reversing the strings and running the algorithm forwards. The
table cell formula is defined as:

S[i, j] = max






S[i+ 1, j + 1] + δ(ai, bj)
S[i, j + 1] + γ

S[i+ 1, j] + γ

When we finish running the algorithm backwards in the bottom half of the table, we will
have scores for the top row of the bottom half of the table, which has index t. Now we will
find the move between rows t− 1 and t (the intersection for t) that produces the maximum
score.

More formally, the intersection for t is defined by indexes i in t−1 and j in t, i ≤ j ≤ i+1,
that maximize the function:

max
i

{
S[t− 1, i] + S[t, i] + γ j=i
S[t− 1, i] + S[t, i+ 1] + δ(at, bi+1) j=i+1

Next divide the table into four quadrants. The northeast and southwest quadrants can
be ignored, as the optimal path does not travel through them. We must recursively run
the algorithm on the northwest and southeast quadrants, defined as S[0...t − 1, 0...i] and
S[t...n, j...m]. The recursion will continue until the number of rows is 1 or 2, at which point
the DP algorithm will be run forwards and the optimal path completed.

The problem approximately halves each iteration, because if one splits a rectangle into
four quadrants and selects two, the area of the two selected quadrants is half of the original
rectangle. The details are left out of this discussion but are easily solved. Because the sum∑∞

i=0
1
2i = 2, the total runtime remains O(mn). The algorithm remembers only n+ 1 cells

for each half of the table during each iteration, and as a result the space requirement has
been reduced to O(m+ n).

The ideas in this algorithm can be extended to both semiglobal and local alignments, as
shown by Huang et al. [22]. We will consider the case of local alignments, as semiglobal
alignments can be handled similarly. Consider the case in which there is exactly one maxi-
mum scoring path through the table. The idea can be extended to work with multiple such
paths, which we will not consider here.

To solve the problem, we will first find each endpoint of an optimal alignment path, and
then run a global alignment on the induced subtable. First run the algorithm forward using
the local alignment recursion. As it proceeds, keep track the cell that contains the maximum
score. This is the southeast corner of the subtable. Next run the algorithm backwards while
keeping track of the cell that gives the maximum score from this direction (the maximum
value will be the same). This cell is the northwest corner of the subtable. Run the linear
space global alignment algorithm on the subtable defined by these two cells to produce the
optimal local alignment.

© 2006 by Taylor & Francis Group, LLC

of the table for the next iteration. Refer to Figure 1.2 during the discussion.
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1.6 Banded Alignment

Imagine that we are studying two orthologous DNA sequences, that is two DNA sequences
that are thought to have evolved from the same ancestral sequence. Our two genes code for
the same function and the species are evolutionarily close. Therefore, the two sequences are
highly similar and are of similar length. Because of this the alignment path between the two
sequences will remain close to the main diagonal. A banded alignment makes use of this
observation to achieve faster runtime. The idea of a banded alignment was first proposed
by Fickett [16].

Consider the subset of inputs in which A and B are highly similar and of the same length
n. The k-band algorithms runs in time proportional to the difference between A and B. If
A and B are similar enough, then the algorithm’s runtime is O(nk) for some small constant
k. In the worst case, the runtime is still O(n2) with an additional constant multiplier of
approximately 2.

The k-band algorithm ignores the part of the array distant from the main diagonal during
its calculation. Let the value k denote a region of the table called the k-band, such that the
following is true for the table.

S[i, j] ∈ k-band⇔ |i− j| ≤ k

For the purpose of the algorithm, all cells outside of the k-band are considered to have
a score of −∞, which will cause them to be ignored in the maximum calculation. The
algorithm runs as normal, but will only consider those cells within the k-band. Figure 1.3
shows the k-band initialization for k = 3. In practice the cells marked −∞ are not actually
initialized and do not exist in memory, for this would defeat the purpose of the algorithm.
They are shown for clarity.

The end of the algorithm’s run will result in an alignment with some score sk that rep-
resents the best alignment under the restriction that the alignment path does not travel

FIGURE 1.3: (a) The k-band initialization for k = 3. The k-band is shown in gray. The cells
that conceptually take on −∞ do not actually exist in memory. Two hypothetical
best paths that travel outside of the k-band are shown. To achieve the best score,
all diagonals must represent matches. Hence, the score of these two paths is
2(k+1)γ +(n− (k+1))α. (b) The k-band initialization for global alignment when
k = 3 and m > n. The cost of the hypothetical best path traveling outside of the
k-band is (2(k + 1) + m− n) γ + (n− (k + 1))α.
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outside of the k-band. To show that this alignment is optimal, we consider possible align-
ments that have paths that travel outside of the k-band. In other words, for some cell on
the alignment path, we have |i − j| > k. The highest scoring such alignment would have
exactly k + 1 characters from A aligned with gaps, k + 1 characters from B aligned with
gaps, and all other n− (k + 1) characters as matches. The score for this alignment would
be

bestk+1 = 2(k + 1)γ + (n− (k + 1))α

If sk >= bestk+1, then the alignment sk is known to be an optimal alignment, because it
beats the best score of any possible alignment that travels outside of the k-band region.

However, if sk < best, then we cannot be sure that sk is optimal. To solve this problem
and maintain our worst case runtime, we double k and rerun the algorithm. In the worst
case we keep doubling k until k ≥ n, at which point all elements in the table are in the
k-band. The runtime in the worst case is the sum of all iterations, which is still O(n2),
because the number of elements considered increases exponentially until the number of
entries considered constitutes the entire table.

