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6.1 Introduction

In recent years the volume of biological data has increased exponentially. Concomitantly, the
speed with which such data is generated has increased as well. It is now possible to sequence
a bacterial genome in a single day. Thus efficient data structures are needed to archive and
retrieve biological data. Furthermore, this explosion of data has increased the need to
analyze a large amount of data in a reasonable time. With the availability of complete
genomes, researchers have begun to compare whole genomes [4, 11, 26, 27]. This further
increases the scale of problems addressed, and algorithms that worked well for smaller
scale problems are either insufficient or inappropriate. For example, dynamic programming
techniques worked well to identify the matching regions between two genes. However,
heuristics must be applied when we try to identify highly conserved regions between two
genomes in reasonable time and space. Suffix trees can serve as an efficient data structure
to analyze DNA and protein sequences. They can also be used to provide exact matches
efficiently, which many heuristics depend on.
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Computationally, both DNA and protein sequences can be modeled as strings of char-
acters. But unlike natural languages where there are well-defined sentence structures and
word boundaries, DNA and protein sequences have no such properties. This makes the
traditional approaches of using inverted tables and hash tables less appealing. Suffix trees
and generalized suffix trees, the multiple string variant of suffix trees, can be used to solve
a number of computational biology related problems in optimal space and time. In this
chapter we examine several applications of suffix trees in computational biology. For the
most part, our focus will be on solving problems motivated by real applications in molecu-
lar biology. In many cases, the algorithms presented here are part of actual bioinformatic
software programs developed, illustrating the practical role of suffix trees in computational
biology research. We use the same terminology as in the previous chapter where suffix trees
and suffix arrays are introduced.

6.2 Basic Applications

In this section, we provide a brief introduction to the pattern matching capabilities of
suffix trees. Although pattern matching by itself may not directly correspond to many
computational biology applications, it is a basic building block upon which many suffix tree
algorithms are founded. Besides, the underlying ideas are frequently used as components
within more complicated algorithms, and in some cases they are modified and used in
software with vastly different objectives.

6.2.1 Pattern Matching

Given a pattern P and a text T , the pattern matching problem is to find all occurrences of
P in T . Let |P | = m and |T | = n. Typically, n >> m. Moreover, T remains fixed in many
applications and the query is repeated for many different patterns. For example, T could
be an entire database of DNA sequences and P denotes a substring of a query sequence for
homology (similarity) search. Thus, it is beneficial to preprocess the text T so that queries
can be answered as efficiently as possible.

The pattern matching problem can be solved in optimal O(m + k) time using ST (T ),
where k is the number of occurrences of P in T . Suppose P occurs in T starting from
position i. Then, P is a prefix of suffi in T . It follows that P matches the path from root
to leaf labeled i in ST . This property results in the following simple algorithm: Start from
the root of ST and follow the path matching characters in P , until P is completely matched
or a mismatch occurs. If P is not fully matched, it does not occur in T . Otherwise, each
leaf in the subtree below the matching position gives an occurrence of P . The positions can
be enumerated by traversing the subtree in time proportional to the size of the subtree. As
the number of leaves in the subtree is k, this takes O(k) time. If only one occurrence is
of interest, the suffix tree can be preprocessed in O(n) time such that each internal node
contains the label of one of the leaves in its subtree. Thus, the problem of whether P occurs
in T or the problem of finding one occurrence can be answered in O(m) time.

6.2.2 Approximate Pattern Matching

The simpler version of approximate pattern matching problem is as follows: Given a pattern
P (|P | = m) and a text T (|T | = n), find all substrings of length |P | in T that match P
with at most k mismatches. To solve this problem, first construct the GST of P and T .
Preprocess the GST to record the string-depth of each node, and to answer lca queries in
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constant time. For each position i in T , we will determine if T [i..i+m− 1] matches P with
at most k mismatches. First, use an lca query lca((P, 1), (T, i)) to find the largest substring
from position i of T that matches a substring from position 1 of P . Suppose the length of
this longest exact match is l. Thus, P [1..l] = T [i..i+ l − 1], and P [l+ 1] �= T [i+ l]. Count
this as a mismatch and continue by finding lca((P, l + 2), (T, i+ l + 1)). This procedure is
continued until either the end of P is reached or the number of mismatches crosses k. As
each lca query takes constant time, the entire procedures takes O(k) time. This is repeated
for each position i in T for a total run-time of O(kn).

Now, consider the more general problem of finding the substrings of T that can be derived
from P by using at most k character insertions, deletions or substitutions. To solve this
problem, we proceed as before by determining the possibility of such a match for every
starting position i in T . Let l = string-depth(lca((P, 1), (T, i))). At this stage, we consider
three possibilities:

1. Substitution − P [l + 1] and T [i + l] are considered a mismatch. Continue by
finding lca((P, l + 2), (T, i+ l + 1)).

2. Insertion − T [i+ l] is considered an insertion in P after P [l]. Continue by finding
lca((P, l + 1), (T, i+ l + 1)).

3. Deletion − P [l + 1] is considered a deletion. Continue by finding lca((P, l +
2), (T, i+ l)).

After each lca computation, we have three possibilities corresponding to substitution, inser-
tion and deletion, respectively. All possibilities are enumerated to find if there is a sequence
of k or less operations that will transform P into a substring starting from position i in
T . This takes O(3k) time. Repeating this algorithm for each position i in T takes O(3kn)
time.

The above algorithm always uses the longest exact match possible from a given pair
of positions in P and T before considering the possibility of an insertion or deletion. To
prove the correctness of this algorithm, we show that if there is an approximate match
of P starting from position i in T that does not use such a longest exact match, then
there exists another approximate match that uses only longest exact matches. Consider
an approximate match that does not use longest exact matches. Consider the leftmost
position j in P and the corresponding position i + l′ in T where the longest exact match
is violated. i.e., P [j] = T [i + l′] but this is not used as part of an exact match. Instead,
an insertion or deletion is used. Suppose that an exact match of length r is used after the
insertion or deletion. We can come up with a corresponding approximate match where the
longest match is used and the insertion/deletion is taken after that. This will either keep
the number of insertions/deletions the same or reduce the count. Thus, if the value of k is
small, the above algorithms provide a quick and easy way to solve the approximate pattern

6.3 Restriction Enzyme Recognition Sites

Restriction endonucleases are enzymes that recognize a particular pattern in a DNA se-
quence and cleave the DNA at or near the recognition site. The enzyme typically cuts both
strands of double stranded DNA and the recognition sequence is often a short sequence that
is identical on both the strands. Recall that due to opposite directionality of the two strand-
s, the sequences are read in opposite directions relative to each other. Thus, the recognition
sequence is what is called a complemented palindrome; by reversing the sequence and using
complementary substitutions A ↔ T, and C ↔ G, one would obtain the sequence itself. As
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an example, the restriction enzyme SwaI recognizes the site ATTTAAAT and cleaves it in
the center of the pattern. The restriction enzyme BamHI detects the sequence GGATCC
and cleaves it after the first base (and similarly after the first base in the complementary
strand sequence; the first base in the complementary strand is paired with the last base
in the original strand). Most restriction enzymes are derived from bacteria and are named
after the organism in which they are first discovered. Restriction enzymes play a defense
role by cleaving foreign DNA. The DNA of the host organism is protected by mythelation
of its own recognition sites, which makes it immune to restriction enzyme activity.

Consider the problem of finding all complemented palindromic sequences in a given long
DNA sequence. We focus on the problem of identifying all maximal complemented palin-
dromes, as all other palindromes are contained in them. Formally, a substring s[i..j] of a
string s of length n is called a maximal complemented palindrome of s, if s[i..j] is a com-
plemented palindrome and s[i − 1] and s[j + 1] are not complementary bases, or i = 1, or
j = n. Note that a maximal complemented palindrome must necessarily be of even length.
For a palindrome of length 2k, define the center to be the position between characters k and
k+1 of the palindrome. The palindrome is said to be of radius k. Starting from the center,
a complemented palindrome is a string that reads the same in both directions subject to
complementarity. Observe that each maximal palindrome in a string must have a distinct
center. As the number of possible centers for a string of length n is n− 1, the total number
of maximal palindromes of a string is n−1. All such palindromes can be identified in linear
time using the following algorithm.

