
Toward Learning and Mining from Uncertain Time-Series
Data for Activity Prediction

Bryan Minor
Washington State University
Pullman, WA 99163, USA

bminor@eecs.wsu.edu

Janardhan Rao Doppa
Washington State University
Pullman, WA 99163, USA
jana@eecs.wsu.edu

Diane J. Cook
Washington State University
Pullman, WA 99163, USA
cook@eecs.wsu.edu

ABSTRACT
Prediction of human activities is important in a wide vari-
ety of fields. However, developing activity predictors that
work well with the uncertainties surrounding activity data
is a challenging task. In this paper, we present activity pre-
diction algorithms that are designed to form accurate pre-
dictions in this environment by analyzing the task in the
context of time-series mining techniques. We explore fac-
tors that contribute to activity data uncertainty and discuss
metrics that can be used to evaluate prediction performance.
We evaluate our methods using activity data from 24 phys-
ical smart home testbeds and demonstrate that they can
achieve reasonable accuracy. We also describe the results of
a pilot study using our predictors in an activity prompting
app and explore how data variations affect user experience.

1. INTRODUCTION
Predicting human activities is an important aspect of many

fields of study. In order to optimize the resource usage and
improve interaction with users, it is important to understand
when they will perform certain activities. Often, it is impor-
tant to predict not only that an activity will occur, but also
the actual time when it will occur. These times for different
activities at regular intervals can be seen as a multi-variate
time-series data, and we are interested in predicting activity
times at any given moment. This allows us to leverage the
large body of work on learning and mining time-series data
to build efficient and accurate activity predictors.

A major concern for activity prediction is the availabil-
ity of information about users’ activities for learning and
mining patterns. In recent years, the growing number of
ubiquitous sensors has increased the ability to collect data
about human behavior. Sensors can be deployed in a vari-
ety of environments in order to observe users’ actions over
increasingly long time-periods. This data contains rich in-
formation about the observed behaviors that can be useful
for activity prediction.

While the raw sensor data is becoming easily available,
it can be difficult and time-consuming to annotate large
amounts of raw data to obtain ground-truth labels to fa-
cilitate learning. It is often challenging to collect this infor-
mation from users while they are performing their activities.
Consequentially, the activity labels are often provided after
the fact by trained human annotators or automatic activ-
ity recognizers. These activity labels can be imprecise at
best, and rely on the annotator’s interpretation of sensor
events to be accurate. Similarly, the raw sensor data can
be erroneous in some cases. Therefore, the uncertainty in

the training data due to possible errors and noise makes the
learning problem very challenging.

In this paper, we describe activity prediction algorithms
and consider the impact of label uncertainty on their perfor-
mance. These algorithms extract useful information about
activities from sensor data and use it to inform simple regres-
sion learners in order to form the predictions. We consider
the use of these predictors for the prediction of activities in
smart homes. Smart home data faces many of the uncertain-
ties noted above, allowing us to examine the impact of data
uncertainty on the prediction performance. We want to un-
derstand how discrepancies in raw sensor data and activity
labels affect the performance of the learned predictors. As
an end goal, we hope to use this understanding to build pre-
dictors that are more robust to many forms of uncertainty.

In order to facilitate this analysis, it is important to be
able to quantitatively measure the performance of a given
predictor. To that end, we examine a number of evalua-
tion metrics and discuss how they may be affected by the
uncertainty in the data. We also consider the effect of data
uncertainty in the use of a prototype prompting application.
This allows us to gather user feedback and learn about issues
that may not be apparent from evaluation metrics alone.

2. PROBLEM SETUP
We consider the problem of Activity Prediction from sen-

sor event data. Let A = {a1, a2, · · · , aT } be the set of all
activities, where ai corresponds to the ith activity class.
Given features x ∈ <d extracted from the sensor event data
at time te as input, the activity predictor needs to generate
ŷ = (ŷ1, ŷ2, · · · , ŷT) as output, where ŷi ∈ < is the predicted
relative next occurrence time of activity ai, or the predicted
number of time units that will pass until ai occurs again.
Figure 1 provides an illustration of the activity prediction
problem.

Our training data consists of a sequence of raw sensor
events Λ = (λ1, λ2, · · · , λN), where λi corresponds to sensor
readings generated at time ti. We assume that an activity
recognition (AR) algorithm is available to label each sen-
sor event with its corresponding activity class and we use
this information to train the activity predictor. An activity
recognition algorithm learns a mapping from Λ to the cor-
responding activity label, aΛ. We employ the AR algorithm
[4] which yields 95% recognition accuracy via 3-fold cross
validation on the activities evaluated in this paper.