While repeatedly doubling k produces an algorithm that remains asymptotically optimal,
it may increase the runtime unnecessarily for some applications. In practice we may wish to
only find an alignment if the similarity between two strings is high. If the score of the best
alignment is below some minimum threshold, T , then the strings are considered dissimilar
and we are no longer interested in finding the alignment. If this is the case, we can choose k
such that bestk+1 ≤ T and never have to run the k-band algorithm more than one iteration;
if sk < bestk+1, then sk < T and we can report no good alignment. Solving k in terms of
T , we have

k ≥ T − (n− 1)α
2γ − α

The k-band as described for two strings of exactly the same length is very limiting, so we
will briefly look at the implications of |A| = m �= |B| = n. For ease of discussion, assume
that m > n. Now the k-band is redefined.

S[i, j] ∈ k-band⇔ n−m− k ≤ i− j ≤ k

This can be thought of as inserting a parallelogram of width m − n at the center of the

In addition the score bestk+1 — used as the termination decision and in calculating the
k based on the threshold parameter T — is calculated using a more general form of the
equation presented for n = m.

bestk+1 = (2(k + 1) +m− n)γ + (n− (k + 1))α

1.7 Other Gap Penalty Functions

In the algorithms presented thus far, the penalty for aligning a character with a gap has been
γ. However, in most biological applications, it does not make sense to penalize gaps in this
manner. For example, a single insertion (or deletion) in a DNA sequence typically results
in inserting (or deleting, respectively) a string of nucleotides, making multiple consecutive
gap characters much more likely than isolated gap characters. The penalty function chosen
should reflect this reality.

© 2006 by Taylor & Francis Group, LLC

k-band defined for n = m, as shown in Figure 1.3.
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For this reason, researchers use gap penalties that do not increase linearly with the
number of gap characters. In particular, researchers have studied general gap penalty
functions [30], affine gap penalty functions [14, 17], and concave and convex gap penalty
functions [31, 13, 15].

In terms of computational cost, alignments based on general gap functions cost the most
to compute, and in practice they are hardly ever used. We shall discuss them here as
motivation for choosing from among simpler functions. Alignments based on convex and
concave gap penalty functions can be calculated in O(nm log(n+m)) time. However, affine
gap penalty functions offer enough flexibility and can be calculated almost as quickly as
linear gap penalty functions. Therefore, these gap penalty functions are almost always used
in practice.

1.7.1 General Gap Penalties

Envision a general gap penalty function ω(i) which is the penalty for inserting a gap of
length i. If we allow for this arbitrary gap penalty function, then the runtime increases
considerably. An O(n2m+ nm2) algorithm can be constructed by modifying the recursive
definition presented for a linear gap penalty function.

Now, instead of considering a constant number of cells when calculating S[i, j], we must
consider O(i + j) cells. This is because, when aligning two suffixes Ai and Bj , one must
consider the possibility of aligning ai with any character bk 1 < k ≤ j. One must also
consider aligning all of Ai with the empty string. Extending this idea to both strings we
end up with four possibilities.

1. Align ai with bk, 1 < k ≤ j and Ai−1 with Bk−1.
2. Align bj with ak, 1 < k ≤ i and Ak−1 with Bj−1.
3. Align Ai with a gap
4. Align Bi with a gap

The equation for S[i, j] becomes

S[i, j] = max






maxj
k=1 S[i− 1, k − 1] + δ(ai, bk) + ω(j − k)

maxi
k=1 S[k − 1, j − 1] + δ(ak, bj) + ω(i− k)

ω(i)
ω(j)

Finally, for global alignment, we initialize the first row and column of the table based on
the gap penalty function.

S[i, 0] = ω(i)

S[0, j] = ω(j)

As O(n+m) possibilities are considered for each cell, and there are O(nm) cells, the total
runtime of the algorithm is O(n2m+ nm2).

1.7.2 Affine Gap Penalties

The runtime penalty to allow the flexibility of a general gap penalty function is harsh. It
would be nice to find a function with a more complex shape that incurs less of a runtime
cost. Using affine gap penalty functions allows us to maintain an O(nm) runtime.
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An affine gap penalty function has two values. A gap opening penalty g is the cost of
starting a new gap. A gap extension penalty h is the cost of extending a gap. The first
gap character in an affine gap has a score of g + h. Each subsequent gap character in the
affine gap has a score of h. Affine gap penalties are widely preferred by biologists because
consecutive gap characters likely correspond to a single insertion/deletion event, while an
equal number of scattered gaps correspond to as many insertion/deletion events, which is
much less probable. For this reason h is often much smaller than g.

To solve the problem in quadratic time, we augment table S with two additional tables,
GA and GB . GA[i, j] is the best score of aligning Ai with Bj under the restriction that ai

is aligned with a gap. GB[i, j] is the best score of aligning Ai and Bj under the restriction
that bj is aligned with a gap. As before, S[i, j] holds the optimal score of aligning Ai and
Bj under no restrictions.

There are three possible ways in which the maximum score can arise, with two of the
cases consisting of two parts each.

1. ai is aligned with bj and Ai is aligned with Bj .
2. ai is aligned with a gap. In this case, we must consider two sub-cases.

(a) Ai−1 is aligned with Bj such that ai−1 is not aligned with a gap, and we
start a gap.

(b) Ai−1 is aligned with Bj such that ai−1 is aligned with a gap, and we extend
the gap.