Let sr denote the reverse complement of string s. Construct a GST of the strings s and
sr and preprocess the GST to record string depths of internal nodes and for answering lca
queries. The maximal even length palindrome centered between s[i] and s[i + 1] is given
by the length of the longest common prefix between suffi+1 of s and suffn−i+1 of sr. This
is computed as the string-depth of lca((s, i + 1), (sr, n − i + 1)) in constant time. Thus
all maximal complemented palindromes can be recognized in O(n) time. An example to

tree of the DNA sequence TAGAGCTCA and its reverse complement TGAGCTCTA.

6.4 Detection of RNAi Elements

RNA interference (RNAi) is a process that utilizes a double stranded RNA (dsRNA)
molecule to inhibit the expression of a particular gene by binding to its mRNA. This process
was first discovered by Fire et al. [14]. Since then, RNAi has been used as an alternative
to gene knockout experiments. Unlike traditional experiments where a gene is permanently
removed from the genome, researchers can choose when and where to introduce the dsR-
NA. This gives biologists greater flexibility in experimental design. It has been shown that
RNAi is also used in cells as a way to regulate gene expression, and as a defense mechanism
against viruses.

Unlike DNA molecules which are double stranded helixes, RNA molecules are usually sin-
gle stranded and have a secondary structure that sometimes has important functions. Like
all RNA molecules, naturally occurring RNAi elements are also produced by transcription
from a corresponding genomic sequence. The transcription produces an RNA molecule that
contains a sequence and its reverse complement separated by a short sequence. The reverse
complementarity causes the sequences to bind to each other with the short sequence in
the middle forming a stem-loop-stem structure. Cleaving of this structure results in dsRNA

NAs) to prevent them from being translated into proteins, thus controlling gene expression.
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illustrate this algorithm is presented in Figure 6.1. The figure shows the generalized suffix

(see Figure 6.2). The resulting dsRNA will then interact with target messenger RNAs (mR-
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FIGURE 6.1: The generalized suffix tree of the DNA sequence s = TAGAGCTCA and its reverse
complement sr = TGAGCTCTA. For i = 5, v = lca((s, 6), (sr, 5)), revealing the
maximal complemented palindrome GAGCTC.
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FIGURE 6.2: An example of RNAi element — the stem-loop-stem structure forming a double
stranded RNA (dsRNA) that is usually about 20 nucleotides in length.

Horesh et al. [19] present a suffix tree based algorithm to detect RNAi elements from a
genomic sequence. Here we present how suffix trees can be used to detect such patterns,
while avoiding the more complex details necessary for accurate biological modeling.

We can identify RNAi elements in a genome by identifying substrings s1 and s2 of the
same length (about 20 to 25 nucleotides) that are reverse complements of each other, and
separated by a substring s3 of length l ≤ k. The parameter k is used to avoid detecting
substring and reverse complement pairs separated by great distances. To do this, first a gen-
eralized suffix tree is built for the input genomic sequence, and its reverse complement. Let
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s1s3s2 be a substring in the genomic sequence such that s1 and s2 are reverse complements
of each other, and s3 is the loop. Then in the generalized suffix tree we just constructed,
there is an internal node v that contains two leaves in its subtree corresponding to suffi

and suffn−i−l of the reverse complement sequence, where l ≤ k is the length of s3 (k is a
pre-selected threshold); and v is the lowest common ancestor of the two leaves.

The straightforward solution in this case is to traverse the entire tree; for each internal
node at a string depth of about 20 to 25, find pairs of leaves that satisfy the criterion men-
tioned above. However for each leaf representing some suffix suffi in the original sequence,
checking whether there is a leaf corresponding to suffix suffn−i−l of the reverse complement
sequence is not easy. Done naively, this could take O(n2) time, because for each leaf we
need to scan all the leaves in the subtree to check whether a suitable counterpart exists.

Here we make the observation that a post-order traversal of the suffix tree induces a
complete ordering of all the suffixes. Each suffix in the original sequence and the reverse
complement sequence can be associated with a rank, which can be easily obtained by a
traversal of the suffix tree. For each internal node v two values v and v are calculated.
The value v is the number of leaves in the subtree rooted at v. The value v is the number
of leaves in the entire tree to the left of v, i.e., the number of leaves visited in a post-order
traversal before visiting v. The  values for all internal nodes can be calculated using post-
order traversal as follows: When internal node v is visited, add up u of all the nodes u,
such that u is a child of v. If a node w is a leaf node then w = 1. To calculate the 
values, define root = 0. Then for each internal node v, v = u +

∑
w w, where u is the

parent of v and w ranges over all the siblings to the left of v. In other words, the number of
leaves to the left of a node v is the number of leaves to the left of its parent plus the total
number of leaves in all the subtrees rooted at its siblings to the left. The  values can be
calculated using a pre-order traversal of the tree.

Consider an internal node v whose string depth is in the target range, say 20 to 25, and
a suffix suffi in the subtree rooted at v. To check whether there is a leaf corresponding to
suffix suffn−i−l of the reverse complement sequence in the same subtree, one can scan the
ranks of suffix suffn−i−1 to suffix suffn−i−k of the reverse complement sequence. Suppose
the rank of suffix suffn−i−j is between v and v + v, then we know that this suffix is in
the subtree rooted by v. If the ith suffix of the original sequence and the (n− i− j)th suffix
of the reverse complement sequence appear in the subtrees of two different children of v,
then v is the lowest common ancestor of the two leaves. The path label of v is a potential
dsRNA sequence.

This algorithm takes O(nk) time, where n is the length of the genomic sequence, and
k is the maximum length allowed for the stem-loop-stem structure. A more biologically
sensible model can be used to take into account the fact that the two strands need not be
identical, either because it is enough to have high sequence similarity, or due to potential
sequencing errors. An algorithm allowing mismatches on the two strands can also be found
in [19]. However, due to the complexity of the model, the algorithm is close to a brute force
algorithm.

6.5 Sequence Clustering and Assembly

DNA sequence clustering and assembling overlapping DNA sequences are vital to knowledge
discovery in molecular biology. of this handbook is devoted to assembly and
clustering applications, and the reader will once again find that suffix trees are used in some
of the algorithms presented in that part. In this section, we discuss two suffix tree related
problems that are motivated by applications in clustering and assembly. The problems

© 2006 by Taylor & Francis Group, LLC
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presented in this section are rather artificial, as they are applicable only in the case input
data does not contain any errors or genetic variations. Nevertheless, these problems will
serve to develop a basic understanding of some of these applications, and suffix tree based

6.5.1 Sequence Containment

One problem that is encountered in sequence clustering and assembly applications is redun-
dancy in the input data. Consider a set S = {s1, s2, . . . , sk} of DNA sequences. We wish
to identify sequences that are completely contained in other sequences and remove them.

quences being derived from different individuals who may have natural genetic variations),
this can be abstracted as the string containment problem. Given a set S = {s1, s2, . . . , sk}
of strings of total length N , the string containment problem is to identify each string that
is a substring of some other string. This problem can be easily solved using suffix trees in
O(N) time. First, construct the GST (S) in O(N) time. To find if a string si is contained
in another, locate the leaf labeled (si, 1). If the label of the edge connecting the leaf to its
parent is labeled with the string ’$’, si is contained in another string. Otherwise, it is not.
This can be determined in O(1) time per string.

