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5.1 Introduction

Fundamental string data structures, and their myriad applications in computational molec-
ular biology are the focus of this part of the handbook. Sequence alignments and string
data structures form the twin foundations for many applications in computational genomics.
The utility of string data structures stems from the fact that at a basic level, various types
of DNA and RNA sequences, and protein sequences can be modeled as strings — DNA as
strings over the alphabet {A,C,G,T}, RNA as strings over the alphabet {A,C,G,U}, and
proteins as strings over an alphabet of size 20 corresponding to the 20 amino acid residues.
While simplistic, modeling of biological sequences as mere strings serves as a sufficient level
of abstraction for a plethora of applications.

Given the large volume of sequence data that many computational biology applications
must deal with, proper organization of the data to facilitate fast access is important to
achieve desirable run-times. From this perspective, string data structures serve the same
purpose for biological sequence data as binary search trees serve for ordered numeric data,
and quadtrees serve for spatial data.

String data structures are ideal for uncovering exact matching patterns in sequences.
Due to evolutionary mechanisms which alter biomolecular sequences, errors introduced by
experimental processes, and many other factors that permit variations — such as the degen-
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eracy of genetic code, protein sequences with some sequence similarity showing significant
structural similarity — one is rarely interested in exact matches as an end in itself. Despite
this, exact matches play a role because they are typically fast — requiring linear time as
opposed to the quadratic time of alignment algorithms. As an example, consider the task of
finding good local alignments between a query sequence and a database consisting of tens to
hundreds of millions of sequences. It is computationally expensive to do as many pairwise
local alignments. If we are interested in a pairwise alignment only if it exhibits significant
homology, such an alignment should also contain regions of exact matches. For instance, if
an aligning region of 100bp length contains at most 4 positions of difference, there should
be an exact match of length at least 20 in this region. Exact matches can be used as a filter
to eliminate large number of pairs that would not yield a good local alignment by perform-
ing alignments only on pairs that have an exact matching region larger than a determined
threshold. It is in this spirit that many problems related to exact matches find applica-
tions in computational biology. String data structures are also useful when performing
approximate matches where only a small number of differences are permitted.

In this chapter, we provide a detailed introduction to the three most frequently used
string data structures in computational molecular biology — lookup tables, suffix trees
and suffix arrays. The focus of this chapter will be on algorithms for constructing these
data structures, which tend to be somewhat complex in the case of suffix trees and suffix
arrays. We will also explore the relationships between these data structures.
provides several illustrations of biological applications where suffix trees play a central role.
A number of new research results on solving biological applications using the more space

5.2 Lookup Tables

Lookup table is a simple data structure that records the positions of occurrences of sub-
strings of a prespecified length in one or more strings. Lookup tables are used in a number
of important bioinformatic tools including such popular programs as BLAST [1, 2] for
database searches, and CAP3 [15] for genome assembly.

We use the following notation throughout the chapter: Let s be a string over the alphabet
Σ. |s| denotes the size of s, s[i] denotes the ith character of s, and s[i..j] denotes the substring
s[i]s[i + 1] . . . s[j]. Let w denote a prespecified length, sometimes referred to as window-
size. The lookup table is an array LT of size |Σ|w, corresponding to the |Σ|w possible
substrings of length w. Let f : Σ → {0, 1, . . . |Σ| − 1} be the one-to-one function such
that f(c) = j − 1 if c is the jth lexicographically smallest character. For the purpose of
the lookup table, any arbitrary ordering of the characters can be taken as lexicographic
ordering. Using f , a substring of length w can be treated as a w digit number in a base |Σ|
system, and converted to its decimal equivalent. We use the notation F (α) to denote the
decimal number corresponding to a w-long substring α.

Each entry in the lookup table LT points to a linked list of specific locations within the
input set of strings where the substring corresponding to the index for the entry occurs. The

It is constructed by using the mapping A→ 0, C→ 1, G→ 2 and T→ 3. The substring TA
corresponds to the index (30)4 = 12. The entry at index 12 indicates that the substring TA
occurs in the string starting at positions 4 and 7.

Let s be a string of length n. It is easy to construct the lookup table for s in O(|Σ|w +n)
time. First, create and initialize each entry to a null list in O(|Σ|w) time. Then, insert
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Chapter 6

efficient suffix array data structure, and its augmented variants, are presented in Chapter
7.

lookup table for the DNA sequence CATTATTAGGA with w = 2 is shown in Figure 5.1.
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FIGURE 5.1: Lookup table for the DNA sequence CATTATTAGGA with w = 2. The table
contains 16 entries, corresponding to the 16 different nucleotide sequences of length
2.

substrings one at a time. First compute index = F (s[1..w]) in O(w) time. Insert position
1 in the linked list corresponding to LT [index]. Using the identity

F (s[k + 1..k + w + 1]) =
(
F (s[k..k + w]− f(s[k])|Σ|w−1

)
× |Σ|+ f(s[k + w + 1])

F (s[k+ 1..k+w+ 1]) can be computed from F (s[k..k+w]) in O(1) time. As each starting
position 1 . . . n−w+1 occurs in a linked list, the total size of all linked lists is O(n) (typically
n >> w). Thus, the size of the lookup table data structure is O(|Σ|w + n). The lookup
table can be easily generalized to a set of strings. Let S = {s1, s2, . . . , sk} be a set of k
strings of total length N . To create the corresponding lookup table, substrings from each of
the strings are inserted in turn. A location in a linked list now consists of a pair giving the
string number and the position of the substring within the string. The space and run-time
required for constructing the lookup table is O(|Σ|w +N).

The size of the lookup table depends exponentially on the window-size w. To achieve
space usage that is linear in the input data size, the value of w should be no greater than
log|Σ|N . A window-size of 10 for DNA sequences assuming a 4-letter alphabet results in a
lookup table with 220 > 1 million entries.

Lookup table is conceptually a very simple data structure to understand and implement.
Once the lookup table for a database of strings is available, given a query string of length
w, all occurrences of it in the database can be retrieved in O(w + k) time, where k is the
number of occurrences. The main problem with this data structure is its dependence on an
arbitrary predefined substring length w. If the query string is of length l > w, the lookup
table does not provide an efficient way of retrieving all occurrences of the query string in
the database. Nevertheless, lookup tables are widely used in many bioinformatic programs
due to their simplicity and ease of use.

5.3 Suffix Trees and Suffix Arrays

5.3.1 Basic Definitions and Properties

Suffix trees and suffix arrays are versatile data structures fundamental to string processing
applications. Let s′ denote a string over the alphabet Σ. Let $ /∈ Σ be a unique termination
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character, and s = s′$ be the string resulting from appending $ to s′. Let suffi = s[i]s[i+
1] . . . s[|s|] be the suffix of s starting at ith position. The suffix tree of s, denoted ST (s) or
simply ST , is a compacted trie of all suffixes of string s. Let |s| = n. It has the following
properties:

1. The tree has n leaves, labeled 1 . . . n, one corresponding to each suffix of s.
2. Each internal node has at least 2 children.
3. Each edge in the tree is labeled with a substring of s.
4. The concatenation of edge labels from the root to the leaf labeled i is suffi.
5. The labels of the edges connecting a node with its children start with different

characters.

The paths from root to the leaves corresponding to the suffixes suffi and suffj coincide
up to their longest common prefix, at which point they bifurcate. If a suffix of the string
is a prefix of another longer suffix, the shorter suffix must end in an internal node instead
of a leaf, as desired. It is to avoid this possibility that the unique termination character is
added to the end of the string. Keeping this in mind, we use the notation ST (s′) to denote
the suffix tree of the string obtained by appending $ to s′. Throughout this chapter, ‘$’ is
taken to be the lexicographically smallest character.

As each internal node has at least 2 children, an n-leaf suffix tree has at most n−1 internal
nodes. Because of property (5), the maximum number of children per node is bounded by
|Σ|+1. Except for the edge labels, the size of the tree isO(n). In order to allow a linear space
representation of the tree, each edge label is represented by a pair of integers denoting the
starting and ending positions, respectively, of the substring describing the edge label. If the
edge label corresponds to a repeat substring, the indices corresponding to any occurrence
of the substring may be used. The suffix tree of the string CATTATTAGGA is shown in

The suffix array of s = s′$, denoted SA(s) or simply SA, is a lexicographically sorted
array of all suffixes of s. Each suffix is represented by its starting position in s. SA[i] = j
iff suffj is the ith lexicographically smallest suffix of s. The suffix array is often used in
conjunction with an array termed Lcp array, containing the lengths of the longest common
prefixes between every consecutive pair of suffixes in SA. We use lcp(α, β) to denote the
longest common prefix between strings α and β. We also use the term lcp as an abbreviation
for the term longest common prefix. Lcp[i] contains the length of the lcp between suffSA[i]

and suffSA[i+1], i.e., Lcp[i] = |lcp(suffSA[i], suffSA[i+1])|. As with suffix trees, we use the
notation SA(s′) to denote the suffix array of the string obtained by appending $ to s′. The
suffix and Lcp arrays of the string CATTATTAGGA are shown in Figure 5.2.