3. bi is aligned with a gap. In this case we must consider two sub-cases.

(a) Ai is aligned with Bj−1 such that bj−1 is not aligned with a gap, and we
start a gap.

(b) Ai is aligned with Bj−1 such that bj−1 is aligned with a gap, and we extend
the gap.

These possibilities are captured and scored in the following equations:

S[i, j] = max






S[i− 1, j − 1] + δ(ai, bj)
GA[i, j]
GB [i, j]

GA[i, j] = max

{
S[i− 1, j] + g + h

GA[i− 1, j] + h

GB [i, j] = max

{
S[i, j − 1] + g + h

GB [i, j − 1] + h

The number of cells considered in each cell calculation is constant for all tables. Because
there are O(nm) number of cells per table, the total runtime of the algorithm is O(nm).

Consider global alignment. We initialize the first row and column of each table such that
S[i, 0] = g + hi, S[0, j] = g + hj, and S[0, 0] = 0. S[n,m] contains the optimal alignment
score after the algorithm finishes. We can construct the alignment by tracing back the path,
starting at position S[n,m]. With an extension of the ideas presented for global alignment
with linear gap penalties, the traceback can be accomplished without storing any pointers.
The details are omitted.
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Semiglobal alignment can be handled in a straightforward way. Initialize the first row
and column of each table to 0. The maximum value in the last row and column of S is the
optimal alignment score. Starting at this position, trace the alignment path back through
the table until reaching the first row or column.

Assume that matches are scored positive, while mismatches and gaps are scored negative.
Now local alignment with affine gaps is easy, as seen by the observation that every local
alignment starts with some character ak aligned with some bl and ends with some ak′ aligned
with some bl′ . The proof is by contradiction. Assume that an optimal local alignment L
starts with a character aligned with a gap. Then there exists a new alignment with higher
score constructed removing the first character from L. Therefore, L is not optimal, a
contradiction. The same reasoning holds for a gap character at the end of an alignment.
As a result of this observation, we can handle local alignment by modifying the equation
for S[i, j]

S[i, j] = max






S[i− 1, j − 1] + δ(ai, bj)
GA[i, j]
GB [i, j]
0

The alignment is found by searching for the maximum score in S, corresponding to
aligning ak′ and bl′ by the observation above. The traceback continues until reaching some
0 in S, corresponding to the initial alignment of ak and bl.

1.8 Substitution Matrices

In this section we will consider the specific problem of aligning two amino acid sequences and
the additional considerations needed in order to produce a biologically meaningful result.

Proteins are sequences of amino acids that fold into an energetically stable shape. The
surface of a protein interacts with other proteins and molecules through its shape and
chemical properties. It can be the case that proteins with rather different sequences can
fold into molecules with similar shapes and properties — and consequently perform the
same function. Moreover, a mutation occurring within the DNA sequence corresponding to
the protein can result in an amino acid substitution, insertion, or deletion, having varying
affects on the protein by affecting the protein’s properties.

Some amino acid substitutions might be more acceptable than others. For example, six of
the twenty amino acids are hydrophobic, which prefer to face the interior to avoid interacting
with water. A substitution within this class of amino acids is more acceptable than a
substitution with an amino outside of the class. For this reason, matching a hydrophobic
amino acid with another hydrophobic amino acid should be scored higher than matching a
hydrophobic amino acid with a hydrophilic one (an amino acid attracted to water).

In section 1.2, we presented a delta function for scoring the alignment of two characters:

δ(x, y) =

{
α x = y

β x �= y

Now we wish to use a more complex function δ : D×D → �, where D is the set of 20 amino
acids. In practice this function is stored in a 20× 20 matrix for use during the execution of
an alignment algorithm. Two classes of such matrices called PAM and BLOSUM matrices
are used, and we shall look at the origins of both.
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1.8.1 PAM Matrices

A biologically valid scoring function δ arises from a complex process that is hard to model
analytically. For this reason experimental data has been used to discover appropriate values.
Dayhoff et al. [10, 11] described an evolutionary model used to interpret experimental data
and derive the scoring function δ.

As an organism evolves, mutations will cause changes in the proteins. Those changes that
are allowed to remain by an organism are said to be accepted or retained mutations. When
comparing two proteins from divergent organisms, one would expect to observe some of these
mutations as differences in the amino acid chains for the proteins of the two organisms.

Dayhoff et al. built a phylogenetic tree of closely related proteins in an attempt to discover
accepted mutations. They accumulated the number of times amino acid i was substituted
by amino acid j as one traveled up the phylogenetic tree. This data was stored in a 20× 20
matrix, symmetric along the main diagonal, as a transition from i to j was considered a
substitution from both i to j and j to i.

Using this data, they calculated the conditional probability of seeing an amino acid j
given an amino acid i for all amino acid pairs (i, j). From this the PAM matrix was born.
The PAM matrix stands for Point Accepted Mutation. From the experimental data, they
calculated the probability matrix M . M [i, j] contains the probability that amino acid i will
be substituted for amino acid j in one evolutionary unit of time. The PAM evolutionary
unit of time is the amount of time it takes for one amino acid in every hundred to undergo
an accepted mutation.

Given the M matrix, the matrix Mk is the probability of substituting amino acids in k
units of time. The PAMk scoring matrices are derived from the Mk probability matrices
using the following equation, where pj is the probability of a random occurrence of amino
acid j.

