On Burrows Wheeler Transform and Bioinformatics

Ananth Kalyanaraman

October 30, 2013

Introduction
Motivation
Notation and Definitions

BWT properties

Algorithms

References

Burrows Wheeler Transform: Introduction

- Burrows Wheeler Transform (BWT) is a transformation originally invented for data compression [BW94].
- It was later adopted in the bioinformatics domain.
- One of the most popular application of BWTs in bioinformatics is in the problem of read mapping [LD09, LD10, LTPS09, TS09]. This has a direct application in genome re-sequencing and targeted re-sequencing projects.
- In this lecture, we will define the Burrows Wheeler Transform and review its application in pattern matching.

Definition of Burrows Wheeler of Transform

Notation and definitions:

Definition

$B W T(s)$: Given an input string s of length $n, B W T(s)$ is an array of size n where $B W T[i]=R[i][n]$.

BWT: Example

	1	2	3	4	5	6	7
$s=$	b	a	n	a	n	a	$\$$

All (left) rotations:

Suff id.							
1	b	a	n	a	n	a	$\$$
2	a	n	a	n	a	$\$$	b
3	n	a	n	a	$\$$	b	a
4	a	n	a	$\$$	b	a	n
5	n	a	$\$$	b	a	n	a
6	a	$\$$	b	a	n	a	n
7	$\$$	b	a	n	a	n	a

$R[1 \ldots n]$: Suffix array of s with rotations

SA							
7	$\$$	b	a	n	a	n	a
6	a	$\$$	b	a	n	a	n
4	a	n	a	$\$$	b	a	n
2	a	n	a	n	a	$\$$	b
1	b	a	n	a	n	a	$\$$
5	n	a	$\$$	b	a	n	a
3	n	a	n	a	$\$$	b	a

$B W T(s)=$ annb\$aa (which is same as the last column in the R table).

BWT properties

Given an input string s and its BWT transform $B W T(s)$, let:
$\ell\left(x_{i}\right) \quad$ denote the $i^{t h}$ occurrence of x in the last column of R (Note: this is same as the $i^{\text {th }}$ occ. of x in $B W T(s)$) E.g., $\ell\left(a_{1}\right)=$ annb\$aa; $\ell\left(a_{2}\right)=$ annb\$aa
ind $\left(\ell\left(x_{i}\right)\right)$ denote the index in s corresponding to $\ell\left(x_{i}\right)$ E.g., ind $\left(\ell\left(a_{1}\right)\right)=6$; ind $\left(\ell\left(a_{2}\right)\right)=4$
$f\left(x_{i}\right) \quad$ denote the $i^{\text {th }}$ occurrence of x in the first column of R E.g., $f\left(a_{1}\right)=\$$ aaabnn; $f\left(a_{2}\right)=\$$ aaaabnn
ind $\left(f\left(x_{i}\right)\right)$ denote the index in s corresponding to $f\left(x_{i}\right)$

Last to first property of BWTs

Lemma

Last column to first column property: The $i^{\text {th }}$ occurrence of character x in the last column of R is same as the $i^{\text {th }}$ occurrence of x in the first column of $R-i . e$., ind $\left(\ell\left(x_{i}\right)\right)=\operatorname{ind}\left(f\left(x_{i}\right)\right)$.

Proof.

For any $i<n$, since $\ell\left(x_{i}\right)$ occurs before $\ell\left(x_{i+1}\right)$ in the last column of R (same as the $B W T(s)$),

$$
\Rightarrow s\left[\operatorname{ind}\left(\ell\left(x_{i}\right)\right)+1 \ldots n\right] \prec s\left[\operatorname{ind}\left(\ell\left(x_{i+1}\right)+1 \ldots n\right]\right.
$$

Last to first property of BWTs

Lemma

Last column to first column property: The $i^{\text {th }}$ occurrence of character x in the last column of R is same as the $i^{\text {th }}$ occurrence of x in the first column of $R-i . e$., ind $\left(\ell\left(x_{i}\right)\right)=\operatorname{ind}\left(f\left(x_{i}\right)\right)$.

Proof.