Let v be a node in the suffix tree. Let path-label(v) denote the concatenation of edge
labels along the path from root to node v. Let string-depth(v) denote the length of path-
label(v). To differentiate this with the usual notion of depth, we use the term tree-depth of
a node to denote the number of edges on the path from root to the node. Note that the
length of the longest common prefix between two suffixes is the string depth of the lowest
common ancestor of the leaf nodes corresponding to the suffixes. A repeat substring of
string S is right-maximal if there are two occurrences of the substring that are succeeded
by different characters in the string. The path label of each internal node in the suffix tree
corresponds to a right-maximal repeat substring and vice versa.

Let v be an internal node in the suffix tree with path-label cα where c is a character and
α is a (possibly empty) string. Therefore, cα is a right-maximal repeat, which implies that
α is also a right maximal repeat. Let u be the internal node with path label α. A pointer
from node v to node u is called a suffix link; we denote this by SL(v) = u. Each suffix suffi
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Figure 5.2. For convenience of understanding, we show the actual edge labels.
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FIGURE 5.2: Suffix tree, suffix array and Lcp array of the string CATTATTAGGA. The suffix
links in the tree are given by x→ z → y → u→ r, v → r, and w→ r.

in the subtree of v shares the common prefix cα. The corresponding suffix suffi+1 with
prefix α will be present in the subtree of u. The concatenation of edge labels along the path
from v to leaf labeled i, and along the path from u to leaf labeled i + 1 will be the same.
Similarly, each internal node in the subtree of v will have a corresponding internal node in
the subtree of u. In this sense, the entire subtree under v is contained in the subtree under
u.

Every internal node in the suffix tree other than the root has a suffix link from it. Let v
be an internal node with SL(v) = u. Let v′ be an ancestor of v other than the root and let
u′ = SL(v′). As path-label(v′) is a prefix of path-label(v), path-label(u′) is also a prefix of
path-label(u). Thus, u′ is an ancestor of u. Each proper ancestor of v except the root will
have a suffix link to a distinct proper ancestor of u. It follows that tree-depth(u) ≥ tree-
depth(v)− 1.

Suffix trees and suffix arrays can be generalized to multiple strings. The generalized suffix
tree of a set of strings S = {s1, s2, . . . , sk}, denoted GST (S) or simply GST , is a compacted
trie of all suffixes of each string in S. We assume that the unique termination character
$ is appended to the end of each string. A leaf label now consists of a pair of integers
(i, j), where i denotes the suffix is from string si and j denotes the starting position of the
suffix in si. Similarly, an edge label in a GST is a substring of one of the strings. An edge
label is represented by a triplet of integers (i, j, l), where i denotes the string number, and
j and l denote the starting and ending positions of the substring in si. For convenience of
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FIGURE 5.3: Generalized suffix tree and generalized suffix array of strings GATCG and CTTCG.

understanding, we will continue to show the actual edge labels. Note that two strings may
have identical suffixes. This is compensated by allowing leaves in the tree to have multiple
labels. If a leaf is multiply labeled, each suffix should come from a different string. If N
is the total number of characters (including the $ in each string) of all strings in S, the
GST has at most N leaf nodes and takes up O(N) space. The generalized suffix array of
S, denoted GSA(S) or simply GSA, is a lexicographically sorted array of all suffixes of
each string in S. Each suffix is represented by an integer pair (i, j) denoting suffix starting
from position j in si. If suffixes from different strings are identical, they occupy consecutive
positions in the GSA. For convenience, we make an exception for the suffix $ by listing
it only once, though it occurs in each string. The GST and GSA of strings GATCG and
CTTCG are shown in Figure 5.3.

Suffix trees and suffix arrays can be constructed in time linear to the size of the input.
Suffix trees are very useful in solving a plethora of string problems in optimal run-time
bounds. Moreover, in many cases, the algorithms are very simple to design and understand.
For example, consider the classic pattern matching problem of determining if a pattern P
occurs in text T over a constant sized alphabet. Note that P occurs starting from position
i in T iff P is a prefix of suffi in T . Thus, whether P occurs in T or not can be determined
by checking if P matches an initial part of a path from root to a leaf in ST (T ). Traversing
from the root matching characters in P , this can be determined in O(|P |) time, independent
of the size of T . As another application, consider the problem of finding a longest common
substring of a pair of strings. Once the GST of the two strings is constructed, all that is
needed is to identify an internal node with the largest string depth that contains at least one
leaf from each string. Applications of suffix trees in computational molecular biology are
explored in great detail in the next chapter. Suffix arrays are of interest because they require
much less space than suffix trees, and can be used to solve many of the same problems.

In this chapter, we concentrate on linear time
construction algorithms for suffix trees and suffix arrays.

© 2006 by Taylor & Francis Group, LLC
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5.3.2 Suffix Trees vs. Suffix Arrays

In this section, we explore linear time construction algorithms for suffix trees and suffix
arrays. We also show how suffix trees and suffix arrays can be derived from each other in
linear time. We first show that the suffix array and Lcp array of a string can be obtained
from its suffix tree in linear time. Define lexicographic ordering of the children of a node
to be the order based on the first character of the edge labels connecting the node to its
children. Define lexicographic depth first search to be a depth first search of the tree where
the children of each node are visited in lexicographic order. The order in which the leaves
of a suffix tree are visited in a lexicographic depth first search gives the suffix array of the
corresponding string. In order to obtain lcp information, the string-depth of the current
node during the search is remembered. This can be easily updated in O(1) time per edge
as the search progresses. The length of the lcp between two consecutive suffixes is given
by the smallest string-depth of a node visited between the leaves corresponding to the two
suffixes.

Given the suffix array and the Lcp array of a string s (|s$| = n), its suffix tree can
be constructed in O(n) time. This is done by starting with a partial suffix tree for the
lexicographically smallest suffix, and repeatedly inserting subsequent suffixes from the suffix
array into the tree until the suffix tree is complete. Let Ti denote the compacted trie of
the first i suffixes in lexicographic order. The first tree T1 consists of a single leaf labeled
SA[1] = n connected to the root with an edge labeled suffSA[1] = $.

To insert SA[i+ 1] into Ti, start with the most recently inserted leaf SA[i] and walk up
(|suffSA[i]| − |lcp(suffSA[i], suffSA[i+1])|) = ((n − SA[i] + 1) − Lcp[i]) characters along the
path to the root. This walk can be done in O(1) time per edge by calculating the lengths of
the respective edge labels. If the walk does not end at an internal node, create an internal
node. Create a new leaf labeled SA[i + 1] and connect it to this internal node with an
edge. Set the label on this edge to s[SA[i+ 1] + Lcp[i]..n]. This creates the tree Ti+1. The

a longer prefix with suffSA[i+1] than suffSA[i] does. To see that the entire algorithm runs in
O(n) time, note that inserting a new suffix into Ti requires walking up the rightmost path in
Ti. Each edge that is traversed ceases to be on the rightmost path in Ti+1, and thus is never
traversed again. An edge in an intermediate tree Ti corresponds to a path in the suffix tree
ST . When a new internal node is created along an edge in an intermediate tree, the edge
is split into two edges, and the edge below the newly created internal node corresponds to
an edge in the suffix tree. Once again, this edge ceases to be on the rightmost path and is
never traversed again. The cost of creating an edge in an intermediate tree can be charged
to the lowest edge on the corresponding path in the suffix tree. As each edge is charged
once for creating and once for traversing, the total run-time of this procedure is O(n).

