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Burrows Wheeler Transform: Introduction

I Burrows Wheeler Transform (BWT) is a transformation
originally invented for data compression [BW94].

I It was later adopted in the bioinformatics domain.
I One of the most popular application of BWTs in

bioinformatics is in the problem of read mapping
[LD09, LD10, LTPS09, TS09]. This has a direct application in
genome re-sequencing and targeted re-sequencing projects.

I In this lecture, we will define the Burrows Wheeler Transform
and review its application in pattern matching.



Definition of Burrows Wheeler of Transform
Notation and definitions:

s input string of length n
s[i ] character at index i of s (indexing starts at 1)
s[i . . . j] substring of s starting at index i and ending at index j

e.g., s[1 . . . n] = s
Σ string alphabet
$ end of string symbol (i.e., s[n] = $) s.t. $/∈ Σ
≺ operator to denote lexicographically smaller
· string concatenation operator
rot(i) the cyclic permutation of s which starts at index i

(i.e., s[i . . . n] · s[1 . . . i − 1])
SA[1. . . n] suffix array of s

(i.e., lexicographically sorted array of suffixes of s)
R[1 . . . n] build an array of strings R s.t. R[i ] = rot(SA[i ])

Definition
BWT (s): Given an input string s of length n, BWT (s) is an
array of size n where BWT [i ] = R[i ][n].



BWT: Example
1 2 3 4 5 6 7

s = b a n a n a $

All (left) rotations:

Suff id.
1 b a n a n a $
2 a n a n a $ b
3 n a n a $ b a
4 a n a $ b a n
5 n a $ b a n a
6 a $ b a n a n
7 $ b a n a n a

R[1 . . . n]: Suffix array of s with
rotations

SA
7 $ b a n a n a
6 a $ b a n a n
4 a n a $ b a n
2 a n a n a $ b
1 b a n a n a $
5 n a $ b a n a
3 n a n a $ b a

BWT (s) = annb$aa (which is same as the last column in the R
table).



BWT properties

Given an input string s and its BWT transform BWT (s), let:
`(xi ) denote the i th occurrence of x in the last column of R

(Note: this is same as the i th occ. of x in BWT (s))
E.g., `(a1) = annb$aa; `(a2) = annb$aa

ind(`(xi )) denote the index in s corresponding to `(xi )
E.g., ind(`(a1)) = 6; ind(`(a2)) = 4

f (xi ) denote the i th occurrence of x in the first column of R
E.g., f (a1) = $aaabnn; f (a2) = $aaabnn

ind(f (xi )) denote the index in s corresponding to f (xi )



Last to first property of BWTs
Lemma
Last column to first column property: The i th occurrence of
character x in the last column of R is same as the i thoccurrence of
x in the first column of R — i.e., ind(`(xi )) = ind(f (xi )).

Proof.
For any i < n, since `(xi ) occurs before `(xi+1) in the last column
of R (same as the BWT (s)),

⇒ s[ind(`(xi )) + 1 . . . n] ≺ s[ind(`(xi+1) + 1 . . . n]

⇒ x · s[ind(`(xi )) + 1 . . . n] ≺ x · s[ind(`(xi+1)) + 1 . . . n]

⇒ s[ind(`(xi )) . . . n] ≺ s[ind(`(xi+1)) . . . n]

(∵ s[ind(`(xi ))] = s[ind(`(xi+1))] = x)

⇒ ind(f (xi )) = ind(`(xi )) (∵ the above inequality holds ∀i < n
and the first column represents the suffix array)
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Implications of the Last to first property of BWTs

I Can be useful in
both reconstruction
and pattern
matching
procedures.

1 2 3 4 5 6 7
s = b a n a n a $

R[1 . . . n]: Suffix array of s with
rotations

SA f `

7 $ b a n a n a
6 a $ b a n a n
4 a n a $ b a n
2 a n a n a $ b
1 b a n a n a $
5 n a $ b a n a
3 n a n a $ b a



BWT functions

BWT (s) compute the BWT (s) for a given string s

BWT -Inverse(BWT (s)) compute the string s
given its BWT transform BWT (s)

PatternMatch(BWT (s), p) search for a given pattern p (of length m)
in string s using its BWT transform



Algorithm: BWT -Inverse(BWT (s))

Definition
Let next(i) denote the row index in R corresponding to the
occurrence of BWT [i ] in the first column.

BWT-Inverse(BWT(s))
{

Init s[1 . . . n]
j ← 1
for i ← n downto 1 do:

s[i ]← BWT [next[j]]
j ← next[j]

endfor
output s

}

R f BWT next
1 $ b a n a n a 2
2 a $ b a n a n 6
3 a n a $ b a n 7
4 a n a n a $ b 5
5 b a n a n a $ 1
6 n a $ b a n a 3
7 n a n a $ b a 4



PatternMatch algorithm with an example

Input: BWT (s) for string s of length n; pattern p of length m.
Example: BWT (s) = annb$aa, p = ana

Step 1)
↓

p a n a

R f BWT next
1 $ b a n a n a 2

→ 2 a $ b a n a n 6
→ 3 a n a $ b a n 7
→ 4 a n a n a $ b 5

5 b a n a n a $ 1
6 n a $ b a n a 3
7 n a n a $ b a 4



PatternMatch algorithm with an example

Input: BWT (s) for string s of length n; pattern p of length m.
Example: BWT (s) = annb$aa, p = ana

Step 2)
↓

p a n a

R f BWT next
1 $ b a n a n a 2
2 a $ b a n a n 6
3 a n a $ b a n 7
4 a n a n a $ b 5
5 b a n a n a $ 1

→ 6 n a $ b a n a 3
→ 7 n a n a $ b a 4



PatternMatch algorithm with an example

Input: BWT (s) for string s of length n; pattern p of length m.
Example: BWT (s) = annb$aa, p = ana

Step 3)
↓

p a n a

R f BWT next
1 $ b a n a n a 2
2 a $ b a n a n 6

→ 3 a n a $ b a n 7
→ 4 a n a n a $ b 5

5 b a n a n a $ 1
6 n a $ b a n a 3
7 n a n a $ b a 4

Pattern p found.
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