For any $i<n$, since $\ell\left(x_{i}\right)$ occurs before $\ell\left(x_{i+1}\right)$ in the last column of R (same as the BWT(s)),

$$
\begin{aligned}
& \Rightarrow s\left[\operatorname{ind}\left(\ell\left(x_{i}\right)\right)+1 \ldots n\right] \prec s\left[\operatorname{ind}\left(\ell\left(x_{i+1}\right)+1 \ldots n\right]\right. \\
& \Rightarrow \quad x \cdot s\left[\operatorname{ind}\left(\ell\left(x_{i}\right)\right)+1 \ldots n\right] \prec x \cdot s\left[\operatorname{ind}\left(\ell\left(x_{i+1}\right)\right)+1 \ldots n\right]
\end{aligned}
$$

Last to first property of BWTs

Lemma

Last column to first column property: The $i^{\text {th }}$ occurrence of character x in the last column of R is same as the $i^{\text {th }}$ occurrence of x in the first column of R - i.e., ind $\left(\ell\left(x_{i}\right)\right)=\operatorname{ind}\left(f\left(x_{i}\right)\right)$.

Proof.

For any $i<n$, since $\ell\left(x_{i}\right)$ occurs before $\ell\left(x_{i+1}\right)$ in the last column of R (same as the BWT(s)),

$$
\begin{aligned}
\Rightarrow & s\left[\text { ind }\left(\ell\left(x_{i}\right)\right)+1 \ldots n\right] \prec s\left[\text { ind }\left(\ell\left(x_{i+1}\right)+1 \ldots n\right]\right. \\
\Rightarrow & x \cdot s\left[\text { ind }\left(\ell\left(x_{i}\right)\right)+1 \ldots n\right] \prec x \cdot s\left[\text { ind }\left(\ell\left(x_{i+1}\right)\right)+1 \ldots n\right] \\
\Rightarrow & s\left[\text { ind }\left(\ell\left(x_{i}\right)\right) \ldots n\right] \prec s\left[\text { ind }\left(\ell\left(x_{i+1}\right)\right) \ldots n\right] \\
& \quad\left(\because s\left[\text { ind }\left(\ell\left(x_{i}\right)\right)\right]=s\left[\text { ind }\left(\ell\left(x_{i+1}\right)\right)\right]=x\right)
\end{aligned}
$$

Last to first property of BWTs

Lemma

Last column to first column property: The $i^{\text {th }}$ occurrence of character x in the last column of R is same as the $i^{\text {th }}$ occurrence of x in the first column of R - i.e., ind $\left(\ell\left(x_{i}\right)\right)=\operatorname{ind}\left(f\left(x_{i}\right)\right)$.

Proof.

For any $i<n$, since $\ell\left(x_{i}\right)$ occurs before $\ell\left(x_{i+1}\right)$ in the last column of R (same as the BWT(s)),

$$
\begin{aligned}
\Rightarrow & s\left[\text { ind }\left(\ell\left(x_{i}\right)\right)+1 \ldots n\right] \prec s\left[\text { ind }\left(\ell\left(x_{i+1}\right)+1 \ldots n\right]\right. \\
\Rightarrow & x \cdot s\left[\text { ind }\left(\ell\left(x_{i}\right)\right)+1 \ldots n\right] \prec x \cdot s\left[\text { ind }\left(\ell\left(x_{i+1}\right)\right)+1 \ldots n\right] \\
\Rightarrow & s\left[\text { ind }\left(\ell\left(x_{i}\right)\right) \ldots n\right] \prec s\left[\text { ind }\left(\ell\left(x_{i+1}\right)\right) \ldots n\right] \\
& \quad\left(\because s\left[\text { ind }\left(\ell\left(x_{i}\right)\right)\right]=s\left[\text { ind }\left(\ell\left(x_{i+1}\right)\right)\right]=x\right)
\end{aligned}
$$

$\Rightarrow \quad \operatorname{ind}\left(f\left(x_{i}\right)\right)=\operatorname{ind}\left(\ell\left(x_{i}\right)\right)(\because$ the above inequality holds $\forall i<n$ and the first column represents the suffix array)

Implications of the Last to first property of BWTs

	1	2	3	4	5	6	7
$s=$	b	a	n	a	n	a	$\$$

$R[1 \ldots n]$: Suffix array of s with rotations

- Can be useful in both reconstruction and pattern matching procedures.