6.5.2 Suffix-Prefix Overlaps

The suffix-prefix overlap problem arises in genome assembly problems. At the risk of over-
simplification, the problem of genome assembly is to construct a long, target DNA sequence
from a large sampling of much shorter fragments of it. This procedure is carried out to ex-
tend the reach of DNA sequencing, which can be directly carried only for DNA sequences
hundreds of nucleotides long. The first step in assembling the many fragments is to detect
pairs of fragments that show suffix-prefix overlaps; i.e., identify pairs of fragments such
that the suffix of one fragment in the pair overlaps the prefix of the other fragment in the
pair. The suffix-prefix overlaps are then used to assemble the fragments into longer DNA
sequences.

Suppose we are given a set of strings S = {s1, s2, . . . , sk} of total length N . In the absence
of sequencing errors, the suffix-prefix overlap problem is to identify, for each pair of strings
(si, sj), the longest suffix of si that is a prefix of sj . This problem can be solved using
GST (S) in optimal O(N + k2) time. Consider the longest suffix α of si that is a prefix of
sj . In GST (S), α is an initial part of the path from the root to leaf labeled (sj , 1) that
culminates in an internal node. A leaf that corresponds to a suffix from si should be a child
of the internal node, with the edge label ’$’. Moreover, it must be the deepest internal node
on the path from root to leaf (sj , 1) that has a suffix from si attached in this way. The
length of the corresponding suffix-prefix overlap is given by the string depth of the internal
node.

Let M be a k × k output matrix such that M [i, j] should contain the length of the
longest suffix of si that overlaps a prefix of sj . The matrix is computed using a depth first
search (DFS) traversal of GST (S). During the DFS traversal, k stacks A1, A2, . . . , Ak are
maintained, one for each string. The top of the stack Ai contains the string depth of the
deepest node along the current DFS path that is connected with edge label ’$’ to a leaf
corresponding to a suffix from si. If no such node exists, the top of the stack contains zero.
Each stack Ai is initialized by pushing zero onto an empty stack, and is maintained during
the DFS as follows: When the DFS traversal visits a node v from its parent, check to see if
v is attached to a leaf with edge label ’$’. If so, for each i such that string si contributes a

© 2006 by Taylor & Francis Group, LLC
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suffix labeling the leaf, push string-depth(v) on to stack Ai. The string depth of the current
node can be easily maintained during the DFS traversal. When the DFS traversal leaves
the node v to return back to its parent, again identify each i that has the above property
and pop the top element from the corresponding stack Ai.

The output matrix M is built one column at a time. When the DFS traversal reaches a
leaf labeled (j, 1), the top of stack Ai contains the longest suffix of si that matches a prefix
of sj . Thus, column j of matrix M is obtained by setting M [i, j] to the top element of
stack Si. To analyze the run-time of the algorithm, note that each push (similarly, pop)
operation on a stack corresponds to a distinct suffix of one of the input strings. Thus, the
total number of push and pop operations is bounded by O(N). The matrix M is filled in
O(1) time per element, taking O(k2) time. Hence, all suffix-prefix overlaps can be identified
in optimal O(N + k2) time.

The above solutions for sequence containment and suffix-prefix overlap problems are not
useful in practice because they assume a perfect input free of errors and genetic variations.
In practice, one is interested in detecting strong homologies rather than exact matches. The

6.6 Whole Genome Alignments

With the availability of multiple genomes, the field of comparative genomics is gaining
increasing attention. By comparing the genomic sequences of two closely related species,
one can identify potential genes, coding regions, and other genetic information preserved
during evolution. On the other hand, by comparing the genomic sequences of distantly
related species, one might be able to identify genes that are most likely vital to life. Several
programs have been developed to identify such “local” regions of interest [1, 4, 7, 28]. An
important problem in comparative genomics is whole genome comparison, i.e., a global or
semi-global alignment of two genomes. This allows researchers to understand the genomic
differences between the two species. This is particularly useful in comparing two strains of
the same virus or bacteria, or even two versions of the assembly of the genome of the same
species. We describe a suffix tree based approach for whole genome alignments, as utilized
in the popular whole genome alignment tool MUMmer, developed by Delcher et al. [11, 12].
A suffix array based solution for the same problem is presented in the next chapter.

The MUMmer program is based on the identification of maximal unique matches (MUM-
s). A maximal match between strings s1 and s2 is a pair of matching substrings s1[i..i+k] =
s2[i′..i′ + k] = α, that cannot be extended in either direction, i.e. s1[i− 1] �= s2[i′ − 1] and
s1[i + k + 1] �= s2[i′ + k + 1]. A maximal unique match implies that the pair of matching
substrings is not only maximal, but also unique; i.e., the substring α is maximal, and occurs
exactly once in each s1 and s2. A long MUM is very likely to be in the optimal alignment
of two sequences. The program has the following stages:

1. Find all MUMs between the two sequences.
2. Find the longest sequence of MUMs, that occur in the same order in either

sequence.
3. Align the regions between the MUMs.

To illustrate the use of suffix trees in whole genome alignment, we focus on identification
of MUMs, a step that utilizes suffix trees. Given two strings s1 and s2, assume the last
characters of s1 and s2 are $1 and $2, respectively, characters that do not occur anywhere
else in both strings. First build the GST ({s1, s2}) of the two strings. Let suffj

i denote

© 2006 by Taylor & Francis Group, LLC
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is the MUM TCG.

the suffix of string sj starting at position i. Lcp(suff1i , suff
2
i′) is a MUM if and only if it

is unique in both sequences and s1[i − 1] �= s2[i′ − 1]. Let u be the internal node with
path label lcp(suff1i , suff

2
i′). Then the uniqueness part implies u must have exactly two

children, the leaves corresponding to suffixes suff1i and suff2i′ . To ensure left maximality, we
need to compare the left characters of the two suffixes under u to make sure that they are
unequal. Thus all internal nodes corresponding to MUMs can be identified in a traversal of
the GST ({s1, s2}). An example of MUM identification is shown in Figure 6.3.

The space required for the algorithm can be considerably reduced by building the suffix
tree of only one string, say s1, and streaming the other string s2 to identify MUMs [12].
The algorithm works by considering all suffixes of s2 starting from suff21.

• Find the longest possible match in the suffix tree for suff21, the first suffix of
string s2. This is done by traversing from the root of the suffix tree and matching
consecutive characters of suff21 until no further matches are possible.

• If the match ends inside the edge label between an internal node and a leaf node,
then check the left character in s1 of the suffix corresponding to the leaf and the
left character of the suffix from s2. If they are not the same, then the match is
reported.

• After finishing with the first suffix, the same method can be repeated with the
second suffix suff22. But instead of starting from the root and matching the
suffix, suffix links are used to shortcut the process. Let u be the last internal
node encountered while matching the previous suffix. Then, take the suffix link
from u to, say, u′. Suppose the previous suffix match ended l characters away
from node u. It is guaranteed that these l characters will match a path below u′.
Therefore, these characters can be matched at the rate of constant time per edge
using the same technique as employed in McCreight’s suffix tree construction

Once the end of these l characters is reached, further
matching will continue by examining the subsequent characters of suff22 one by
one.

© 2006 by Taylor & Francis Group, LLC
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• Repeat the process for all suffixes of the second string.

The above algorithm correctly reports all the maximal matches between the two strings.
However uniqueness is not preserved for the second string, because we do not actually
insert the suffixes of the second string. For example, if we build the suffix tree for the string
ATGACGGTCCT$1, and subsequently stream the second string ATGATGAG$2, then the
substring ATGA will be reported twice. This streaming algorithm also runs in O(n) time,
because building the suffix tree for the first string takes O(|s1|) time, and streaming of the
second string is equivalent to inserting all suffixes of it using McCreight’s algorithm, which
takes O(|s2|) time.

6.7 Tandem Repeats

Tandem repeats — segments of short DNA repeated multiple times consecutively — are
believed to play a role in regulating gene expression. Tandem repeats also have a much
higher rate of variation then the rest of the genome (in terms of the number of copies), and
this makes them ideal markers to distinguish one individual from another.