We further assume the availability of a feature function Φ
that computes a d-dimensional feature vector Φ(λi) ∈ <d for
any sensor event λi using the context of recent sensor events

Figure 1: A high-level overview of the activity prediction problem. Given features x ∈ <d extracted from the
sensor event data at time te as input, the activity predictor needs to predict the relative occurrence time of
each activity. In this example, we have three activities: a1 (eating); a2 (taking medicines); and a3 (sleeping).
The starting times of activities a1, a2, and a3 are t1, t2, and t3, respectively. Therefore, the ground-truth
output is y∗ = (y1, y2, y3), where yi = ti − te stands for the correct relative next occurrence time of activity ai.

and a non-negative loss function L such that L(x, ŷ, y∗) ∈
<+ is the loss associated with labeling a particular input
x ∈ <d by output ŷ ∈ <T when the true output is y∗ ∈ <T

(e.g., RMSE). Our goal is to return a function/predictor
whose predicted outputs have low expected loss.

3. CHALLENGES IN LEARNING FROM
UNCERTAIN DATA

The activity prediction problem is faced with a number
of challenges resulting from uncertainty in the data. Uncer-
tainty due to sensor noise and variability is an issue faced
in many time series domains. However, in the activity pre-
diction application, we can also face uncertainty in the data
labels themselves. In order to properly train our activity pre-
dictors, our training data labels should accurately describe
which activities were occurring when each sensor event oc-
curred. If the activity labels are incorrect, the training data
may indicate that activities occurred during the wrong sen-
sor events. This can lead to learning an improper prediction
model, which may have difficulty performing accurate pre-
dictions relative to the actual activity times.

Much of the uncertainty in activity labeling is due to the
difficulty of obtaining such labels. It is often costly or im-
possible to query users directly about their activities. Even
when labels can be obtained directly from the user, they are
likely to be noisy due to known errors associated with self-
report. One popular method of querying users is through a
smart-phone app, where the user is asked periodically what
activity they are performing. This method can capture rel-
evant activity information from the user himself. However,
users may sometimes forget to respond to the app or may
respond incorrectly due to a time delay. This can lead to
lowered accuracy of gathered activity information. Another
concern with directly querying the user may be that such
querying can interrupt a user’s normal routine and habits,
leading to irregularities in the sensor data and making the
predictor learning more difficult.

In most cases, we must determine activity labels for sen-
sor data after it has been collected and without direct user

input. This can be performed by a human annotator or
an activity recognition algorithm such as AR. Both of these
methods involve indirect observation of activities, which can
lead to greater uncertainty. In the case of a human annota-
tor, the annotator must interpret which activities are occur-
ring based on the raw sensor data. While visualization tools
can aid in this task [27], there are likely to be some errors
in the generated labels. This is especially the case when two
activities have similar sensor patterns: the annotator may
not be able to distinguish between the two and thus apply
an incorrect activity label. When an activity recognition
method is used, the quality of the labels will depend on the
quality of the learned recognition model. If the model was
trained on erroneous data or data that is dissimilar to that
being labeled, the new activity labels are more likely to be
erroneous as well.

The nature of the activities themselves may also lead to
inaccuracies in labeling. Labels are usually tied to sensor
events, with distinct start and end times. However, activ-
ities are not necessarily tied to the timing of specific sen-
sor events. For example, some activities may occur during
gaps between sensor events, such that they cannot be re-
lated to any events. Activity start and end times may also
be unclear, with the transition between different activities
occurring over multiple events. This is further complicated
by occurrences where the user may be performing multiple
activities simultaneously or in an interwoven fashion.

All the above factors introduce significant amount of un-
certainty to the training data for learning activity predictors.
Therefore, activity prediction algorithms must be designed
to take all these different uncertainties into account. Predic-
tors that can adapt to labeling inaccuracies are likely to be
more robust when available sensor data may be inaccurate.

4. ACTIVITY PREDICTORS
In this section we describe our activity prediction algo-

rithms, and observe how they can be affected by and adapt
for uncertainties in the sensor data.

4.1 Independent Predictor

Our basic activity predictor, called the Independent Pre-
dictor, predicts each activity independently. For each sen-
sor event data λi in the training sequence Λ, we extract the
features xi = Φ(λi) ∈ <d listed in Table 8 (input) and the
ground-truth activity predictions y∗i ∈ <T (output) from the
labeled activity segments (see Figure 1 for an illustration).

The aggregate set of input-output pairs {xi,y
∗
i }Ni=1 (train-

ing examples) is given to a multi-output regression learner
to learn the activity predictor.