PAMk[i, j] = 10 log
Mk[i, j]
pj

1.8.2 BLOSUM Matrices

When considering protein sequences that are highly diverged, PAM matrices are not well
suited as they were constructed based on closely related proteins with less than 15% differ-
ence. The BLOSUM matrices, introduced by Heinikoff and Heinikoff [20] are constructed
using an approach that allows comparison of more highly diverged proteins. They are con-
structed using conserved regions of proteins. These regions, called blocks, give rise to the
name BLOSUM, which stands for BLock SUbstitution Matrix.

a discussion of multiple alignments). As mentioned before, blocks are regions with a high
degree of similarity. Within these regions, it could be the case that certain proteins are
nearly identical. For this reason, in calculating the BLOSUMX matrix, multiple proteins
that are X percent identical are weighted as one protein. Varying X gives rise to different
scoring matrices, labeled BLOSUM30, BLOSUM50, BLOSOM62 and so forth.

The substitution frequencies are calculated based on the enumeration of all pairs of amino
acids appearing in each column of the multiple alignment blocks. A value pij is calculated
for amino acids i and j based on this multiple alignment. The details of this score are
not easily described without a greater understanding of multiple alignment. If pi is the
probability of seeing amino acid i at random and pj the probability of seeing amino acid j
at random, then the BLOSUM matrix is calculated using the following equation:
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The blocks are found by aligning multiple proteins in protein families (see Chapter 3 for
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A R N D C Q E G H I L K M F P S T W Y V
A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0
R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3
N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3
D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3
C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1
Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2
E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2
G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3
H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3
I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3
L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1
K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2
M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1
F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2
S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2
T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3
Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1
V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4

TABLE 1.2 The BLOSUM62 matrix.

BLOSUM[i, j] =
1
λ

log
pij

pipj

λ is a scaling factor used to generate scores that can be converted into integers. The
BLOSUM62 matrix, the default matrix used for BLAST [3], is shown as Table 1.2.

1.9 Local Alignment Database Search

The dynamic programming algorithm finds the highest scoring alignment between two
strings. However, performing a full alignment is often prohibitively slow. For example,
if we were to compile a database of protein sequences, we could represent the database as
a string D constructed by concatenating each string in the database. If we then attempted
to find the optimal local alignment between some query Q and D, the runtime would likely
be prohibitive, as the total cost would be the total length of all sequences in the database
times the length of the query sequence.

Various approximations for local alignment have been proposed to speed up this basic
problem of database search. The first of these was Fasta [25, 26], which we will not discuss
here. In 1990, Altschul et al. presented the basic local alignment search tool [3] as a method
to search protein databases quickly. We will present the second version of their algorithm,
published in [27].

The basic idea behind BLAST is that good local alignments contain good ungapped align-
ments. An ungapped alignment is an alignment not allowing gaps. We wish to find these
good ungapped alignments quickly and then extend them to find good local alignments.

Consider a window of size ω. As we move this window along the string, we can see ω
characters of the string at a time. The number of unique strings, called ω-mers, of length
ω is Σω. If the strings are protein sequences, then the alphabet size is 20 and the number
of strings we can make of length 3 is 203 = 8000. We will create an index into the database
showing all the locations of each ω-mer.

Additionally, we can calculate the score of aligning any ω-mer with any other ω-mer
without gaps. Now, for a given word a, there is a set of words S for which s ∈ S if and only
if the score of aligning a with s is above some threshold T .

Now given a query string Q and a database D, we wish to find good local alignments
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FIGURE 1.4: The BLAST program runs in phases. (a) In one phase pairs of hits are found
that lie on the same diagonal of a conceptual dynamic programming table. (b)
The region between these hits is aligned without gaps. (c) Finally, the alignment
is completed by extending the ends of the alignment for those seed alignments
scoring above some threshold.

between Q and D. The BLAST algorithm performs the following steps (see Figure 1.4).

1. The first step is to find hits between Q and the database. Each hit corresponds
to some word a in Q matching to some word d in the database such that the
score of aligning a and d is above the threshold.

2. From the hits discovered in step one, find those pairs of hits (hi, hj) that can be
part of the same gapless alignment. That is, they would lie on one diagonal on
the dynamic programming table.

3. Perform a gapless extension between these two hits by aligning each character
in the query string with the corresponding character in the database. This will
produce some alignment score.

4. For those gapless alignments with a score deemed significant, perform a gapped
alignment extension from each end of the gapless alignment, such that the total
score of the alignment does not drop below some threshold.

BLAST is a popular program for protein database searches, but recently researchers
have revisited the problem. An algorithm called DASH (for Diagonal Aggregating Search
Heuristic) reports runtimes ten times faster than BLAST with similar sensitivity [18]. Their
heuristic extends the idea of BLAST. First they find all words occurring in the same diagonal
region. Next, global alignments connect these gapless regions. Finally, they extend the end
of the alignments using a global alignment on some part of the dynamic programming table.
In addition to the diagonal region heuristic, a key technique they use to improve runtime
is to mask those words that occur with high frequency in each sector of the database. This
reduces the number of initial database hits.
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1.10 Similarity and Distance Measures

This section details some alternate characterizations of the problem found in the bioin-
formatics field. We have described the solution to the alignment problem as finding the
maximum score of an alignment between two strings. This score was the summation of the
pairwise scores of each pair of characters involved in the alignment.

score(L) =
l∑

i=1

score(ai, bi)

The score is considered a measure of the similarity of the two strings, and it easily allows
for the extensions into semiglobal and local alignment. However, one interesting result of
these extensions is that the scoring system can fail to follow the triangle inequality.

score(A,B) + score(B,C) ≤ score(A,C)

An alternate way of looking at the problem is to define a sequence of elementary operations
on a string — insertions, deletions, and substitutions. One can transform A into B through
a sequence of these operations T = 〈t1, t2, ...tn〉. We now assign a cost function cost(t) to
the set of operations such that three conditions hold for any strings A, B, C.