A tandem repeat can consist of anywhere from two to hundreds of repetitions. If we have
the ability to detect a 2-repeat tandem sequence, it can be used to deduce tandem sequences
with more repeats. Therefore, the problem is modeled by defining a tandem repeat to be
a string β = αα, i.e., a consecutive occurrence of two copies of the same string α. Tandem
repeats are further divided into two sub-categories, primitive and non-primitive. String
β is called a primitive tandem repeat if it does not contain another tandem repeat. For
example, strings aa and abab are primitive tandem repeats, while aaaa is not a primitive
tandem repeat. A 2-repeat tandem sequence is sometimes referred to as a square. When a
substring α repeats more than twice consecutively, it is sometimes referred to as a tandem
array. A tandem repeat/array in string s given by β = αk = s[i..i+ k|α| − 1], where |α| is
the length of the substring α, is represented as a triple (i, α, k). We can also represent a
tandem repeat β = αα as a tuple (i, 2|α|). We use the notation that best suits the situation
we are describing.

Detection of tandem repeats is a well-studied problem in computational biology. Crochemore
presented an algorithm that computes all occurrences of primitive tandem repeats inO(n log n)
time [3, 10]. On the other hand, all occurrences of tandem repeats (both primitive and non-
primitive) can be found in O(n log n+ occ) [24, 29], where occ is the number of occurrences
of tandem repeats in the string. We first present a simple O(n log n + occ) algorithm due
to Stoye and Gusfield [29].

6.7.1 Stoye and Gusfield’s O(n log n) Algorithm

Consider a tandem repeat in string s starting at position i of the form s[i..2|α|+i−1] = αα,
and α = aγ, where a is the first character of α and γ is the remainder of α. If character
s[2|α|+ i] = x �= a, then in the suffix tree there is an internal node v at string depth |α|, and
suffix suffi and suffix suff|α|+i−1 will be in the subtrees of two different children of v. Since
the two suffixes branch, the tandem repeat is referred to as a branching tandem repeat. An

If a tandem repeat (i, aγ, 2) is not a branching tandem repeat, then (i+1, γa, 2) is also a
tandem repeat. However, (i+ 1, γa, 2) may not be a branching tandem repeat either. This
property of non-branching tandem repeats is easy to see; if s[i..2|α| + i − 1] = aγaγ is a
non-branching tandem repeat, then s[i + 1..2|α| + i] = γaγa is a tandem repeat. We say
that (i, aγ, 2) is on the left of (i+ 1, γa, 2), while (i+ 1, γa, 2) is on the right of (i, aγ, 2). In
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example is shown in Figure 6.4.



Suffix Tree Applications in Computational Biology 6-11

v

.

.
.

g

γ

γ
a

g
.

.
.

a

i

i + |α| − 1

FIGURE 6.4: An example of a branching tandem repeat. (i, α, 2) is a branching tandem repeat,
node v is at string depth |aγ|, and suffixes suffi and suff|α|+i−1 branch from node
v.

Figure 6.5, both tandem repeats starting at positions i and i+ 1 are non-branching, while
the tandem repeat starting at position i + 2 is a branching tandem repeat. We refer to
tandem repeat (i, aγ, 2) as a left rotation of tandem repeat (i + 1, γa, 2); right rotation is
similarly defined.

G T A G T A TG C

i i + 1 i + 2

· · · · · ·

FIGURE 6.5: An example of a non-branching tandem repeat. Tandem repeats starting at po-
sitions i and i + 1 are both non-branching, while the tandem repeat starting at
position i +2 is branching. It is easy to see from this example each non-branching
tandem repeat is to the left of another tandem repeat.

The non-branching tandem repeats that are next to each other can be considered a chain,
with a branching tandem repeat at the end of the chain. Therefore, by locating all branching
tandem repeats, and detecting the non-branching tandem repeats to their left, all tandem
repeats can be identified. Hence, we focus on identifying all the branching tandem repeats.

A naive algorithm to identify branching tandem repeats is as follows:

1. For each internal node v, collect all the leaves in the subtree rooted by v in a list
(v).

2. Let α be the path label of v. Each leaf represents a suffix suffi, and for each
suffix suffi in ll(v) check if suff|α|+i is in (v).

3. If so check if character s[i] is the same as character s[2|α|+ i]. If so, (i, α, 2) is a
branching tandem repeat.

If we can identify whether a suffix suffj is in (v) in constant time, then the algorithm runs
in O(n2) time. If we number all leaf nodes according to the order they are encountered in
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a post-order traversal, then leaves in the subtree under any internal node are consecutive.
We can mark this range for each internal node v by storing the number of the first leaf,
i.e., the leftmost leaf in the subtree; and the last leaf, i.e., the rightmost leaf. Suppose the
leaf that represents suffi is the jth leaf we encounter in the post-order traversal, then in a
separate array R we store j in R[i]. Therefore, we can identify whether a suffix suffi is in
(v) by checking if the value stored in R[i] lies in the range of node v.

Since for each suffix suffi there can be O(n) internal nodes on the path from the root
to the leaf, the naive algorithm runs in O(n2) time. However, we can reduce this runtime
to O(n logn) using the knowledge that the two suffixes in a branching tandem repeat are
under different children of the node whose path label is the tandem repeat. So we can check
the leaves under all but one child, and all branching tandem repeats can be identified. This
is because if a branching tandem repeat has a leaf under the child we did not check, then
the other leaf must be in a child we did check.

Let node v′ be a child of node v that has the most leaves of all of node v’s children. We
define ′(v) = (v)−(v′), and modify the naive algorithm by checking all leaves in ′(v)
instead of (v). Suppose a suffix suffi is in both ′(v) and ′(u), where u is a child of v.
Then |′(u)| ≤ |Σ|−1

|Σ| 
′(v) where |Σ| is the size of the alphabet; i.e., the number of leaves

in |′(u)| is at most |Σ|−1
|Σ| times the number of leaves in ′(v). So a suffix can be in at

most log|Σ|/(|Σ|−1) n number of lists, resulting in an O(n log n) time algorithm.
After locating all branching tandem repeats we can find all the non-branching tandem

repeats. Suppose that (i, α, 2) is a branching tandem repeat. If s[i − 1] = s[i + 2|α| − 1]
then (i− 1, δ, 2) is a non-branching tandem repeat, where δ = s[i− 1..i+ 2|α| − 2]. So for
each branching tandem repeat (i, α, 2), we check if its left rotation is a tandem repeat, if so
we check the left rotation of this new tandem repeat until it is no longer true. This yields
an O(n log n+ occ) runtime algorithm, where occ is the total number of tandem repeats.

6.7.2 Stoye and Gusfield’s O(n) Algorithm

In 1998, Fraenkel and Simpson [15] proved that for a string |s| = n there are at most O(n)
different types of tandem repeats. Tandem repeats β = αα and γ = δδ are of different
types if and only if α �= δ. Since all occurrences of tandem repeats can be found from the
knowledge of all the types of tandem repeats, it is of interest to find the latter. The set of
all types of tandem repeats of a string s is also referred to as the vocabulary of s. Gusfield
and Stoye designed a linear time algorithm to identify these [18].

String decomposition

The linear time tandem repeat identification algorithm uses Lempel-Ziv string decompo-
At some stage during the execution of the algorithm, let

i be the first position that is not in any block. Find a position j < i that maximizes
|lcp(suffi, suffj)|. Then mark the next block to be of length max{1, |lcp(suffi, suffj)|} start-
ing from the ith position. This procedure is continued until the whole string is decomposed

This decomposition can be easily obtained using a suffix tree. Given a string s first build
its suffix tree ST (s). Then in a postorder traversal of the tree, mark each internal node
u with the index of the smallest suffix in its subtree. As the postorder traversal visits all
children of an internal node u before visiting u itself, node u is marked with the smallest of
the numbers marking its children.