Finally, the Lcp array itself can be constructed from the suffix array and the string in
linear time [20]. Let R be an array of size n such that R[i] contains the position in SA of
suffi. R can be constructed by a linear scan of SA in O(n) time. The Lcp array is computed
in n iterations. In iteration i of the algorithm, the longest common prefix between suffi

and its respective right neighbor in the suffix array is computed. The array R facilitates
locating an arbitrary suffix suffi and finding its right neighbor in the suffix array in constant
time. Initially, the length of the longest common prefix between suff1 and its suffix array
neighbor is computed directly and recorded. Let suffj be the right neighbor of suffi in SA.
Let l be the length of the longest common prefix between them. Suppose l ≥ 1. As suffj is
lexicographically greater than suffi and s[i] = s[j], suffj+1 is lexicographically greater than
suffi+1. The length of the longest common prefix between them is l − 1. It follows that
the length of the longest common prefix between suffi+1 and its right neighbor in the suffix

© 2006 by Taylor & Francis Group, LLC

procedure is illustrated in Figure 5.4. It works because no other suffix inserted so far shares
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FIGURE 5.4: The construction of a suffix tree from the corresponding suffix and Lcp arrays.
The example illustrates the insertion of suff2 in the partial tree resulting from
previously inserting the first four suffixes in the suffix array. The length of the lcp
between the last inserted suffix and the new suffix gives the number of characters
under the root and along the rightmost path at which the new leaf is inserted.

array is ≥ l− 1. To determine its correct length, the comparisons need only start from the
lth characters of the suffixes.

To prove that the run time of the above algorithm is linear, charge a comparison between
the rth character in suffix suffi and the corresponding character in its right neighbor suffix in
SA to the position in the string of the rth character of suffi, i.e., i+r−1. A comparison made
in an iteration is termed successful if the characters compared are identical, contributing to
the longest common prefix being computed. Because there is one failed comparison in each
iteration, the total number of failed comparisons is O(n). As for successful comparisons,
each position in the string is charged only once for a successful comparison. Thus, the total
number of comparisons over all iterations is linear in n.

In light of the above discussion, a suffix tree and a suffix array can be constructed from
each other in linear time. Thus, a linear time construction algorithm for one can be used
to construct the other in linear time. In the following sections, we explore such algorithms.
Each algorithm is interesting in its own right, and exploits interesting properties that could
be useful in designing algorithms using suffix trees and suffix arrays.

In suffix tree and suffix array construction algorithms, three different types of alpha-
bets are considered — a constant or fixed size alphabet (|Σ|(1)), integer alphabet (Σ =
{1, 2, . . . , n}), and arbitrary alphabet. Suffix trees and suffix arrays can be constructed in
linear time for both constant size and integer alphabets. The constant alphabet size case
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covers DNA and protein sequences in molecular biology. The integer alphabet case is in-
teresting because a string of length n can have at most n distinct characters. Furthermore,
some algorithms use a recursive technique that would generate and require operating on
strings over integer alphabet, even when applied to strings over a fixed alphabet.

5.4 Linear Time Construction of Suffix Trees

Let s be a string of length n including the termination character $. Suffix tree construction
algorithms start with an empty tree and iteratively insert suffixes while maintaining the
property that each intermediate tree represents a compacted trie of the suffixes inserted so
far. When all the suffixes are inserted, the resulting tree will be the suffix tree. Suffix links
are typically used to speedup the insertion of suffixes. While the algorithms are identified by
the names of their respective inventors, the exposition presented does not necessarily follow
the original algorithms and we take the liberty to comprehensively present the material in
a way we feel contributes to ease of understanding.

5.4.1 McCreight’s Algorithm

McCreight’s algorithm inserts suffixes in the order suff1, suff2, . . . , suffn. Let Ti denote the
compacted trie after suffi is inserted. T1 is the tree consisting of a single leaf labeled 1 that
is connected to the root by an edge with label s[1..n]. In iteration i of the algorithm, suffi is
inserted into tree Ti−1 to form tree Ti. An easy way to do this is by starting from the root
and following the unique path matching characters in suffi one by one until no more matches
are possible. If the traversal does not end at an internal node, create an internal node there.
Then, attach a leaf labeled i to this internal node and use the unmatched portion of suffi

for the edge label. The run-time for inserting suffi is proportional to |suffi| = n − i + 1.
The total run-time of the algorithm is Σn

i=1(n− i+ 1) = O(n2).
In order to achieve an O(n) run-time, suffix links are used to significantly speedup the

insertion of a new suffix. Suffix links are useful in the following way — Suppose we are
inserting suffi in Ti−1 and let v be an internal node in Ti−1 on the path from root to leaf
labeled (i− 1). Then, path-label(v) = cα is a prefix of suffi−1. Since v is an internal node,
there must be another suffix suffj (j < i− 1) that also has cα as prefix. Because suffj+1 is
previously inserted, there is already a path from the root in Ti−1 labeled α. To insert suffi

faster, if the end of path labeled α is quickly found, comparison of characters in suffi can
start beyond the prefix α. This is where suffix links will be useful. The algorithm must also
construct suffix links prior to using them.

LEMMA 5.1 Let v be an internal node in ST (s) that is created in iteration i− 1. Let
path-label(v) = cα, where c is a character and α is a (possibly empty) string. Then, either
there exists an internal node u with path-label(u) = α or it will be created in iteration i.

Proof As v is created when inserting suffi−1 in Ti−2, there exists another suffix suffj

(j < i − 1) such that lcp(suffi−1, suffj) = cα. It follows that lcp(suffi, suffj+1) = α. The
tree Ti already contains suffj+1. When suffi is inserted during iteration i, internal node u
with path-label α is created if it does not already exist.

The above lemma establishes that the suffix link of a newly created internal node can be
established in the next iteration.
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FIGURE 5.5: Illustration of suffix tree construction using McCreight’s algorithm on the string
CATTATTAGGA. The tree to the left is the compacted trie of suffixes 1 through
5. The process of inserting the next suffix suff6 is shown in the figure.

The following procedure is used when inserting suffi in Ti−1. Let v be the internal node to
which suffi−1 is attached as a leaf. If v is the root, insert suffi using character comparisons
starting with the first character of suffi. Otherwise, let path-label(v) = cα. If v has a
suffix link from it, follow it to internal node u with path-label α. This allows skipping the
comparison of the first |α| characters of suffi. If v is newly created in iteration i − 1, it
would not have a suffix link yet. In that case, walk up to parent v′ of v. Let β denote the
label of the edge connecting v′ and v. Let u′ = SL(v′) unless v′ is the root, in which case
let u′ be the root itself. It follows that path-label(u′) is a prefix of suffi. Furthermore, it
is guaranteed that there is a path below u′ that matches the next |β| characters of suffi.
Traverse |β| characters along this path and either find an internal node u or insert an
internal node u if one does not already exist. In either case, set SL(v) = u. Continue by
starting character comparisons skipping the first |α| characters of suffi.

This procedure is illustrated in Figure 5.5 for the string CATTATTAGGA. The tree to
the left is the compacted trie after suff1, suff2, suff3, suff4 and suff5 are inserted. To insert
suff6, consider the internal node u under which it is inserted as a leaf. Since u did not exist
previously but was created during the insertion of suff5, it does not have a suffix link yet.
Therefore, walk up the 4 character edge to the parent of u to take a suffix link. However, the
parent is the root r itself, and no suffix link is taken. To insert suff6, walk down 4− 1 = 3
characters by only comparing one character per edge label and skipping edges at the rate of
constant time per edge. At this position, create a new internal node w and set SL(u) = w.
Continue to insert suff6 below w.

The above procedure requires two different types of traversals — one in which it is known
that there exists a path below that matches the next |β| characters of suffi (type I), and the
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other in which it is unknown how many subsequent characters of suffi match a path below
(type II). In the latter case, the comparison must proceed character by character until a
mismatch occurs. In the former case, however, the traversal can be done by spending only
O(1) time per edge irrespective of the length of the edge label. At an internal node during
such a traversal, the decision of which edge to follow next is made by comparing the next
character of suffi with the first characters of the edge labels connecting the node to its
children. However, once the edge is selected, the entire label or the remaining length of β
must match, whichever is shorter. Thus, the traversal can be done in constant time per
edge, and if the traversal stops within an edge label, the stopping position can also be
determined in constant time.

The insertion procedure during iteration i can now be described as follows: Start with
the internal node v to which suffi−1 is attached as a leaf. If v has a suffix link, follow it and
perform a type II traversal to insert suffi. Otherwise, walk up to v’s parent, take the suffix
link from it unless it is the root, and perform a type I traversal to either find or create the
node u which will be linked from v by a suffix link. Continue with a type II traversal below
u to insert suffi.

LEMMA 5.2 The total time spent in type I traversals over all iterations is O(n).

Proof A type I traversal is performed by walking down along a path from root to a leaf
in O(1) time per edge. Each iteration consists of walking up at most one edge, following
a suffix link, and then performing downward traversals (either type II or both type I and
type II). Recall that if SL(v) = u, then tree-depth(u) ≥ tree-depth(v)− 1. Thus, following
a suffix link may reduce the depth in the tree by at most one. It follows that the operations
that may cause moving to a higher level in the tree cause a decrease in depth of at most 2
per iteration. As both type I and type II traversals increase the depth in the tree and there
are at most n levels in ST , the total number of edges traversed by type I traversals over all
the iterations is bounded by 3n.