1. dist(A,A) = 0
2. dist(A,B) = dist(B,A) (symmetry)
3. dist(A,B) + dist(B,C) ≤ dist(A,C) (triangle inequality)

Where the dist(A,B), called the edit distance, is the minimum sum of the cost of a
sequence of operations that transforms A into B.

dist = min
T

∑

i

cost(ti)

These requirements impose restrictions on our cost function. For symmetry, we require

1. cost(insertion) = cost(deletion)
2. cost(substitute(a, b)) = cost(substitute(b, a))

To satisfy the triangle inequality, we require

1. cost(insertion), cost(deletion), cost(substitute(a, b)) ≥ 0

Distance measures have their uses, as the triangle inequality allows for certain reasoning
and analysis that would otherwise be impossible. For example, performance guarantee
proofs on approximation algorithms for the computationally expensive problem of multiple

An important result in the study of distance and similarity is that for any distance metric

finding the minimum distance for some cost function will simultaneously find the maximum
score for some similarity function. Smith and Waterman [40] presented a theorem and proof
of this assertion, and the idea is fully developed in [38]. The key observation is that for
each alignment between two strings A and B, containing a matches, b mismatches, and g
gaps, the following equation, known as the alignment invariant, is true:
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alignment are only valid using distance metrics. Multiple alignments are covered in Chapter

used in the alignment problem, one can construct a corresponding similarity metric. That is,

3.
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n+m = 2(a+ b) + g

In practice, we construct some scoring scheme based on the cost scheme using an arbitrary
constant P .

δ(a, b) = P − cost(sub(a, b))

γ =
P

2
− cost(insertion)

The maximum score and the distance under these valuation schemes are related by the
equation:

score(A,B) + dist(A,B) =
P (m+ n)

2
Therefore, distances can be quickly calculated from similarity scores.

1.11 Normalized Local Alignment

Assume that we have two DNA sequences that we wish to compare using an alignment
algorithm. Importantly, we wish to find regions of high similarity. Local alignment is
somewhat suitable for this task, as it will return an alignment between substrings A′ and
B′ that gives the highest scoring alignment.

However, there is a basic problem in the presentation of local alignment, in that the
lengths of A′ and B′ are not taken into account when calculating the score. Therefore an
alignment of length 100 and score 51 is considered better than an alignment of length 50
and score 50, although the second alignment has a much higher average score per base.
Alexander and Solovyev [2] argued that the local alignment algorithm did not always find
the most biologically relevant alignment because it did not consider alignment length.

One can think of post processing local alignments, but the highest scoring local alignment
might mask some lower scoring alignment with higher normalized score. Instead, one could
individually look at each pair of cells in the global alignment score matrix and compute the
normalized alignment score.

max
i,j,k,l

S[i, j]− S[k, l]
(i− k − 1) + (j − l − 1)

, 0 ≤ i ≤ k ≤ n, 0 ≤ j ≤ l ≤ m

However, the number of such combinations is Θ(n2m2), which is expensive.
The problem was explored in [41, 35, 4]. Pevzner et al. [5] were the first to provide an

O(nm(log n)) algorithm to compute the normalized alignment of some minimum length,
and we will present their ideas here. For the sake of brevity, we will discuss the algorithm
within the context of linear gap penalties, but the ideas extend easily to affine gap penalties,
as shown by Pevzner et al.

The score of a best local alignment between two substringsA′ andB′ is aα+bβ+gγ, where
a, b, and g are the number of matches, mismatches, and gaps. According to the alignment
invariant first presented in Section 1.10, we have n + m = 2a + 2b + g, where n and m
are the lengths of A′ and B′. Pevzner proposed to measure the length of the alignment as
n+m+L where L is some positive constant. Then the length of some alignment with the
score aα+ bβ + gγ is 2a+ 2b+ g + L.

The best local alignment is found as:

LA(A,B) = max
(A′,B′)

aα+ bβ + gγ
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The best normalized local alignment is:

NLA(A,B) = max
(A′,B′)

aα+ bβ + gγ

2a+ 2b+ g + L

The ideas used in solving the normalized local alignment quickly were introduced by
Dinkelbach [12], who developed a general scheme for maximization problems which displayed
the following properties:

1. The optimization involves a ratio g
h , where g and h are functions

2. The domain of g is equal to the domain of h
3. h is always positive

For our normalized local alignment, we have,

max
domain

g(a, b, g)
h(a, b, g)

Without going into details, we will illustrate some of the main ideas underlying this
approach. First, we introduce an alignment called a parametric local alignment for some
parameter λ.

PA(A,B, λ) = max
domain

g(a, b, g)− λh(a, b, g)

PA(A,B, λ) = max
(A′,B′)

aα+ bβ + gγ − λ(2a+ 2b+ g + L)

Dinkelbach’s interesting result is that the following equation holds:

λ = NLA(A,B) ⇔ PA(A,B, λ) = 0

That is, λ is the score of the best normalized local alignment if and only if the parametric
local alignment for λ has a score of zero.