SA	f						ℓ
7	$\$$	b	a	n	a	n	a
6	a	$\$$	b	a	n	a	n
4	a	n	a	$\$$	b	a	n
2	a	n	a	n	a	$\$$	b
1	b	a	n	a	n	a	$\$$
5	n	a	$\$$	b	a	n	a
3	n	a	n	a	$\$$	b	a

BWT functions

$B W T(s)$ compute the $B W T(s)$ for a given string s
$\begin{array}{ll}B W T \text {-Inverse(BWT(s)) } & \begin{array}{l}\text { compute the string } s \\ \text { given its BWT transform } B W T(s)\end{array}\end{array}$

PatternMatch(BWT(s),p) search for a given pattern p (of length m) in string s using its BWT transform

Algorithm: BWT-Inverse($B W T(s))$

Definition

Let next(i) denote the row index in R corresponding to the occurrence of $B W T[i]$ in the first column.
BWT-Inverse(BWT(s))
\{
\quad Init $s[1 \ldots n]$
$j \leftarrow 1$
for $i \leftarrow n$ downto 1 do:
$\quad s[i] \leftarrow B W T[$ next $[j]]$
$\quad j \leftarrow$ next $[j]$
endfor
output s
$\}$

R	f						$B W T$	next
1	$\$$	b	a	n	a	n	a	2
2	a	$\$$	b	a	n	a	n	6
3	a	n	a	$\$$	b	a	n	7
4	a	n	a	n	a	$\$$	b	5
5	b	a	n	a	n	a	$\$$	1
6	n	a	$\$$	b	a	n	a	3
7	n	a	n	a	$\$$	b	a	4

PatternMatch algorithm with an example

Input: $B W T(s)$ for string s of length n; pattern p of length m.
Example: $B W T(s)=a n n b \$ a a, p=$ ana

	R	f						$B W T$
next								
	1	$\$$	b	a	n	a	n	a
\rightarrow	2	a	$\$$	b	a	n	a	n
\rightarrow	3	a	n	a	$\$$	b	a	n
\rightarrow	4	a	n	a	n	a	$\$$	b
7								
5	b	a	n	a	n	a	$\$$	5
6	n	a	$\$$	b	a	n	a	3
7	n	a	n	a	$\$$	b	a	4

PatternMatch algorithm with an example

Input: $B W T(s)$ for string s of length n; pattern p of length m.
Example: $B W T(s)=a n n b \$ a a, p=$ ana

Step 2)			
		\downarrow	
p	a	n	a

	R	f						$B W T$
next								
1	$\$$	b	a	n	a	n	a	2
	2	a	$\$$	b	a	n	a	n
	3	a	n	a	$\$$	b	a	n
	4	a	n	a	n	a	$\$$	b
7								
	5	b	a	n	a	n	a	$\$$
\rightarrow	6	n	a	$\$$	b	a	n	a
$\rightarrow \quad 7$	n	a	n	a	$\$$	b	a	4
\rightarrow								

PatternMatch algorithm with an example

Input: $B W T(s)$ for string s of length n; pattern p of length m.
Example: $B W T(s)=a n n b \$ a a, p=a n a$

	R	f						$B W T$
next								
1	$\$$	b	a	n	a	n	a	2
	2	a	$\$$	b	a	n	a	n
\rightarrow	3	a	n	a	$\$$	b	a	n
\rightarrow								
	4	a	n	a	n	a	$\$$	b
7								
5	b	a	n	a	n	a	$\$$	1
6	n	a	$\$$	b	a	n	a	3
7	n	a	n	a	$\$$	b	a	4

References

Michael Burrows and David J Wheeler.
A block-sorting lossless data compression algorithm.
1994.
01618.

Heng Li and Richard Durbin.
Fast and accurate short read alignment with BurrowsâĂȘWheeler transform.
Bioinformatics, 25(14):1754-1760, 2009.
02571.

Heng Li and Richard Durbin.
Fast and accurate long-read alignment with BurrowsâĂȘWheeler transform.
Bioinformatics, 26(5):589-595, 2010.
00597.

Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L Salzberg.
Ultrafast and memory-efficient alignment of short DNA sequences to the human genome.
Genome Biol, 10(3):R25, 2009.
03052.

Cole Trapnell and Steven L Salzberg.
How to map billions of short reads onto genomes.
Nature biotechnology, 27(5):455, 2009.
00144.