LEMMA 5.3 The total time spent in type II traversals over all iterations is O(n).

Proof In a type II traversal, a suffix of the string suffi is matched along a path in Ti−1

until there is a mismatch. When a mismatch occurs, an internal node is created if there does
not exist one already. Then, the remaining part of suffi becomes the edge label connecting
leaf labeled i to the internal node. Charge each successful comparison of a character in
suffi to the corresponding character in the original string s. Note that a character that is
charged with a successful comparison is never charged again as part of a type II traversal.
Thus, the total time spent in type II traversals is O(n).

The above lemmas prove that the total run-time of McCreight’s algorithm is O(n).

5.4.2 Ukkonen’s Algorithm

Ukkonen’s suffix tree construction algorithm is also a linear time algorithm but with an
important on-line property: The algorithm reads the input string one character at a time
and maintains a suffix tree of the prefix of the string seen so far. As before, let s be a string
of length n including the terminal ‘$’ character. The algorithm constructs a series of trees
T1, T2, . . . , Tn, where Ti is the suffix tree of s[1..i]. After constructing Ti, the algorithm

© 2006 by Taylor & Francis Group, LLC



5-12 Handbook of Computational Molecular Biology

reads s[i + 1] and updates Ti to create Ti+1. The total run-time spent by the time the
algorithm constructs Ti is O(i), even though the time spent in transitioning from one tree
to the next is not necessarily constant.

When considering the string s[1..i], a suffix of it may be repeated elsewhere in it because
the unique terminal symbol is only at s[n]. Hence, a compacted trie of all suffixes of s[1..i]
may not have each suffix represented by a path that ends in a leaf. Therefore, we relax the
definition of suffix trees by requiring that a downward path from the root corresponding to
each suffix exist but not necessarily end in a leaf node. Such a tree is called implicit suffix
tree. This would not pose any problem as the implicit suffix tree for s[1..n] is the same as
ST (s) due to the terminal symbol s[n] = $.

Ukkonen’s algorithm employs a few additional ideas in conjunction with those already
illustrated under McCreight’s algorithm. Consider the prefix s[1..i]. We now use the nota-
tion suffk to denote the suffix starting from position k in the current string, i.e., s[k..i]. Let
j be the position such that suffj = s[j..i] is the longest suffix of s[1..i] that occurs elsewhere
in it. Observe that the compacted trie of just suffixes suff1, suff2, . . . , suffj−1 is the same
as the compacted trie of all suffixes suff1, suff2, . . . , suffi of s[1..i]. In the implicit suffix
tree of s[1..i], the paths corresponding to first j − 1 suffixes end in leaves and the paths
corresponding to the remaining suffixes end otherwise.

Consider building Ti+1 from Ti. Viewed naively, this requires extending all suffixes in Ti

with the newly added character s[i+ 1], and finally inserting a new suffix corresponding to
the last character. Let j′ be the position such that s[j′..i+1] is the longest suffix of s[1..i+1]
that occurs elsewhere in it. Clearly, j′ ≥ j, where s[j..i] is the longest suffix of s[1..i] that
occurs elsewhere in it. In creating Ti+1, the suffixes of s[1..i+ 1] can be considered in three
categories:

1. Suffixes suffi . . . suffj−1: The corresponding suffixes in Ti already end in a leaf
and they all need to be extended by the newly read character s[i+1]. Instead of
explicitly doing this, this is implicitly achieved by assuming that all leaf labels
(the labels of edges incident to leaves) end at the current end of the string.

2. Suffixes suffj . . . suffj′−1: These suffixes are inserted in turn using ideas presented
in McCreight’s algorithm. This will be dealt in more detail later.

3. Suffixes suffj′ . . . suffi+1: We need not bother about these suffixes as the com-
pacted trie of the suffixes in the two categories above automatically accounts for
these suffixes also.

Observe that work is required only for inserting suffixes in category 2 above. The suffixes
that are processed under category 2 in creating Ti+1 from Ti, will become category 1 suffixes
in subsequent tree constructions and are never worked on again. As the trees T1 . . . Tn are
constructed in Ukkonen’s algorithm, each suffix is inserted as a category 2 suffix exactly
once. Taken together, these suffix insertions can be thought of as similar to McCreight’s
suffix insertions. Essentially the same techniques will give linear run-time for these suffix
insertions.

Consider Ti and let s[j..i] be the longest suffix of s[1..i] that is repeated elsewhere in it.
This is actually realized while attempting to insert s[j..i] while transitioning to Ti. The
entire suffix s[j..i] would be found within an already existing root to leaf path. This is a
signal that Ti is already constructed. As we transition to Ti+1, the first suffix to insert
is s[j..i + 1]. Note that we are already at the end of the downward path from the root
corresponding to s[j..i]. If the path can continue with s[i + 1], there are no category 2
insertions that need to be made. Otherwise, an internal node v is created at the end of
s[j..i] unless such a node v already exists, and a leaf attached to it using the edge label that
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start at s[i+ 1] and ends at the current end of the string. Then, the next suffix is inserted
as in McCreight’s algorithm by taking suffix link from v if v was present beforehand, or by
walking up to v’s parent and taking suffix link from it if v was newly created and hence
missing a suffix link from it. This process of inserting consecutive suffixes is carried out
until one finds a suffix s[j′..i+1] that is already represented, or the last suffix of the current
string s[i+ 1] is inserted.

The mechanism for moving from one suffix to the next is identical to the process described
in McCreight’s algorithm. Simply walk up from the current insertion point until the first
node with a suffix link is reached, take the suffix link, walk down using type I traversal for
the guaranteed portion of the match, and continue with type II traversal from that point
on. Suffix links are also created during the execution of the algorithm as in McCreight’s.
Another way to view this algorithm is in terms of two shifting pointers j and i. The first
pointer points to a suffix being inserted and the second pointer points to the current end of
the string. If the suffix needs to be inserted, j is incremented by 1 to insert the next suffix.
If the suffix is already found, i is incremented by 1 to switch to the next larger prefix of
the string. As we advanced one of the pointers by 1 and the total length of the string is n,
the number of steps before the two pointers sweep all the indices is at most 2n. All of the
suffix insertions together take O(n) time, giving the algorithm a linear run-time.

McCreight’s algorithm and Ukkonen’s algorithm are suitable for constant sized alphabets.
The dependence of the run-time and space for storing suffix trees on the size of the alphabet
|Σ| is as follows: A simple way to allocate space for internal nodes in a suffix tree is to allocate
|Σ|+ 1 pointers for children, one for each distinct character with which an edge label may
begin. With this approach, the edge label beginning with a given character, or whether an
edge label exists with a given character, can be determined in O(1) time. However, as all
|Σ| + 1 pointers are kept irrespective of how many children actually exist, the total space
is O(|Σ|n). If the tree is stored such that each internal node points only to its leftmost
child and each node also points to its next sibling, if any, the space can be reduced to O(n),
irrespective of |Σ|. With this, searching for a child connected by an edge label with the
appropriate character takes O(|Σ|) time. Thus, McCreight’s algorithm can be run in O(n)
time using O(n|Σ|) space, or in O(n|Σ|) time using O(n) space. It is possible to obtain
O(n log |Σ|) time with O(n) space using an ordered list of pointers at each internal node.
However, this is unlikely to be faster in practice, especially for small alphabet sizes such as
for DNA and proteins.

5.4.3 Generalized Suffix Trees

The above linear time algorithms can be easily adapted to build the generalized suffix
tree for a set S = {s1, s2, . . . , sk} of strings of total length N in O(N) time. A simple
way to do this is to construct the string S = s1$1s2$2 . . . sk$k, where each $i is a unique
string termination character that does not occur in any string in S. Using a linear time
algorithm, ST (S) can be computed in O(N) time. This differs from GST (S) in the following
way: Consider a suffix suffj of string si in GST (S). The corresponding suffix in ST (S) is
si[j..|si|]$isi+1$i+1 . . . sk$k. Let v be the parent of the leaf representing this suffix in ST (S).
As each $i is unique and path-label(v) must be a common prefix of at least two suffixes in S,
path-label(v) must be a prefix of si[j..|si|]. Thus, by simply shortening the edge label below
v to terminate at the end of the string si and attaching a common termination character $
to it, the corresponding suffix in GST (S) can be generated in O(1) time. Additionally, all
suffixes in ST (S) that start with some $i should be removed and replaced by a single suffix
$ in GST (S). Note that the suffixes to be removed are all directly connected to the root
in ST (S), allowing easy O(1) time removal per suffix. Thus, GST (S) can be derived from
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ST (S) in O(N) time.
Instead of first constructing ST (S) and shortening edge labels of edges connecting to

leaves to construct GST (S), the process can be integrated into the tree construction itself
to directly compute GST (S). We will explain this in the context of using McCreight’s
algorithm. When inserting the suffix of a string, directly set the edge label connecting to
the newly created leaf to terminate at the end of the string, appended by $. As each suffix
that begins with $i in ST (S) is directly attached to the root, execution of McCreight’s
algorithm on S will always result in a downward traversal starting from the root when a
suffix starting from the first character of a string is being inserted. Thus, we can simply
start with an empty tree, insert all the suffixes of one string using McCreight’s algorithm,
insert all the suffixes of the next string, and continue this procedure until all strings are
inserted. To insert the first suffix of a string, start by matching the unique path in the
current tree that matches with a prefix of the string until no more matches are possible,
and insert the suffix by branching at this point. To insert the remaining suffixes, continue
as described in constructing the tree for one string.