Dinkelbach proposed an iterative search method to find the zero of PA(A,B, λ) that
has no provable run time but runs well in practice. His ideas are used in the following
algorithm. First, initialize lambda by finding the local alignment LA(A,B) and selecting
λ = aα+bβ+gγ

2a+2b+g+L . Next, repeat two steps until lambda stops changing.

1. Find the parametric local alignment PA(A,B, λ).
2. Set λ′ to aα+bβ+gγ

2a+2b+g+L , and then set λ to λ′.

This method is faster in practice than the provably optimal alternative. However, if one
restricts the values α, β, and γ to rational numbers, one can find the proper λ in O(log n)
time using Megiddo’s technique [29], the details of which are omitted here but can be found
in [4].

The key to completing the algorithm is to effectively find PA(A,B, λ). With some manip-
ulation we see that parametric local alignment can be rewritten in terms of local alignment.

PA(A,B, λ) =
(

max
(A′,B′)

a(α− 2λ) + b(β − 2λ) + g(γ − λ)
)
− Lλ

To solve the parametric local alignment, we can first solve local alignment with α′ =
α− 2λ, β′ = β − 2λ, and γ′ = γ − λ, and then subtract a constant to find the score of the
parametric local alignment.
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Using this method of solving the parametric local alignment takes the same time and
space as local alignment, O(nm) time and O(n+m) space. Therefore, if the scoring scheme
is restricted to rational numbers then the time required to complete the normalized local
alignment is O(nm log n). In practice, the Dinkelbach search is known to work equally well.

1.12 Asymptotic Improvements

Normalized local alignment is used to produce a more valid biological result. In the final
section of this chapter, we explore some interesting techniques that can be used to reduce
the asymptotic runtime complexity of the algorithm. For ease of presentation, assume
Θ(m) = Θ(n). It might seem at first glance that an O(n2) solution is as fast as the problem
can be solved; however, this is not true. Masek and Paterson [28] were the first to introduce
an O

(
n2

log n

)
solution. However, their solution was limited in that it did not provide an

answer to local alignment problem and required that the scoring method consist of rational
numbers only.

Crochemore and Landau presented an algorithm [8] that answered these limitations.
Their algorithm makes use of the periodic nature of strings to achieve a runtime of O

(
hn2

log n

)
,

where h is the entropy [9] measure of the strings, varying between 0 and 1. Obviously even
when the strings are random, with an entropy of 1, the algorithm shows an asymptotic
improvement over O(nm), but strings that are highly repetitive gain a larger improvement.

1.12.1 LZ Parsing of Strings

The algorithm uses a version of Lempel-Ziv parsing [24, 43, 44], which compresses a string
by exploiting its repeat structure. The basic idea behind LZ compression is that one can
divide a string S into a set of blocks. The blocks are formed in a greedy way, from left to
right, using the following formulation. Suppose that we have divided the string into blocks
up to position j and block i. In the Lempel-Zip parsing scheme, we will define block i+ 1
using a substring of S[1...j] and a character c. More specifically, we look for the maximal
substring M = S[s...e] (s ≤ e ≤ j) that matches S[j + 1...k]. The new block is represented
by the triple, 〈s, l, c〉, where s is the starting index of the substring M , l is the length of the
substring M , and c is the character S[k + 1], S[k + 1] �= S[e+ 1].

It has been shown that the number of such blocks for a string of length n is O
(

hn
log n

)

[23], where again h is the entropy of the string. An example is given in Figure 1.5.
This is the most general version of LZ parsing. The alignment algorithm uses a slightly

more restricted version known as LZ78. LZ78 parsing only allows the reuse of complete

LZ Parsing
a|g|gg|ga|ac|aacc|
(0,0,a) (0,0,g) (1,1,g) (1,1,a) (0,1,c) (4,3,c)
-----------------------------------------------
LZ78 Parsing
a|g|gg|ga|ac|aa|c|c|
(0,a) (0,g) (2,g) (2,a) (1,c) (1,a) (0,c) (1,$)

FIGURE 1.5: Example LZ parsings of the string “agggaacacc”.
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FIGURE 1.6: The dynamic programming table is decomposed into blocks based on each string’s
LZ78 block decomposition. In addition, two trie indexes are created that capture
the structure of this decomposition. For each block (xa, yb), the blocks (x, yb),
(xa, y), and (x, y) exist in the submatrix to the left and above block (xa, yb); the
block indexes for substrings x and y can be found using the tries.

blocks rather than some arbitrary substring. One nice implication is that each block can be
encoded using only two values 〈i, c〉, where i is the block index and c is the next character.
Obviously, this method produces more blocks than the general scheme, but the total number
of blocks is the same asymptotically, and the storage per block is less.

1.12.2 Decomposing the Problem

We will create a trie representation of the LZ78 parsing. For more information on tries and

in the parsing, and a node’s parent corresponds to the block used as the prefix block. Edges
point from children to the parents, and correspond to the extending character. The LZ78
parsing of the strings and the construction of the tries takes O(n) time using suffix trees.

Using the block boundaries, as Figure 1.6 shows, we can conceptually divide the table
into subtables, which we will also call blocks, as confusion can be avoided through context.
Each block G defined for substrings xa of A and yb of B, written as (xa, yb), where x and
y are strings and a and b are characters.