This approach provides a basic predictor with low test-
time complexity which is able to form real-time predictions.
However, since it treats each event independently, it is sub-
ject to large fluctuations of the predicted output depending
on the features generated at each event. This can be exac-
erbated even further by errors in the data labeling.

4.2 Recurrent Activity Predictor
In order to address this weakness, we consider joint models

which are able to use the relationships between different ac-
tivities to make the predictions more robust. The recurrent
predictor employs both the local features Ψlocal(i) = Φ(λi)
computed from the recent sensor event window (see Ta-
ble 8) and context features Ψcontext(i) that provide the con-
text of recent history of activity predictions. The joint fea-
tures Ψcontext(i) consist of the predicted activity times (lags)
ŷ ∈ <T for all T activities for the last H events in the history
window. The joint feature vector will be of size H · T .

In order to learn a recurrent activity predictor model,
we employ the framework of imitation learning. Imitation
learning allows us to train a learner to imitate the behavior
of an expert when performing a sequential decision-making
task. It has been successfully applied to a variety of struc-
tured prediction tasks in natural language processing and
computer vision [11, 6, 5, 23, 29, 20, 21]. In our activity
predictor learning problem, the expert corresponds to the
loss function L (available for training data) and the expert
behavior corresponds to predicting the best output y∗i ∈ <T

at each time step i (see Figure 1).
Algorithm 1 provides the pseudo-code of our approach for

recurrent activity predictor learning via exact imitation of
the loss function. At each time step i, we compute the joint
features Ψi = Ψlocal(i)⊕Ψcontext(i) (input) and the best ac-
tivity predictions y∗i ∈ <T (output) from the training data,
where ⊕ refers to the vector concatenation operator. Note
that for the exact imitation training, context features con-
sist of ground-truth labels from the previous windows. The
aggregate set of input-output pairs {xi,y

∗
i }Ni=1 (training ex-

amples) is given to a multi-output regression learner to learn
the recurrent activity predictor by minimizing the given loss
function L. If we can learn a function F that is consistent
with these imitation examples, then it can be proved that
the learned function will generalize and perform well on new
instances [16, 24].

4.3 Multi-Output Regression Learner
We decompose the multi-output regression learner used

in our activity predictors by learning a separate regression
function for each activity. That is, we learn T regressors
for making our predictions. This approach is inspired by
the Binary Relevance classifier for multi-label classification
[7]. Since activity relationships are often complex, a simple
linear function does not provide sufficient prediction capa-

Algorithm 1 RAP Learning via Exact Imitation

Input: Λ = Training sequence of sensor event data labeled
with activity segments, L = Loss function
Output: F , the recurrent predictor

1: Initialize the set of regression examples D = ∅
2: for each time step i = 1 to |Λ| do
3: Compute local features Ψlocal(i) = Φ(λi)
4: Compute context features Ψcontext(i)
5: Compute joint features Ψi = Ψlocal(i)⊕Ψcontext(i)
6: Compute best output y∗i ∈ <T using the loss function
7: Add regression example (Ψi,y

∗
i) to D

8: end for
9: F =Multi-Output-Regression-Learner(D)

10: return learned predictor F

bility. Hence, we employ a variant of regression trees called
model trees as our regression function. These trees learn a
linear function at each leaf node.

5. EVALUATION METRICS
In this section, we will discuss the challenges of evaluating

activity prediction problems and present several evaluation
metrics which take these factors into account. Given the
uncertain data used in the activity prediction problem, it
is important to carefully consider how activity predictors
are evaluated. The quality of the labeled data will affect
the activity prediction performance. Thus, it is important
to utilize a variety of evaluation metrics that enable under-
standing of the interplay between observed performance and
underlying data concerns.

Challenges. Selecting performance metrics for activity
prediction is challenging because there are multiple parame-
ters that influence the understanding of the algorithm’s per-
formance. Activity predictors can be evaluated in multiple
ways, depending upon the type of performance that is de-
sired. First, activity prediction can be viewed as a type of
classification task in which any prediction that has non-zero
error (or error greater than a threshold) is considered a mis-
labeled data point. In this case, traditional classifier-based
performance measures can be utilized. Second, activity pre-
diction can be considered as a type of forecasting algorithm.
Viewed in this light, error is proportionate to the numeric
distance between the predicted and actual values.

Evaluation Metrics. We describe several evaluation
metrics and employ them to validate our prediction algo-
rithms. Using our previous notation, ŷ represents a vector
of predicted outputs for each sensor event in the evaluation
dataset with elements ŷi. y∗ is the vector of true values
for the same event with elements y∗i . Note that we have
T activities in total. Each evaluation metric takes a pre-
dicted output ŷ and ground truth output y∗ as input, and
returns a real-value indicating the quality of the prediction.
One could perform macro-averaging of metric values over
different testing instances and datasets to compute aggre-
gate values.