This procedure immediately gives an algorithm to maintain the generalized suffix tree
of a set of strings in the presence of insertions and deletions of strings. Insertion of a
string is the same as executing McCreight’s algorithm on the current tree, and takes time
proportional to the length of the string being inserted. To delete a string, we must locate the
leaves corresponding to all the suffixes of the string. By mimicking the process of inserting
the string in GST using McCreight’s algorithm, all the corresponding leaf nodes can be
reached in time linear in the size of the string to be deleted. To delete a suffix, examine the
corresponding leaf. If it is multiply labeled, it is enough to remove the label corresponding
to the suffix. It it has only one label, the leaf and edge leading to it must be deleted. If the
parent of the leaf is left with only one child after deletion, the parent and its two incident
edges are deleted by connecting the surviving child directly to its grandparent with an edge
labeled with the concatenation of the labels of the two edges deleted. As the adjustment at
each leaf takes O(1) time, the string can be deleted in time proportional to its length.

Suffix trees were invented by Weiner [29], who also presented the first linear time algo-
rithm to construct them for a constant sized alphabet. McCreight’s algorithm is a more
space-economical linear time construction algorithm [26]. A linear time on-line construction
algorithm for suffix trees was invented by Ukkonen [28]. In fact, our presentation of Mc-
Creight’s algorithm also draws from ideas developed by Ukkonen. A unified view of these
three suffix tree construction algorithms is studied by Giegerich and Kurtz [10]. Farach [6]
presented the first linear time algorithm for strings over integer alphabets. The algorithm
recursively constructs suffix trees for all odd and all even suffixes, respectively, and uses a
clever strategy for merging them. The complexity of suffix tree construction algorithms for
various types of alphabets is explored in [7].

5.5 Linear Time Construction of Suffix Arrays

Suffix arrays were proposed by Manber and Myers [25] as a space-efficient alternative to
suffix trees. While suffix arrays can be deduced from suffix trees, which immediately implies
any of the linear time suffix tree construction algorithms can be used for suffix arrays, it
would not achieve the purpose of economy of space. Until recently, the fastest known direct
construction algorithms for suffix arrays all required O(n log n) time, leaving a frustrating
gap between asymptotically faster construction algorithms for suffix trees, and asymptot-
ically slower construction algorithms for suffix arrays, despite the fact that suffix trees
contain all the information in suffix arrays. This gap is successfully closed by a number of
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researchers in 2003, including Kärkkäinen and Sanders [19], Kim et al. [21], and Ko and
Aluru [22, 23]. All three algorithms work for the case of integer alphabet. Given the sim-
plicity and/or space efficiency of some of these algorithms, it is now preferable to construct
suffix trees via the construction of suffix arrays.

5.5.1 Kärkkäinen and Sanders’ Algorithm

Kärkkäinen and Sanders’ algorithm is the simplest and most elegant algorithm to date to
construct suffix arrays, and by implication suffix trees, in linear time. The algorithm also
works for the case of an integer alphabet. Let s be a string of length n over the alphabet
Σ = {1, 2, . . . , n}. For convenience, assume n is a multiple of three and s[n+1] = s[n+2] = 0.
The algorithm has the following steps:

1. Recursively sort the 2
3n suffixes suffi with i mod 3 �= 0.

2. Sort the 1
3n suffixes suffi with i mod 3 = 0 using the result of step (1).

3. Merge the two sorted arrays.

To execute step (1), first perform a radix sort of the 2
3n triples (s[i], s[i + 1], s[i + 2])

for each i mod 3 �= 0 and associate with each distinct triple its rank ∈ {1, 2, . . . , 2
3n} in

sorted order. If all triples are distinct, the suffixes are already sorted. Otherwise, let suff′i
denote the string obtained by taking suffi and replacing each consecutive triplet with its
corresponding rank. Create a new string s′ by concatenating suff′1 with suff′2. Note that all
suff′i with i mod 3 = 1 (i mod 3 = 2, respectively) are suffixes of suff′1 (suff′2, respectively).
A lexicographic comparison of two suffixes in s′ never crosses the boundary between suff′1
and suff′2 because the corresponding suffixes in the original string can be lexicographically
distinguished. Thus, sorting s′ recursively gives the sorted order of suffi with i mod 3 �= 0.

Step (2) can be accomplished by performing a radix sort on tuples (s[i], rank(suffi+1)) for
all i mod 3 = 0, where rank(suffi+1) denotes the rank of suffi+1 in sorted order obtained
in step (1).

Merging of the sorted arrays created in steps (1) and (2) is done in linear time, aided
by the fact that the lexicographic order of a pair of suffixes, one from each array, can be
determined in constant time. To compare suffi (i mod 3 = 1) with suffj (i mod 3 = 0),
compare s[i] with s[j]. If they are unequal, the answer is clear. If they are identical, the
ranks of suffi+1 and suffj+1 in the sorted order obtained in step (1) determines the answer.
To compare suffi (i mod 3 = 2) with suffj (i mod 3 = 0), compare the first two characters
of the two suffixes. If they are both identical, the ranks of suffi+2 and suffj+2 in the sorted
order obtained in step (1) determines the answer.

The run-time of this algorithm is given by the recurrence T (n) = T
(
� 2n

3 �
)
+O(n), which

results in O(n) run-time. Note that the 2
3 : 1

3 split is designed to make the merging step
easy. A 1

2 : 1
2 split does not allow easy merging because when comparing two suffixes for

merging, no matter how many characters are compared, the remaining suffixes will not
fall in the same sorted array, where ranking determines the result without need for further
comparisons. Kim et al.’s linear time suffix array construction algorithm is based on a 1

2 : 1
2

split, and the merging phase is handled in a clever way so as to run in linear time. This is
much like Farach’s algorithm for constructing suffix trees [6] by constructing suffix trees for
even and odd positions separately and merging them. Both the above linear time suffix array
construction algorithms partition the suffixes based on their starting positions in the string.
A more detailed account of Kärkkäinen and Sanders’ Algorithm including pseudocode and
an example suffix array construction, along with application of this algorithm to construct
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FIGURE 5.6: The string CATTATTAGGA$ and the types of its suffixes.

5.5.2 Ko and Aluru’s Algorithm

A completely different way of partitioning suffixes based on the lexicographic ordering of a
suffix with its right neighboring suffix in the string is used by Ko and Aluru to derive a linear
time algorithm [22, 23]. Consider a string s of size n over the alphabet Σ = {1 . . . n}. As
before, we use ‘$’ to denote the last character of s, considered unique and lexicographically
the smallest. For strings α and β, we use α ≺ β to denote that α is lexicographically smaller
than β.

A high level overview of the algorithm is as follows: The suffixes are classified into two
types, S and L. Suffix suffi is of type S if suffi ≺ suffi+1, and is of type L if suffi+1 ≺ suffi.
The last suffix suffn is classified as both type S and type L. The positions of the type S
suffixes partition the string into a set of substrings. We substitute each of these substrings
by its rank among all the substrings and produce a new string s′. The suffixes of the new
string are then recursively sorted. The suffix array of s′ gives the lexicographic order of all
type S suffixes. The lexicographic order of all suffixes can be deduced from this order.

The first step of the algorithm is to classify suffixes into types S and L. Consider suffi

(i < n).

• If s[i] < s[i+ 1], suffi is of type S.
• If s[i] > s[i+ 1], suffi is of type L.
• If s[i] = s[i+ 1], find the smallest j > i such that s[j] �= s[i]. If s[j] > s[i], then
suffi, suffi+1, . . . , suffj−1 are of type S. Otherwise, they are all of type L.

Thus, all suffixes can be classified using a left to right scan of s in O(n) time. The type
of each suffix of the string CATTATTAGGA$ is shown in Figure 5.6.