The intuition behind the algorithm is that the path information for all cells except for
the bottom right cell should have been previously calculated. This is because blocks cor-
responding to (xa, y), (x, yb), and (x, y) exist in the submatrix above and to the left of the
current block. We want to use this observation to do work proportional to the number of
cells on block boundaries, which is O

(
hn2

log n

)
, our goal.

1.7.
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specifically suffix trees, refer to Chapter 5. The nodes of the trie correspond to each block

First, consider viewing the alignment problem at the block level, as shown in Figure
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FIGURE 1.7: This figure shows an expanded view of each block in the dynamic programming
table (a). The left column and top row are considered input cells for the block
(b). The right column and bottom row are considered output cells (c). The total
number of input cells or output cells is called p. One can consider every highest
scoring path connecting each input cell with each output cell (d), and think of a
p×p square matrix representing the score of each path through the block (e). This
path matrix is incomplete as some input and output cells have no paths connecting
them (gray). For this block, we only calculate and store one row of this matrix
(f), which takes O(p) time and space.
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Let G be a block of width w and height h. We define the perimeter size of G as p = w+h−1.
Note that this is not the same as the classical perimeter of G (2(w + h)). We call the left
column and the top row the input cells of G and the right column and bottom row the
output cells of G. The optimal path between some input cell in and some output cell out
has a score path[in, out]. We create a p × p matrix called the path matrix, with the rows
corresponding to the input cells and the columns the output cells. This matrix stores all
optimal path scores for pairs of input cells and output cells.

For a block G defined as G = B(xa, yb) where x and y are substrings and a and b are
characters, we have the following information:

1. The score of all paths from input to output cells except for the bottom right cell,
br. There are two reasons why this is the case. First, all paths must move down
and to the right. Second, as stated previously, the blocks B(x, yb), B(xa, y), and
B(x, y) have already been calculated.

2. The score of a best alignment path from the origin cell to each input cell, inputi.

We wish to calculate two things:

1. Scores of optimal paths from each input cell to the bottom right cell, br. This
For each

input cell in, the score is the maximum of three values:

path[ini, br] = max






path[ini, northwest[br]] + δ(ai, bj)
path[ini, west[br]] + γ

path[ini, north[br]] + γ

Assuming that the three previously calculated path scores can be accessed in
constant time, calculating the new path takes constant time for each input cell.

2. The input cell scores for the blocks neighboring our output blocks. This is ac-
complished by first calculating the output scores for each output cell, outputj,
the score of the optimal path from the origin cell to the output cell.

outputj = max
i

(path[ini, outj ] + inputi)

The input cell scores can be calculated as the maximum of three values, using
the bordering output cell scores.

It appears as if we have not reached our runtime goal. We wish to spend time proportional
to the number of perimeter cells p in G. Certainly this is the case in step one, as we use
a constant number of operations per input cell. However in step two it appears as if we
break this requirement by searching for a max over all input cells for each output cell, which
naively appears to take O(p2) time.

1.12.3 The SMAWK algorithm

It has been shown [1, 37] that the path matrix is Monge [32] by showing that score[a, c] +
score[b, d] ≤ score[a, b] for all a < b, c < d, which is the concave requirement. In turn,
the matrix is totally monotone because any Monge matrix is also totally monotone. Again
our matrix meets the concave condition of total monotonicity: score[a, c] ≤ score[b, c] ⇒
score[a, d] ≤ score[b, d].

Aggarwal and Park [1] gave a recursive algorithm, called SMAWK, that solves the problem
of finding all row and column maxima in an n×n totally monotone, full, rectangular matrix
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corresponds to one column in the path matrix as shown in figure 1.7.
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in O(n) time. The idea it uses is very simple: as one travels down the matrix from top to
bottom, the row maxima must move left to right. Equivalently, the column maxima move
top to bottom as one moves between columns left to right.

With this in mind, assume that we know the column maxima for all even columns. We
can find the column maxima for all odd columns in O(n) time by searching only the rows
between column maxima in adjacent even columns. This alone does not produce the desired
runtime; a simple recursion would produce an O(n log n) bound.

However, given any irregular matrix with more rows R than columns C, it is obvious that
only C rows can actually produce column maxima. Using the total monotonicity property,
we can find the set of rows producing maxima in O(R) time by eliminating all rows not
producing maxima.

We construct a stack s of size |s| that contains the set of rows producing maxima. The
top row on the stack will be represented as st and the next row down st−1, and row at
position n is denoted as sn. The stack is initially empty. We will consider the rows from
top to bottom. We will place a row r on s only if r[|s|] < st[|s|]. If this is not the case
then we will pop st off the stack, because it can contain no maxima. The test is repeatedly
applied to r and the top of the stack until the condition is met or the stack becomes empty.

Why can we pop st off the stack when r[|s|] ≥ st[|s|]? By total monotonicity, r[c] ≥ st[c]
for all columns c ≥ |s|. It is also the case that st−1[c] ≥ st[c] for all columns c < |s|. This can
be proved as follows: Assume, for a contradiction, that st−1[c] < st[c] for some c < |s|. Then,
by total monotonicity, st−1[c′] < st[c′] for all c′ > c. Therefore, st−1[|s − 1|] < st[|s − 1|].
However, by construction, st−1[s− 1] ≥ st[s− 1], a contradiction. Therefore, it must be the
case that st−1[c] ≥ st[c] for all columns c < |s|. Therefore, unless st meets the condition, it
can be discarded as containing no maxima.