To create the decomposition, start by traversing along the path from root to leaf labeled
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sition, illustrated in Figure 6.6.

into blocks. An example of the Lempel-Ziv decomposition is shown in Figure 6.7.
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FIGURE 6.6: Lempel-Ziv Decomposition
Procedure Lemple Ziv Decomposition(S)

blocks← ∅
block start← 1
block end← 1
While block end < |s| do

Let block len = max{1,maxblock start−1
k=1 |lcp(suffk, suffblock start)|}

block end← block start+ block len− 1
blocks← blocks ∪ (block start, block end)
block start← block end+ 1

end while
end procedure

TA A AT T T A A T A A A T A A A T $A

1 2 3 4 5 6 7 8

FIGURE 6.7: An example of the Lempel-Ziv decomposition of a string, each number under the
block corresponds to the block number.

suff1 in ST (s). The traversal will continue only if the next node along the path is marked
with a number smaller than the current position in the string. Continue the traversal until
we cannot go any further, and this is the end of the block. Repeat this process by starting
at the next position in the string and the root of ST (s).

Using the string given in Figure 6.7 as an example, there is a node u with edge label a
from the root of the suffix tree. This node is marked with 1, because suff1 is in its subtree.
When we start at position 1, we cannot go to node u because while its edge label is a, its
marker is not less than 1. So the end of the block starting at position 1 is 1. The procedure
is continued starting at position 2. It is easy to see that this algorithm produces the correct
result, and its run time is O(n).

Leftmost-covering set

Since we are only interested in discovering the vocabulary of tandem repeats, and not all
their occurrences, it suffices to discover the leftmost occurrence of each type of tandem
repeat. Recall that a non-branching tandem repeat is on the left of another tandem repeat
with equal length, and this series of consecutive equal length tandem repeats forms a chain.
Let (i, l) and (j, l) be two tandem repeats in such a chain. We say that (i, l) covers (j, l)
if and only if i < j. A set of tandem repeats is a leftmost-covering set if and only if the
leftmost occurrence of each type of tandem repeat is covered by a tandem repeat in the set.

Tandem repeats (1, 8), (2, 2),
(2, 8), (3, 8), (4, 2), (7, 6), (11, 8) are the leftmost tandem repeats of their types. But tandem
repeats (2, 8) and (3, 8) are covered by (1, 8), so the leftmost-covering set is {(1, 8), (2, 2),
(4, 2), (7, 6), (11, 8)}. Also note that this is the minimal leftmost-covering set, i.e., no other
leftmost-covering set has fewer elements. However, in general a leftmost-covering set need
not be minimal.

LEMMA 6.1 The leftmost occurrence of any tandem repeat type must span at least two
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Figure 6.8 shows an example of the leftmost-covering set.
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TA A AT T T A A T A A A T A A A T $A

(2,2)
(4,2)

(7,6)
(11,8)

(1,8)

FIGURE 6.8: An example of leftmost-covering set. The leftmost occurrence of each tandem
repeat is marked. The leftmost-covering set is {(1, 8), (2, 2), (4, 2), (7, 6), (11, 8)}

blocks of the Lempel-Ziv decomposition.

Proof Let β = αα = S[i..2|α| + i − 1] be the leftmost occurrence of a type of tandem
repeat. If β spans only one block in the Lempel-Ziv decomposition, then by definition of the
Lemple-Ziv decomposition, there must exist suffj , j < i, such that lcp(suffj , suffi) ≥ 2|α|.
Then, s[j..2|α|+ j − 1] = β must be an earlier occurrence of that type of tandem repeat.

LEMMA 6.2 The second half of any tandem repeat must not span more than two blocks
of the Lempel-Ziv decomposition.

Proof If the second half of a tandem repeat spans more than two blocks of the Lempel-
Ziv decomposition, then one block of the decomposition must lie completely inside the
second half of the tandem repeat. But by the definition of Lempel-Ziv decomposition, this
is impossible. If a block starts at position k of the second half of a tandem repeat, then the
suffix starting at position k of the first half of the tandem repeat is sufficient to propel the
block to the end of the tandem repeat.

COROLLARY 6.1 By Lemma 6.2, if a block of the Lemple-Ziv decomposition starts at
a character that is part of the second half of a tandem repeat, then this block will last until
at least the end of the second half of the tandem repeat.

From Lemmas 6.1 and 6.2, one of the following situations must occur for the leftmost
occurrence of any tandem repeat type.

• There is a block starting at the same position as the start of the second half of
a leftmost tandem repeat.

• There is a block starting after the start of the second half of a leftmost tandem
repeat.

• There is no block starting on or after the first character of the second half of a
leftmost tandem repeat.

Each of the three cases described above can be split into two sub-cases, based on whether
there is another block contained in the left half of the tandem repeat or not.
illustrates these six cases. Stoye and Gusfield presented two algorithms that will detect all
tandem repeats with structures illustrated in Figure 6.9. The two algorithms are run for
each block B of the Lempel-Ziv decomposition. Let h be the starting position of the current
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Figure 6.9
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(a)

(c) (d)

(e) (f)

(b)
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αα
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B B + 1

B B + 1

B + 1

FIGURE 6.9: An enumeration of the possible cases

block, and h1 be the starting position of the next block. Let lcp r(suffi, suffj) denote the
lcp in the reverse direction starting at positions i and j, i.e., the longest common suffix of
prefixes ending at i and j. This can be easily calculated by reversing the string and building
the suffix tree for it, along with the usual lcp algorithm.

To see how the first algorithm (Figure 6.10) works, suppose that block B starts at the
ith character in the first half of the tandem repeat. Then k will eventually reach the ith
character in the second half of the tandem repeat. At this point both k1 and k2 will be
non-zero, and the length of the tandem repeat is 2k. This corresponds to cases (b), (d), (e),
and (f).
the second half of the tandem repeat, and tries to detect the ith character in the first half;
this detects cases (a), and (c).

The above two algorithms take O(n) time because each block is processed once by
Backward Detection (see Figure 6.11), and twice by Forward Detection (see Figure 6.10).
Each position of the block takes constant time to process by each algorithm. Therefore,
the total time is O(n) so far. Also note that since the algorithm runs in O(n) time, the

FIGURE 6.10: Forward Detection
Procedure Forward Detection()

for k ← 1, |B|+ |B + 1|
q ← h+ k
k1 ← lcp(Sq, Sh)
k2 ← lcp r(Sq−1, Sh−1)
if k1 + k2 ≥ k and k1, k2 > 0

if max(h− k2, h− k + 1) + k < h1

Output (max(h− k2, h− k + 1), 2k)
end if

end if
end for

end procedure
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On the other hand, the algorithm in Figure 6.11 starts from the ith character in
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FIGURE 6.11: Backward Detection
Backward Detection()

for k ← 1, |B|
q ← h1 − k
k1 ← lcp(Sq, Sh1)
k2 ← lcp r(Sq−1, Sh1−1)
If k1 + k2 ≥ k and k1 > 0

if max(q − k2, q − k + 1) + k < h1

Output (max(q − k2, q − k + 1), 2k)
end if

end if
end for

end procedure

number of tandem repeats reported is also O(n). However the result may not be a minimal
leftmost-covering set, i.e., some of the tandem repeats reported are either not the leftmost
occurrence of its type, or are covered by other tandem repeats in the set, or both.

We have successfully computed a leftmost-covering set, and would now like to mark the
tandem repeats in this set in the suffix tree. We begin by first sorting all the tandem repeats
by their beginning position, and then by their length (from longest to shortest). This way
all the tandem repeats starting from position i are next to each other and ranked according
to their length. All such tandem repeats that start form position i are associated with the
leaf node v, representing suffi. We call this list of tandem repeats p(v).

Let u be the parent of v, and let k be the string depth of node u. For each tandem repeat
(i, l) ∈ p(v), if l ≥ k then mark the position on the edge from u to v or on node u itself, and
continue until l < k. Since p(v) is sorted the amount of work is proportional to the number
of tandem repeats processed. After all the children of node u are processed, then we need
to calculate the list p(u). It is not possible to merge all the lists of the children, because
this will take O(n) time for each node, and O(n2) total time.