LEMMA 5.4 A type S suffix is lexicographically greater than a type L suffix that begins
with the same first character.

Proof Let suffi be type S and suffj be type L such that s[i] = s[j] = c. We can write
suffi = ckc1α and suffj = clc2β, where ck and cl denote the character c repeated for k, l > 0
times, respectively, c1 > c, c2 < c, and α and β are (possibly empty) strings.

Case 1: If k < l, c1 is compared to a character c in cl. Then c1 > c⇒ suffj ≺ suffi.

Case 2: If k > l, c2 is compared to a character c in ck. Then c > c2 ⇒ suffj ≺ suffi.
Case 3: If k = l then c1 is compared to c2. Since c1 > c and c > c2, then c1 > c2 ⇒

suffj ≺ suffi.

It follows that in the suffix array of s, among all suffixes that start with the same character,
the type S suffixes appear after the type L suffixes.

Let A be an array containing all suffixes of s, not necessarily in sorted order. Let B be
an array of all suffixes of type S, sorted in lexicographic order. Using B, the lexicographic
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FIGURE 5.7: Illustration of how to obtain the sorted order of all suffixes, from the sorted order
of type S suffixes of the string CATTATTAGGA$.

sorted order of all suffixes of s can be computed as follows:

1. Bucket all suffixes of s according to their first character in array A in O(n) time.
2. Scan B from right to left. For each suffix encountered in the scan, move the suffix

to the current end of its bucket in A, and advance the current end by one position
to the left. More specifically, the move of a suffix in array A to a new position
should be taken as swapping the suffix with the suffix currently occupying the
new position. After completion of the scan, all type S suffixes are in their correct
positions in A. The time taken is O(|B|), which is bounded by O(n).

3. Scan A from left to right. For each entry A[i], if suffA[i]−1 is a type L suffix, move
it to the current front of its bucket in A, and advance the front of the bucket by
one. This takes O(n) time. At the end of this step, A contains all suffixes of s in
sorted order.

In Figure 5.7, the suffix pointed by the arrow is moved to the current front of its bucket
when the scan reaches the suffix at the origin of the arrow. The following lemma proves the
correctness of the procedure in Step 3.

LEMMA 5.5 In step 3, when the scan reaches A[i], suffix suffA[i] is already in its sorted
position in A.

Proof By induction on i. To begin with, the smallest suffix in s must be of type S and
hence in its correct position A[1]. By inductive hypothesis, assume that A[1], A[2], . . . , A[i]
are the first i suffixes in sorted order. We now show that when the scan reaches A[i + 1],
then the suffix in it, i.e., suffA[i+1] is already in its sorted position. Suppose not. Then there
exists a suffix referenced by A[k] (k > i+ 1) that should be in A[i+ 1] in sorted order, i.e.,
suffA[k] ≺ suffA[i+1]. As all type S suffixes are already in correct positions, both suffA[k]

and suffA[i+1] must be of type L. Because A is bucketed by the first character of the suffixes
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prior to step 3, and a suffix is never moved out of its bucket, suffA[k] and suffA[i+1] must
begin with the same character, say c. Let suffA[i+1] = cα and suffA[k] = cβ. Since suffA[k]

is type L, β ≺ suffA[k]. From suffA[k] ≺ suffA[i+1], β ≺ α. Since β ≺ suffA[k], and the
correct sorted position of suffA[k] is A[i+ 1], β must occur in A[1] . . . A[i]. Because β ≺ α,
suffA[k] should have been moved to the current front of its bucket before suffA[i+1]. Thus,
suffA[k] can not occur to the right of suffA[i+1], a contradiction.

So far, we showed that if all type S suffixes are sorted, then the sorted position of all
suffixes of s can be deduced in O(n) time. A similar result can also be obtained by sorting
all suffixes of type L: First bucket all suffixes of s based on their first characters into an
array A. Scan the sorted order of type L suffixes from left to right and determine their
correct positions in A by moving them to the current front of their respective buckets.
Subsequently, scan A from right to left and when A[i] is encountered, if suffA[i]−1 is of type
S, move it to the current end of its bucket. Since the suffix array of s can be deduced either
from sorting all type S suffixes, or from sorting all type L suffixes, it is advantageous to
choose the type which has fewer suffixes. Without loss of generality, assume there are fewer
type S suffixes. We now show how to recursively sort these suffixes.

Define position i of s to be a type S position if suffi is of type S, and similarly to be
a type L position if suffi is of type L. The substring s[i..j] is called a type S substring if
both i and j are type S positions, and every position in between is a type L position.

Our goal is to sort all type S suffixes in s. To do this we first sort all the type S substrings.
The sorting generates buckets where all the substrings in a bucket are identical. The buckets
are numbered using consecutive integers starting from 1. We then generate a new string
s′ as follows: Scan s from left to right and for each type S position in s, write the bucket
number of the type S substring starting from that position. This string of bucket numbers
forms s′. Observe that each type S suffix in s naturally corresponds to a suffix in the new
string s′. In Lemma 5.6, we prove that sorting all type S suffixes of s is equivalent to sorting
all suffixes of s′. We sort s′ recursively.

We first show how to sort all the type S substrings in O(n) time. Consider the array A,
consisting of all suffixes of s bucketed according to their first characters. For each suffix
suffi, define its S-distance to be the distance from its starting position i to the nearest
type S position to its left (excluding position i). If no type S position exists to the left,
the S-distance is defined to be 0. Thus, for each suffix starting on or before the first type
S position in s, its S-distance is 0. The type S substrings are sorted as follows (illustrated

1. For each suffix in A, determine its S-distance. This is done by scanning s from
left to right, keeping track of the distance from the current position to the nearest
type S position to the left. While at position i, the S-distance of suffi is known
and this distance is recorded in array Dist. The S-distance of suffi is stored in
Dist[i]. Hence, the S-distances for all suffixes can be recorded in linear time.

2. Let m be the largest S-distance. Create m lists such that list j (1 ≤ j ≤ m)
contains all the suffixes with an S-distance of j, listed in the order in which they
appear in array A. This can be done by scanning A from left to right in linear
time, referring to Dist[A[i]] to put suffA[i] in the correct list.

3. We now sort the type S substrings using the lists created above. The sorting is
done by repeated bucketing using one character at a time. To begin with, the
bucketing based on first character is determined by the order in which type S
suffixes appear in array A. Suppose the type S substrings are bucketed according
to their first j − 1 characters. To extend this to j characters, we scan list j. For
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Type S S S S

12 2 5 8
2 5 8 11 1 9 10 3 76412
2 3 4 5 6 7 8 9 1211101Pos

Dist 0 0 1 2 3 1 2 3 1 2 3 4
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s

FIGURE 5.8: Illustration of the sorting of type S substrings of the string CATTATTAGGA$.

each suffix suffi encountered in the scan of a bucket of list j, move the type S
substring starting at s[i − j] to the current front of its bucket, then move the
current front to the right by one. After a bucket of list j is scanned, new bucket
boundaries need to be drawn between all the type S substrings that have been
moved, and the type S substrings that have not been moved. Because the total
size of all the lists is O(n), the sorting of type S substrings only takes O(n) time.

The sorting of type S substrings using the above algorithm respects lexicographic ordering
of type S substrings, with the following important exception: If a type S substring is the
prefix of another type S substring, the bucket number assigned to the shorter substring
will be larger than the bucket number assigned to the larger substring. This anomaly is
designed on purpose, and is exploited later in Lemma 5.6.

As mentioned before, we now construct a new string s′ corresponding to all type S
substrings in s. Each type S substring is replaced by its bucket number and s′ is the sequence
of bucket numbers in the order in which the type S substrings appear in s. Because every
type S suffix in s starts with a type S substring, there is a natural one-to-one correspondence
between type S suffixes of s and all suffixes of s′. Let suffi be a suffix of s and suff′i′ be its
corresponding suffix in s′. Note that suff′i′ can be obtained from suffi by replacing every
type S substring in suffi with its corresponding bucket number. Similarly, suffi can be
obtained from suff′i′ by replacing each bucket number with the corresponding substring and
removing the duplicate instance of the common character shared by two consecutive type S
substrings. This is because the last character of a type S substring is also the first character
of the next type S substring along s.

LEMMA 5.6 Let suffi and suffj be two suffixes of s and let suff′i′ and suff′j′ be the
corresponding suffixes of s′. Then, suffi ≺ suffj ⇔ suff′i′ ≺ suff′j′ .