It follows from the proof that row sn may only contain column maxima for columns
c >= n. This property is desirable because it bounds the stack size to C, as any rows
placed on a stack of size C would not be able to contain any column maxima and can be
thrown away. Therefore, when the algorithm is complete the stack contains at most C rows
that will contain all column maxima. This set of rows will be fed into the recursion. The
runtime of this algorithm is O(R), as each row is pushed and popped off the stack at most
once.

Thus we can halve both the row and column size for each recursive step in linear time,
and the runtime is given by O(n+ n

2 + n
4 + ...) = O(n). Therefore, the total runtime of the

algorithm is linear.

1.12.4 String Alignment in Subquadratic Time

Returning to our problem, we wish to use the SMAWK algorithm to find all column maxima
in our path matrix. The algorithm can be adapted for this purpose only after we complete
the matrix. The matrix is incomplete because paths must move down and to the right.
Therefore some input and output cells cannot be connected by paths. Consequently, the
highest scoring path between these cells is undefined. However, we can choose values for
the corresponding positions in the matrix that will not result in row or column maximum
while maintaining the totally monotone property.

1. For each cell in the upper right triangle, assign the value −∞.
2. For each cell in the lower left triangle, assign the value −(n + i + j)k, where k

is the maximum possible theoretical score of some path through the block, or
k = |w − |w − h||α+ |w − h|γ.
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FIGURE 1.8: From the block decomposition of the dynamic programming table (a), we create
an index (b) of size O(( hn

log n
)2) that points to the score column stored for each

block (c). Each block (d) points to its corresponding node in the two trie indexes
(e). Travelling up the path of these two trees, we can create a temporary array
(f) that collects the rows needed to access the path matrix for this block (g) in

Now, let’s say that for each row i corresponding to some input cell, we conceptually
add inputi to each cell in that row. After this operation, the totally monotone property is
maintained as we change all values in each row by the same amount. After the addition,
the result for each output cell is found by searching for each column maxima.

While we cannot spend the time to do the addition before running the SMAWK algorithm,
we can do the addition for only those cells encountered during the run of the SMAWK
algorithm and achieve the same affect. Therefore, we can find the needed maxima for all
columns in time proportional to the number of rows and columns, which is the desired
result.

Finally, we need to be able to find the path matrix values in constant time. However, we
only have direct access to one column of the path matrix, the one that we constructed for
this block. We need an indexing scheme that allows us to find the rows for all other output
cells in constant time per cell. As shown in Figure 1.8, we will create a two dimensional
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constant time. Refer to Figure 1.7 for a description of the path matrix.
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array of size O
((

hn
log n

)2
)

of pointers to the column stored for each block. This matrix in

indexed by the tries we constructed for each string corresponding to the LZ decomposition
of the string.

On the trie of each string, there is a path from the node for our current block to the root.
Using the block IDs stored on the trie along this path as indexes into the two dimensional
array, we can find the columns for the blocks used as prefixes of the current block in O(1)
time per block. There are p blocks of interest, each pointing to one column of our path
matrix. To allow access to the path matrix values in constant time during the execution
of the SMAWK algorithm, we create a temporary array of pointers to each column of the
path matrix.

This is the last detail needed to finish the algorithm. In summary, the following steps are
done for each block G with perimeter size p:

1. The column of the path matrix corresponding to connecting all input cells to the
bottom right cell is constructed in O(p) time using the columns for the blocks
(x, yb), (x, y), and (xa, y), which can be found in constant time using the tries.

2. The path matrix for the block is constructed by constructing a temporary array
of size p pointing to the columns of the matrix. This can be done in O(p) time.

3. The output scores for this matrix are compiled using the SMAWK algorithm to
find the column maxima. This also takes O(p) time.

4. The input scores for the next block are calculated using the output scores from
surrounding blocks, taking O(p) time.

Therefore the total time for the algorithm is proportional to the number of perimeter
cells, which as stated previously is O

(
hn2

log n

)
.

1.12.5 Space Requirements

Using Hirschberg’s technique, we used O(n + m) space and O(nm) time to produce the
alignment. In this section, we have described how to reduce the time required by the algo-
rithm, but there is some expense. There is no known way in which to achieve subquadratic
time and linear space in the same algorithm.

There is no published way to reduce the space bound without sacrificing flexibility, and
we can find the space bound through a direct list of those data structures needed to solve
the problem.

1. Two trie indexes corresponding to the block decomposition of our strings and
two linear indexes into these trees, one for each row and column, as shown in

hn
log n ) space.

2. The block index structure corresponding to the block decomposition of S, as((
hn

log n

)2
)

space.

3. Input and output scores for each block, as shown in Figure 1.7 (b) and (c), taking
p space per block, for a total of O

(
hn2

log n

)
space.

4. One path matrix column for each block, as shown in Figure 1.8 (c), which takes
p space per block, for a total of O

(
hn2

log n

)
space.

Therefore, the total space complexity is the same as the runtime complexity, O
(

hn2

log n

)
.
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1.13 Summary

In this chapter, we have provided a thorough presentation of fundamental techniques used to
find the homology between a pair of DNA or protein sequences. While the basic alignment
technique is simple to understand, the diversity of related problems quickly leads to new
problem formulations and the resulting semiglobal, local, and banded alignments. We
covered many advanced topics, including space saving techniques, normalized alignment,
and subquadratic time alignment. Still, this chapter only represents an introduction to the
field of alignments. The upcoming chapters in this part will expand on the ideas presented
here and introduce a breadth of new formulations and solutions.
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