Each node is labeled with the number of the suffix that has the smallest index in its
subtree, i.e., we label node v with i if and only if j > i for each suffix suffj in v’s subtree.
To compute p(u), we simply adopt p(v) where v is the child with the smallest label.

LEMMA 6.3 By adopting the list of the child with the smallest label, all the tandem
repeats in the leftmost-covering set will be marked.

Proof By induction, assume that all the tandem repeats in the leftmost-covering set
under a node u are marked correctly. This is true for internal nodes whose children are all
leaf nodes, which serves as the base case. Now we show that the edge e between u and its
parent v is marked correctly. Suppose that (i, l) is a part of the leftmost-covering set, and
that a position on e should be marked as a result. Then (i, l) must be the first occurrence
of that type of tandem repeat. Thus suffi is the first suffix with that type of tandem repeat
as a prefix. Therefore (i, l) is an entry in p(w), where w is the child with the smallest label.

Once the leftmost-covering set is marked in the suffix tree, any tandem repeat is covered
by one of the tandem repeats in this set. Let β = αα = aγ, where a is a character. If there
is a tandem repeat to its right with the same length, then this tandem repeat must be of
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the form γa. To mark this tandem repeat, if an internal node v has the path label aγ, one
can travel from aγ to γ in the suffix tree by using the suffix link from v. Otherwise, let u
be the parent of v, and aγ lies inside the edge label of the edge between u and v. Then,
first go up to node u and travel to node u′ using the suffix link from u. Then, travel down
in the suffix tree. Note that for each edge encountered, every character of the edge label
need not be compared. One can simply compare the first character, and move down by the
length of the edge label. This marks all types of tandem repeats.

Although this compare-and-skip method allows us to traverse each edge in constant time,
the number of the edges in the traversal could be large, and result in a non-linear time
algorithm. In order to calculate how many times an edge is traversed in the algorithm, we
first state the theorem presented in Fraenkel and Simpson [15].

THEOREM 6.1 Each position i in string s can be the starting position of at most two
rightmost occurrences of tandem repeats.

From the above theorem we can deduce the following.

LEMMA 6.4 For each edge e between node u and node v, there can be at most two
marked positions each being the endpoint of some tandem repeat.

Proof Suppose that an edge e between node u and its child node v has more than two
marked positions. Let suffix suffi be the rightmost suffix in string s under node v, i.e., for
all suffk in the subtree rooted at node v, k < i. Then position i is the starting position of
the rightmost occurrence of more than two types of tandem repeats, a contradiction.

LEMMA 6.5 Each edge is traversed no more than O(|Σ|) times in marking all the tandem
repeat types.

Proof Let node u be the parent of node v, let u′ be the internal node reachable from u
using the suffix link labeled c, let v′ be the internal node reachable from v using the suffix
link labeled c. Since there is an edge between u and v, then there is a path between u′ and
v′; we call this a suffix link induced path. Let edge e be an edge on this suffix link induced
path. By Lemma 6.4 there are only two marked positions between nodes u and v. As a
result e will be traversed at most twice in order to mark the tandem repeats that are right
rotations of the two tandem repeats ending between nodes u and v. Furthermore, any edge
e can only be on |Σ| number of suffix link induced paths. Thus each edge e is traversed
O(|Σ|) times.

By Lemma 6.5 each edge is traversed at most O(|Σ|) times. Since there are O(n) edges,
the total runtime of the algorithm is O(|Σ|n). For constant size alphabet, the runtime is
O(n).

6.8 Identification of Promoters and Regulatory Sequences

Gene expression, the process by which a gene is transcribed into corresponding mRNA se-
quences, is aided by promoters and other regulatory sequences usually located upstream of
the transcribed portion of the gene. The upstream region typically consists of several im-
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portant short subsequences, usually 4-10 nucleotides long, that play a role as binding sites
for transcription factors. It is known that these sequences are often conserved between sim-
ilar genes, and also genes that are similarly expressed. The problem of identifying multiple
unknown patterns with flexible distance constraints between them is in general known as
structured motif identification problem. By extracting potential motifs of regulatory sites in
gene upstream regions, biologists can gain valuable insight into gene expression regulation.
It is natural to use a suffix tree to identify motifs in DNA sequences, because of its suit-
ability to find common substrings in multiple sequences. Marsan and Sagot [25] proposed
algorithms to solve the sequence motif identification problem. We present a simplified ver-
sion by focusing on identification of two patterns. For a more detailed treatment of motif

Given a set of m DNA sequences each corresponding to the upstream region of a gene, if
a nucleotide sequence of length k is found upstream in all the sequences, then this sequence
is a possible motif. This is a simplified view of sequence motifs, because of the following:
1) Not all the m genes may have similar function, so that they might have different motifs.
2) Not all the upstream regions will have an identically common sequence due to evolution,
and random mutations. 3) All the motifs should be a similar distance away from the gene.
For example, if a sequence occurs 20 base pairs upstream from a gene, while the exact
sequence occurs 1000 base pairs upstream from another gene, then it is more likely to be a
coincidence than an actual motif. 4) It is possible that the set of m DNA sequence have the
same subsequence upstream by chance, therefore we should restrict the motif to be more
complicated than one short exact match.

We consider the two pattern motif problem: ((β1, β2), (dmin, dmax)) is a motif if there is
a subset of q sequences out of all the m input sequences that have substring matches β1 and
β2, and the two substrings are at least dmin away from each other, and at most dmax away
from each other. This definition can be relaxed, such that we do not need exact matches to
β1 and β2, but allow a few mismatches. We can restrict the definition by setting a length
k for β1 and β2.

Build a generalized suffix tree for all the m input sequences. Augment each internal node
v of the suffix tree with a boolean array sequencesv of size m, such that sequencesv[i] is
set to 1 if and only if a suffix from sequence i is a leaf in the subtree rooted at node v. We
also augment each internal node v with a counter countv, such that countv is the number
of 1’s in sequencesv. Then all the motifs can be identified by a tree traversal. Let p be a
position inside the edge label of the edge (u, v) where node u is the parent of node v. If the
string depth from the root of the suffix tree to p is between 2k + dmin and 2k + dmax and
countv ≥ q, then the concatenation of all edge labels from the root to p is a potential motif.
All potential motifs can be generated in O(mn) time, where m is the number of sequences
and n is the total length of all the sequences.

Suppose we would like to consider substrings with e number of mismatches as well. Then
we can generate all strings of length k and test if a particular string si can be β1 of the motif.
Then we consider all paths beginning at the root of the suffix tree that are e mismatches
away from si. To find the number of sequences similar to si, combine all sequencesv arrays

suffix tree of AGTACG$1 and ACGTCA$2. Suppose the pattern is AGT, and one mismatch
is allowed, then the path AGT and CGT will be found. After β1 is found, find downward
paths below the position corresponding to the end of β1, with lengths between dmin and
dmax, and search for β2. In the case of the example in Figure 6.12, assume dmin = 0,
dmax = 1 and allow m2 to be length 2. Then we can identify the motif ((AGT,CA),(0,1))
in strings AGTACG$1 and ACGTCA$2.
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identification problems the reader is referred to [25] and to Chapter 37 of this handbook.

with a logical OR and count the number of 1’s in the array. Figure 6.12 shows a generalized
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FIGURE 6.12: The generalized suffix tree of AGTACG$1 and ACGTCA$2. The search for the
pattern AGT, allowing one mismatch yields the paths AGT and CGT. Then we
skip 0 or 1 nucleotides and try to identify the other part of the motif. We then
find ((AGT,CA),(0,1)) as a motif common to the strings.