Proof We first show that suff′i′ ≺ suff′j′ ⇒ suffi ≺ suffj . The prefixes of suffi and suffj

© 2006 by Taylor & Francis Group, LLC



5-20 Handbook of Computational Molecular Biology

corresponding to the longest common prefix of suff′i′ and suff′j′ must be identical. This is
because if two bucket numbers are the same, then the corresponding substrings must be
the same. Consider the leftmost position in which suff′i′ and suff′j′ differ. Such a position
exists and the characters (bucket numbers) of suff′i′ and suff′j′ in that position determine
which of suff′i′ and suff′j′ is lexicographically smaller. Let k be the bucket number in suff′i′
and l be the bucket number in suff′j′ at that position. Since suff′i′ ≺ suff′i′ , it is clear that
k < l. Let α be the substring corresponding to k and β be the substring corresponding to
l. Note that α and β can be of different lengths, but α cannot be a proper prefix of β. This
is because the bucket number corresponding to the prefix must be larger, but we know that
k < l.

Case 1: β is not a prefix of α. In this case, k < l⇒ α ≺ β, which implies suffi ≺ suffj .
Case 2: β is a proper prefix of α. Let the last character of β be c. The corresponding

position in s is a type S position. The position of the corresponding c in α must
be a type L position. Since the two suffixes that begin at these positions start
with the same character, the type L suffix must be lexicographically smaller then
the type S suffix. Thus, suffi ≺ suffj .

From the one-to-one correspondence between the suffixes of s′ and the type S suffixes of s,
it also follows that suffi ≺ suffj ⇒ suff′i′ ≺ suff′j′ .

From the above lemma, the sorted order of the suffixes of s′ determines the sorted order
of the type S suffixes of s. Hence, the problem of sorting the type S suffixes of s reduces
to the problem of sorting all suffixes of s′. Note that the characters of s′ are consecutive
integers starting from 1. Hence the suffix sorting algorithm can be recursively applied to s′.

If s has fewer type L suffixes than type S suffixes, the type L suffixes are sorted using
a similar procedure − Call s[i..j] a type L substring if both i and j are type L positions,
and every position in between is a type S position. Now sort all the type L substrings and
construct the corresponding string s′ obtained by replacing each type L substring with its
bucket number. Sorting s′ gives the sorted order of type L suffixes.

Thus, the problem of sorting the suffixes of a string s of length n can be reduced to the
problem of sorting the suffixes of a string s′ of size at most �n

2 �, and O(n) additional work.
This leads to the recurrence T (n) = T

(⌈
n
2

⌉)
+ O(n), resulting in O(n) run time. The

algorithm can be made to run in only 2n words plus 1.25n bits for strings over constant
alphabet [23]. Algorithmically, Kärkkäinen and Sanders’ algorithm is akin to mergesort and
Ko and Aluru’s algorithm is akin to quicksort.

It may be more space efficient to construct a suffix tree by first constructing the corre-
sponding suffix array, deriving the Lcp array from it, and using both to construct the suffix
tree. For example, while all direct linear time suffix tree construction algorithms depend on
constructing and using suffix links, these are completely avoided in the indirect approach.
Furthermore, the resulting algorithms have an alphabet independent run-time of O(n) while
using only the O(n) space representation of suffix trees. This should be contrasted with the
O(|Σ|n) run-time of either McCreight’s or Ukkonen’s algorithms.

5.6 Space Issues

Suffix trees and suffix arrays are space efficient in an asymptotic sense because the memory
required grows linearly with input size. However, the actual space usage is of significant
concern, especially for very large strings. For example, the human genome can be repre-
sented as a large string over the alphabet Σ = {A,C,G,T} of length over 3×109. Because of
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linear dependence of space on the length of the string, the exact space requirement is easily
characterized by specifying it in terms of the number of bytes per character. Depending
on the number of bytes per character required, a data structure for the human genome
may fit in main memory, may need a moderate sized disk, or might need a large amount
of secondary storage. This has significant influence on the run-time of an application as
access to secondary storage is considerably slower. It may also become impossible to run
an application for large data sizes unless careful attention is paid to space efficiency.

Consider a naive implementation of suffix trees. For a string of length n, the tree has n
leaves, at most n − 1 internal nodes, and at most 2n − 2 edges. For simplicity, count the
space required for each integer or a pointer to be one word, equal to 4 bytes on most current
computers. For each leaf node, we may store a pointer to its parent, and store the starting
index of the suffix represented by the leaf, for 2n words of storage. Storage for each internal
node may consist of 4 pointers, one each for parent, leftmost child, right sibling and suffix
link, respectively. This will require approximately 4n words of storage. Each edge label
consists of a pair of integers, for a total of at most 4n words of storage. Putting this all
together, a naive implementation of suffix trees takes 10n words or 40n bytes of storage.

Several techniques can be used to considerably reduce the naive space requirement of 40
bytes per character. Many applications of interest do not need to use suffix links. Similarly,
a pointer to the parent may not be required for applications that use traversals down from
the root. Even otherwise, note that a depth first search traversal of the suffix tree starting
from the root can be conducted even in the absence of parent links, and this can be utilized
in applications where a bottom-up traversal is needed. Another technique is to store the
internal nodes of the tree in an array in the order of their first occurrence in a depth first
search traversal. With this, the leftmost child of an internal node is found right next to it
in the array, which removes the need to store a child pointer. Instead of storing the starting
and ending positions of a substring corresponding to an edge label, an edge label can be
stored with the starting position and length of the substring. The advantage of doing so is
that the length of the edge label is likely to be small. Hence, one byte can be used to store
edge labels with lengths < 255 and the number 255 can be used to denote edge labels with
length at least 255. The actual values of such labels can be stored in an exceptions list,
which is expected to be fairly small. Using several such techniques, the space required per
character can be roughly cut in half to about 20 bytes [24].

A suffix array can be stored in just one word per character, or 4 bytes. Most applications
using suffix arrays also need the Lcp array. Similar to the technique employed in storing
edge labels on suffix trees, the entries in Lcp array can also be stored using one byte, with
exceptions handled using an ordered exceptions list. Provided most of the lcp values fit
in a byte, we only need 5 bytes per character, significantly smaller than what is required
for suffix trees. Further space reduction can be achieved by the use of compressed suffix
trees and suffix arrays and other data structures [8, 11]. However, this often comes at the
expense of increased run-time complexity.

5.7 Lowest Common Ancestors

Consider a string s and two of its suffixes suffi and suffj . The longest common prefix of the
two suffixes is given by the path label of their lowest common ancestor. If the string-depth of
each node is recorded in it, the length of the longest common prefix can be retrieved from the
lowest common ancestor. Thus, an algorithm to find the lowest common ancestors quickly
can be used to determine longest common prefixes without a single character comparison.
In this section, we describe how to preprocess the suffix tree in linear time and be able to
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answer lowest common ancestor queries in constant time [4].

5.7.1 Bender and Farach’s lca algorithm

Let T be a tree of n nodes. Without loss of generality, assume the nodes are numbered
1 . . . n. Let lca(i, j) denote the lowest common ancestor of nodes i and j. Bender and
Farach’s algorithm performs a linear time preprocessing of the tree and can answer lca
queries in constant time.

Let E be an Euler tour of the tree obtained by listing the nodes visited in a depth first
search of T starting from the root. Let L be an array of level numbers such that L[i]
contains the tree-depth of the node E[i]. Both E and L contain 2n− 1 elements and can
be constructed by a depth first search of T in linear time. Let R be an array of size n such
that R[i] contains the index of the first occurrence of node i in E. Let RMQA(i, j) denote
the position of an occurrence of the smallest element in array A between indices i and j
(inclusive). For nodes i and j, their lowest common ancestor is the node at the smallest
tree-depth that is visited between an occurrence of i and an occurrence of j in the Euler
tour. It follows that

lca(i, j) = E[RMQL(R[i], R[j])]

Thus, the problem of answering lca queries transforms into answering range minimum
queries in arrays. Without loss of generality, we henceforth restrict our attention to an-
swering range minimum queries in an array A of size n.

To answer range minimum queries in A, do the following preprocessing: Create �logn�+1
arrays B0, B1, . . . , B�log n	 such that Bj [i] contains RMQA(i, i + 2j), provided i + 2j ≤ n.
B0 can be computed directly from A in linear time. To compute Bl[i], use Bl−1[i] and
Bl−1[i + 2l−1] to find RMQA(i, i + 2l−1) and RMQA(i + 2l−1, i + 2l), respectively. By
comparing the elements in A at these locations, the smallest element in the range A[i..i+2l]
can be determined in constant time. Using this method, all the �logn� + 1 arrays are
computed in O(n logn) time.