6.9 Oligonucleotide Selection

Microarrays are useful in measuring the concentration levels of a target set of DNA se-
quences. They are based on the concept that two DNA sequences exhibiting complemen-
tarity hybridize to each other. If the sequences of the target DNA molecules are known, we
can choose a unique oligonucleotide (a short DNA sequence) called a probe for each target
DNA molecule and attach the probes to the microarray. It is important that the probe be
unique in the sense that it hybridizes to only its intended target DNA. To measure the con-
centration of the target DNA molecules in a solution, they are separated into single stranded
molecules, colored with a fluorescent dye, and allowed to hybridize with the fixed probes
on the microarray. By using a laser to detect the fluorescence at each microarray spot,
the intensity can be used to estimate the concentration of the target DNA molecule. DNA
microarrays are commonly used to simultaneously measure the expression levels of tens of
thousands of genes of an organism. They have also been used to detect the concentration
levels of microorganisms by designing unique probes based on their genomic sequences.

The design of oligonucleotides is challenging because the probes must each be unique
to a target sequence. Furthermore, a DNA sequence can hybridize to a probe that it
does not match exactly. To account for this, we must select a set of probes such that
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each probe is unique up to k differences. Because of the hybridization process, if the two
probes differ in the first or last k nucleotides and the remaining nucleotides are same,
unintended hybridizations are still likely because hybridization can happen to the common
part. Therefore, it is best to have the differing positions distributed evenly throughout
the probe. Kurtz et al. [21] developed an algorithm to design probes as one of the many
applications of their repeat finding software REPuter [22]. Subsequently, Kaderali and
Schliep [20] have proposed a more complex model for probe design by further screening
the unique sequences using their hybridization temperature. In this section we present the
approach by Kurtz et al. to illustrate how suffix trees can be used in probe design. For a

For ease of understanding, we restrict ourselves to the problem of designing probes for
two target sequences S1 and S2. If the probes are too short, the sequences cannot be
distinguished from each other; longer probes are harder to manufacture. To model this, let
min and max be the minimum and maximum allowable length of the probes, respectively.
As mentioned above, the probes should also include at least k mismatches, distributed as
evenly as possible throughout the probes.

6.9.1 Maximal k-mismatch repeat

In order to design the probes we first look at the maximal k-mismatch repeat problem.
Two substrings s1[i1..j1] and s2[i2..j2] are said to be a k-mismatch repeat if we can obtain
one from the other by exactly k character replacements, i.e., they mismatch at exactly k
positions. A k-mismatch repeat is said to be maximal if we cannot extend it at either end
without incurring an extra mismatch.

To identify maximal k-mismatch repeats, first a generalized suffix tree is built for the two
target sequences s1 and s2. Traverse the tree and mark each internal node u as mixed, if
and only if u is the lca(w1, w2) where w1 and w2 are leaves from s1 and s2 respectively.
All the mixed internal nodes can be found in O(n) time, where n = |s1| + |s2|. For each
node u we maintain two Boolean values m1 and m2; m1 is set to true if and only if there
is a leaf corresponding to a suffix of s1 in the subtree rooted at u, or u is a leaf node and
corresponding to a suffix of s1; m2 is similarly defined. This can be done in O(n) time with
one post-order traversal of the tree. Then an internal node u is mixed if and only if m1 at
v1 is true and m2 at v2 is true, where v1 and v2 are two of u’s children. The mixed nodes
can be identified with another post-order traversal in O(n) time. In fact the two post-order
traversals can be combined into one without changing the asymptotic run-time.

Suppose we are interested in maximal k-mismatch repeats of length at least l. This
implies that the maximal k-mismatch repeat has a maximal exact match of length at least

l
k+1 . For each internal node v of string depth at least l

k+1 and marked mixed, identify a
pair of leaves w1 and w2 such that lca(w1, w2) = v, where w1 corresponds to a suffix of s1,
and w2 corresponds to a suffix of s2. This can be done by a bottom up traversal of the tree.
For each node maintain a list of all the leaves of s1 — call this list1, and another list of all
the leaves of s2 — call this list2. For a leaf node one of the lists is empty and the other has
exactly one element. For an internal node v, all distinct pairs of leaves can be generated by
choosing an element from list1 of one of the children and an element from list2 of another
child. After all pairs of leaves are generated, list1 for v can be constructed by joining all
the list1’s children, and list2 for v can be constructed in the same manner. This step can
be done in O(n) space and O(n + occ) time, where occ is the number of pairs generated.
The space for the suffix tree is O(n) and the total size of the lists is also O(n). While the
bottom up traversal takes only O(n) time, the number of pairs generated can be Θ(n2) in
the worst case.
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thorough treatment of probe design, the reader is referred to Chapter 24 of the handbook.
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For each pair of leaves w1 and w2 generated, find the length of lcp(w1, w2). Let s1[i1..j1]
and s2[i2..j2] be the two substrings in s1 and s2, respectively, corresponding to lcp(w1, w2).
It is clear that s1[j1 + 1] �= s2[j2 + 1], because the lcp would be longer otherwise. Let
suff1j1+2 be the (j1 + 2)th suffix of S1, and suff2j2+2 be the (j2 + 2)th suffix of S2. If
lcp(suff1j1+2, suff

2
j2+2) is of length r, then substrings s1[i1..j1 + 1 + r] and s2[i2..j2 + 1 + r]

are a maximal 1-mismatch repeat. We can repeat this procedure to find the maximal k-
mismatch repeat by extending to the right and/or to the left. Given a pair of leaves as seed,
we can identify a maximal k-mismatch repeat in O(k) time, because finding each required
lcp takes only constant time with preprocessing for lca. We can then check if the maximal
k-mismatch repeat is within the specified length constraints.

6.9.2 Oligonucleotide design

From the algorithm presented above, we can generate all the maximal k-mismatch repeats
and check if their length l is within lmin and lmax in O(n + occ · k) time, where occ is
the number of pairs generated. Note that a maximal k-mismatch cannot be extended on
either side without incurring an extra mismatch. However, the maximal k-mismatch can
be shortened on either side if necessary by deleting nucleotides at either end without going
as far as the the first mismatch position. This flexibility can be used to increase the chance
of finding a k-mismatch probe within the specified length constraints. The probe selection
algorithm for two sequences that is presented here can be extended to more than two
sequences, with the same run-time of O(n + occ · k), where n is the total length of all the
sequences. In the worst case, the number of pairs generated is

∑k
i=1

∑
i<j ni · nj , where ni

and nj are the length of sequence i and j, respectively.

6.10 Protein Database Classification and Peptide Inference

6.10.1 Protein sequence database classification

As previously mentioned, the volume of biological sequence data has increased exponentially
in recent years. To better facilitate the analysis of this data, efficient indexing is needed.
Also due to high throughput sequencing, it is no longer efficient or even feasible to have
researchers manually process the large number of data generated each day, and update
sequence databases. With these two goals in mind, an automated process was designed and
implemented by Gracy and Argos [16, 17] to classify an entire protein sequence database.
In this section we present their process, and the role played by suffix trees.

Since our knowledge of the protein structure and their function is limited, data mining
methods are used to discover similarities between individual proteins in a protein family
or cluster. However, in order to apply these data mining methods, the protein sequences
in the database must first be classified into homologous families. In order to achieve this
goal, very similar protein sequences are first classified together by a composition similarity
search, where a compositional vector is calculated for each protein sequence based on the
number of amino acids and dipeptides. Then a pairwise composition distance is calculated
by finding the L1 distance of the compositional vectors associated with each pair of protein
sequences. Only pairs with distances smaller than a threshold are selected into a family.

The composition distance gives a good starting point for further, more sensitive compar-
isons. From each family identified in the previous step, one protein sequence is selected
as a representative. The goal of this step is to further reduce the number of families by
grouping together representative sequences. To accomplish this goal efficiently, regions of
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local similarity need to be identified and used as an anchor. The local similarities in this
case are equal length subsequences that share comparable prefixes. To identify these equal
length comparable prefixes a generalized suffix tree is built for all the selected sequences.
Then the nodes of the suffix tree are visited by a depth-first traversal. For each node v
encountered, all the nodes u of equal depth are found and a similarity score is calculated
for the path labels of each pair of nodes uv. The identified anchors are then extended to
both ends. If the resulting match exceeds a cut-off point then the two protein families are
potentially similar, and further checks are performed.

6.10.2 Experimental Interpretation

Background

Tandem mass spectrometry can be used to identify protein sequences. When a large num-
ber of experiments are conducted, it is impractical to interpret each experimental output
manually. This tedious and repetitive process can be done by sequence database searches.
Due to the large data size, an efficient database is needed to effectively identify potential
candidates.

In protein studies, the first step is usually the identification of the protein sequence.
A protein sequence is first digested with an enzyme to produce short peptides. A mass
spectrometry (MS) is then used to measure the mass-to-charge (m/z) ratios of the resulting
peptides and these ratios are used in further selecting peptides of interest. The selected
peptides are fragmented by a pass through a collision cell, in a step referred to as collision-
induced dissociation (CID). At this point the peptide is broken into shorter peptides and
individual amino acids. Another mass spectrometry (MS) measures the m/z ratio of the
resulting amino acids. This procedure allows us to deduce the mass of the amino acids in
the peptide if the charges are known.

However, this does not directly tell us the sequence of the peptide. In order to find the
sequence of the peptide, a database of possible peptides must be searched to produce the
best answer. Further complicating this process, we may not know which enzyme is used
to produce the initial peptides, so the leading/trailing amino acid is not known. Post-
translational modification could change the mass of a peptide, which will also have to be
taken into consideration during the construction or the search of the index. So clearly the
goal is to build an indexing structure and a search routine so that the best interpretation
of a tandem mass spectrometry experiment can be found quickly in the database. In this
section we will study the indexing and searching method proposed by Lu and Chen [23].

NC-spectrum graph

Given a mass spectrograph as an input, a NC-spectrum graph is constructed using the
algorithm by Chen et al. [8]. Suppose there are k peaks in the mass spectrograph, then the
peptide is broken into k fragments I1, . . . , Ik with masses denoted by w1, . . . , wk, respec-

The NC-spectrum graph with 2k + 2 vertices is created on the real number line. Let
m = 2k + 1, vertex z0 and zm correspond to zero mass, and the total mass of the peptide
W , respectively. For each peak Ij , two vertices zj and zm−j are added to the graph, one at
position wj , and the other at position W − wj , respectively. This is the same as assuming
a fragment is either a prefix or a suffix of the peptide. Obviously, a fragment could be a
substring in the middle of the original peptide. However, since we do not always know which
enzyme was used to digest the protein, we lack the start and end points. Thus assuming
a fragment is a substring in the middle of a peptide does not help us deduce the actual
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tively. Figure 6.13(a) shows an example mass spectrograph with four peaks.
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(a) Mass spectrograph of a hypothetical peptide.
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(b) The NC-spectrum graph of (a)

FIGURE 6.13: The total mass of the peptide is 800 amu, and the bolded edges forms a possi-
ble peptide. The symbol ‘+’ means ‘concatenation’, and the symbol ‘/’ means
‘disjunction’. For example, the express ‘T+D/N’ means ‘TD’ or ‘TN’.

sequence, and it will complicate the search effort because we do not know where to place it
on the line. After the vertices are fixed on the line, edges are added to the graph. Suppose
zi < zj are two vertices in the graph. If the difference between zi and zj corresponds to the
mass of some amino acid, an edge is drawn from zi to zj and is labeled with that amino
acid.

Figure 6.13(b) shows an example of the NC-spectrum graph corresponding to the mass
spectrograph of Figure 6.13(a). This NC-spectrum graph has only eight vertices instead of
the ten vertices. This is because the peaks corresponding to molecular weights 335.2 and
464.8 map to the same two vertices on the line. It is easy to see that the concatenation of
all the edge labels of a path from vertex z0 to zm in the NC-spectrum graph corresponds
to a peptide. This peptide is one of the many peptides that could have produced the mass
spectrograph.

The Peptide Inference Algorithm

Given a database of proteins, the goal is to identify a set of good candidate peptides from the
database for a particular mass spectrograph. First a generalized suffix tree is constructed,
consisting of all the proteins in the database. Then a depth first traversal is done on the
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(a) A
path that matches the peptide TDHGGF completely, when F is encountered in
the search. The peptide TDHGGF is returned as a candidate peptide. (b) A
path with an insertion T in the middle (between the two G’s), the peptide is also
returned as a candidate.

suffix tree by referring to the NC-spectrum graph. Start at the root of the suffix tree r, and
vertex z0 of the NC-spectrum graph. Let (r, u) be an edge in the suffix tree with edge label
lru. We can map this edge onto the NC-spectrum graph by starting from z0 and following
the appropriate edge on the graph. Continue this until a position in the suffix tree is
reached such that the corresponding path in the NC-spectrum graph reaches the last vertex
zm, or the path in the NC-spectrum graph can no longer be extended. In the first case the
concatenation of the edge labels of the suffix tree from the root r to the current position is
a candidate peptide. In the second case the current position in the suffix tree cannot yield
a possible match. In this case, backtrack in the suffix tree and the NC-spectrum graph by
taking a different edge in the suffix tree and continue; see Figure 6.14(a).

In order to account for experimental errors, the search can be relaxed by allowing errors.
If the search is at node u in the suffix tree and vertex zj in the NC-spectrum graph, but
there is no outgoing edge from u in the suffix tree that has the same label as the edge from
zj we are interested in, we could skip one character from u and check if the edge label is
available. For example, in Figure 6.14(b), we are searching for the peptide TDHGGF in
the suffix tree. The prefix TDHG is located, however the next amino acid is T instead of
G. This T is skipped and the search routine tries to locate the remaining sequence GF,
which comes after T. So the peptide TDHGTGF is returned as a candidate. If a match
cannot be found by skipping one character in the suffix tree, more characters can be skipped
depending on the quality of the spectrograph.

This algorithm allows searching for all possible candidates in a protein database using
O(n + |G|) space, where n is the size of the protein database, and |G| is the size of the
NC-spectrum graph. Since we would like to return all the possible candidates in the protein
database, a complete traversal of the suffix tree may be necessary. This takes O(n) time. As
the entire suffix tree may need to be traversed in the worst case, it is advantageous to use
the linked list implementation of children of internal nodes to save space without increasing
the worst case run-time.

After all the candidate peptides are located, a probability can be associated with each pep-
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FIGURE 6.14: Suppose the NC-spectrum graph in Figure 6.13 (b) is used in our search.
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FIGURE 6.15: Post-translational modifications. Consider D can be modified to be I, H can be
modified to E, and all other amino acids have no allowed modifications.

tide, and the peptide with the highest matching probability is output. Careful readers may
notice we have not yet addressed the problem of post-translational modification. This can
be done by modifying the search algorithm. Keep a table of all possible post-translational
modifications such that for each amino acid ai, a list of all its possible modifications are
stored. During the depth first traversal of the suffix tree, instead of simply referring to the
NC-spectrum graph to decide whether a path in the suffix tree is a candidate, each amino
acid in the edge label of the NC-spectrum graph is also substituted with all its possible
modifications to check if a path in the suffix tree can be a possible candidate. For exam-
ple, in Figure 6.15, the only two modifications are from D to I and H to E. Suppose the
path label in the NC-spectrum graph is TDHGGF, then the path TDHGGF will generate
a match, and because of the modifications the paths TDEGGF, TIHGGF, and TIEGGF
will also be considered as matches.

6.11 Conclusions

Suffix trees and its variants are used in many applications in computational biology. This
chapter provides a diverse, but by no means exhaustive, sample of the many applications
in which suffix trees have been used. Variants of suffix trees have also been developed for
use in Markov models. These include prediction suffix trees [6] and probabilistic suffix trees
[2, 5, 13].
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