Given an arbitrary range minimum query RMQA(i, j), let k be the largest integer such
that 2k ≤ (j− i). Split the range [i..j] into two overlapping ranges [i..i+2k] and [j− 2k..j].
Using Bk[i] and Bk[j − 2k], a smallest element in each of these overlapping ranges can be
located in constant time. This will allow determination of RMQA(i, j) in constant time.
To avoid a direct computation of k, the largest power of 2 that is smaller than or equal to
each integer in the range [1..n] can be precomputed and stored in O(n) time. Putting all of
this together, range minimum queries can be answered with O(n log n) preprocessing time
and O(1) query time.

The preprocessing time is reduced to O(n) as follows: Divide the array A into 2n
log n blocks

of size 1
2 logn each. Preprocess each block such that for every pair (i, j) that falls within a

block, RMQA(i, j) can be answered directly. Form an array B of size 2n
log n that contains

the minimum element from each of the blocks in A, in the order of the blocks in A, and
record the locations of the minimum in each block in another array C. An arbitrary query
RMQA(i, j) where i and j do not fall in the same block is answered as follows: Directly
find the location of the minimum in the range from i to the end of the block containing
it, and also in the range from the beginning of the block containing j to index j. All that
remains is to find the location of the minimum in the range of blocks completely contained
between i and j. This is done by the corresponding range minimum query in B and using
C to find the location in A of the resulting smallest element. To answer range queries in B,
B is preprocessed as outlined before. Because the size of B is only O

(
n

log n

)
, preprocessing
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B takes O
(

n
log n × log n

log n

)
= O(n) time and space.

It remains to be described how each of the blocks in A is preprocessed to answer range
minimum queries that fall within a block. For each pair (i, j) of indices that fall in a
block, the corresponding range minimum query is precomputed and stored. This requires
computing O(log2 n) values per block and can be done in O(log2 n) time per block. The
total run-time over all blocks is 2n

log n ×O(log2 n) = O(n log n), which is unacceptable. The
run-time can be reduced for the special case where the array A contains level numbers of
nodes visited in an Euler Tour, by exploiting its special properties. Note that the level
numbers of consecutive entries differ by +1 or −1. Consider the 2n

log n blocks of size 1
2 logn.

Normalize each block by subtracting the first element of the block from each element of
the block. This does not affect the range minimum query. As the first element of each
block is 0 and any other element differs from the previous one by +1 or −1, the number
of distinct blocks is 2

1
2 log n−1 = 1

2

√
n. Direct preprocessing of the distinct blocks takes

1
2

√
n × O(log2 n) = o(n) time. The mapping of each block to its corresponding distinct

normalized block can be done in time proportional to the length of the block, taking O(n)
time over all blocks.

Putting it all together, a tree T of n nodes can be preprocessed in O(n) time such that
lca queries for any two nodes can be answered in constant time. We are interested in an
application of this general algorithm to suffix trees. Consider a suffix tree for a string of
length n. After linear time preprocessing, lca queries on the tree can be answered in constant
time. For a given pair of suffixes in the string, the string-depth of their lowest common
ancestor gives the length of their longest common prefix. Thus, the longest common prefix
can be determined in constant time, without resorting to a single character comparison!
This feature is exploited in many suffix tree algorithms.

5.7.2 Suffix Links from Lowest Common Ancestors

Suppose we are given a suffix tree and it is required to establish suffix links for each internal
node. This may become necessary if the suffix tree creation algorithm does not construct
suffix links but they are needed for an application of interest. For example, the suffix tree
may be constructed via suffix arrays, completely avoiding the construction and use of suffix
links for building the tree. The links can be easily established if the tree is preprocessed for
lca queries.

Mark each internal node v of the suffix tree with a pair of leaves (i, j) such that leaves
labeled i and j are in the subtrees of different children of v. The marking can be done in
linear time by a bottom-up traversal of the tree. To find the suffix link from an internal node
v (other than the root) marked with (i, j), note that v = lca(i, j) and lcp(suffi, suffj) =
path-label(v). Let path-label(v) = cα, where c is the first character and α is a string. To
establish a suffix link from v, node u with path label α is needed. As lcp(suffi+1, suffj+1) =
α, node u is given by lca(i+ 1, j + 1), which can be determined in constant time. Thus, all
suffix links can be determined in O(n) time. This method trivially extends to the case of a
generalized suffix tree.

5.8 Conclusions

In this chapter, we focused on linear time construction algorithms for the three most im-
portant data structures used in computational biology — lookup tables, suffix trees, and
suffix arrays. Some references for further study on this topic are provided in the References
section. Compressed suffix arrays, which are briefly mentioned in Section 5.6 can be stored
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in O(n) bits; Hon et al. provided the first linear time construction algorithm [14] for this
data structure. In recent years, the size of biological databases has grown rapidly. This
generated considerable interest in constructing and maintaining suffix trees and suffix ar-
rays in secondary storage [3, 17, 27]. For a more detailed study of string data structures on

Some biological
applications are data and compute intensive, e.g. genome assembly of complex eukaryotic
organisms and clustering large scale expressed sequence tag data. Parallelism is increasingly

Farach et al. [7],
Futamura et al. [9] and Hariharan [13] have all studied the construction of suffix arrays or
suffix trees in parallel environments.

The next two chapters explore in detail how suffix trees and suffix arrays are being used
to support applications in computational biology. A comprehensive treatise of suffix trees,
suffix arrays and string algorithms can be found in the textbooks by Gusfield [12], and
Crochemore and Rytter [5].
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[2] S.F. Altschul, T.L. Madden, A.A. Schäffer, and J. Zhang et al. Gapped BLAST and
PSI-BLAST: A new generation of protein database search programs. Nucleic Acids
Research, 25:3389–3402, 1997.

[3] S.J. Bedathur and J.R. Haritsa. Engineering a fast online persistent suffix tree con-
struction. In Proc. 20th International Conference on Data Engineering, pages 720–
731, 2004.

[4] M.A. Bender and M. Farach-Colton. The LCA problem revisited. In Proc. 4th Latin
American Theoretical Informatics Symposium, pages 88–94, 2000.

[5] M. Crochemore and W. Rytter. Jewels of Stringology. World Scientific Publishing
Company, Singapore, 2002.

[6] M. Farach. Optimal suffix tree construction with large alphabets. In Proc. 38th
Annual Symposium on Foundations of Computer Science, pages 137–143. IEEE,
1997.

[7] M. Farach-Colton, P. Ferragina, and S. Muthukrishnan. On the sorting-complexity of
suffix tree construction. Journal of the ACM, 47(6):987–1011, 2000.

[8] P. Ferragina and G. Manzini. Opportunistic data structures with applications. In
Proc. 41th Annual Symposium on Foundations of Computer Science, pages 390–
398. IEEE, 2000.

[9] N. Futamura, S. Aluru, and S. Kurtz. Parallel suffix sorting. In Proc. 9th International
Conference on Advanced Computing and Communications, pages 76–81, 2001.

[10] R. Giegerich and S. Kurtz. From Ukkonen to McCreight and Weiner: A unifying view
of linear-time suffix tree construction. Algorithmica, 19:331–353, 1997.

[11] R. Grossi and J.S. Vitter. Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. In Proc. 32nd annual ACM symposium on

© 2006 by Taylor & Francis Group, LLC

secondary storage, the reader is referred to Chapter 35 of the handbook.

being used to solve such problems effectively (for example, see [16, 18]).



References 5-25

Theory of computing, pages 397–406. ACM, 2000.
[12] D. Gusfield. Algorithms on Strings Trees and Sequences. Cambridge University

Press, New York, New York, 1997.
[13] R. Hariharan. Optimal parallel suffix tree construction. Journal of Computer and

System Sciences, 55(1):44–69, 1997.
[14] W.K. Hon, K. Sadakane, and W.K. Sung. Breaking a time-and-space barrier in con-

structing full-text indices. In Proc. 44th Annual IEEE Symposium on Foundations
of Computer Science, pages 251–260, 2003.

[15] X. Huang and A. Madan. CAP3: A DNA sequence assembly program. Genome
Research, 9(9):868–877, 1999.

[16] X. Huang, J Wang, S Aluru, and S.P. Yang et al. Pcap: a whole-genome assembly
program. Genome Research, 13(9):2164–2170, 2003.

[17] E. Hunt, M.P. Atkinson, and R.W. Irving. Database indexing for large DNA and
protein sequence collections. The VLDB Journal, 11(3):256–271, 2002.

[18] A. Kalyanaraman, S. Aluru, V. Brendel, and S. Kothari. Space and time efficient
parallel algorithms and software for EST clustering. IEEE Transactions on Parallel
and Distributed Systems, 14(12):1209–1221, 2003.
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