Mean absolute error (MAE), as defined in Equation
1, provides a measure of the average absolute error between
the predicted output and ground-truth output. It is sim-
ilar to another well-known metric, root mean squared
error (RMSE), defined in Equation 2. Both of these mea-

sures provide the average error in real units and quantify the
overall error rate, with a value of zero indicating a perfect
predictor. Because RMSE squares each term, it effectively
weights large errors more heavily than small ones.

MAE =

∑
|ŷi − y∗i |
T

(1)

RMSE =

√∑
(ŷi − y∗i)2

T
(2)

Additionally, we may need to compare results across activ-
ities or datasets where the time spacing between activity
occurrences may be different. In these cases, measures such
as MAE and RMSE do not give an indication of the relative
error. For example, an error of 60 minutes in predicting a
time-critical activity (e.g., taking medicine) may be unac-
ceptable, but may be acceptable for other activities that do
not need to happen at a certain time (e.g., housekeeping).
In such situations, we may want to use a normalized error,
such as range-normalized RMSE (NRMSE), defined in
Equation 3. Here, the minimum and maximum functions are
computed over all ground-truth values of the test instances
we are evaluating. This metric would usually be applied on
each activity or dataset that we wish to separate.

NRMSE =
RMSE

max(y∗i)−min(y∗i)
(3)

Another useful normalized metric is mean absolute per-
centage error (MAPE), defined in Equation 4. MAPE
normalizes each error value for each prediction by the true
value y∗i we are trying to predict. This metric allows us to
normalize the error individually for each prediction. We can
also quickly determine approximately how large the error is
since it is a percentage of the true activity time. However,
as y∗i approaches zero (i.e., the activity is about to occur),
an error of any insignificant amount can cause element in
the summation to become large. This leads to inflation of
the MAPE value due to a few outlier cases where the error
is small but the true activity time is even smaller.

MAPE =

∑ |ŷi−y∗
i |

y∗
i

T
(4)

Normalized metrics can be beneficial when considering pre-
dictions from uncertain data, as the normalizing factor will
also be based on the same data. Thus, the normalized met-
ric can provide information about the magnitude of the error
relative to the uncertain data. However, it can be difficult
to determine the error magnitude from a normalized metric.

An important factor in performance analysis, especially
with uncertain data, is understanding the distribution of the
error results. One metric we introduce for this purpose is the
error threshold fraction (ETF), defined in Equation 5.
I(ŷi, y

∗
i) = 1 if |ŷi − y∗i | ≤ v and 0 otherwise. Note that the

numerator of the fraction is a count of the number of events
with error below the threshold v. This metric indicates the
fraction of the errors that are below the time threshold v. v
should be non-negative, and limv→∞ ETF(v) = 1. By vary-
ing v we can ascertain how the errors are distributed; if we
find that the ETF does not approach 1 until v is large, this
may indicate that there are a significant number of large-
error outliers. ETF(0) indicates the number of predictions

which had zero error.

ETF(v) =

∑
I(ŷi, y

∗
i)

T
(5)

Yet another metric to consider is Pearson’s r, i.e., the cor-
relation coefficient between the predicted and actual activity
occurrence times. This measure, shown in Equation 6, does
not quantify the amount of error but does indicate the rela-
tionship between the predicted and actual values.

r =

∑
(ŷi − ŷi)(y

∗
i − y∗i)√∑

(ŷi − ŷi)
√∑

(y∗i − y∗i)
(6)

When considering uncertain data, we can also analyze the
inconsistency in the data labels and use this to adjust the
observed metrics. One common method of doing this is to
observe interannotator agreement when using multiple anno-
tators. For example, we can compare the agreement between
two human annotators, or between a user’s logged activities
and an activity recognition algorithm. This is typically rep-
resented using Cohen’s kappa [10], which can then be used
to reduce the measured error to reflect the what could be
expected from a perfect dataset. However, the kappa is typ-
ically only used with accuracy-type measurements. Thus, it
could be used to adjust a metric such as the ETF, but it is
not well-defined for error measurements such as MAE.

In our evaluation of the prediction algorithms, we em-
ploy MAE, RMSE, and ETF. MAE and RMSE values are
provided in seconds, which are the same units used for the
predictions. In order to detect outliers in the errors that
may negatively affect the RMSE, we also report ETF val-
ues. We vary the ETF threshold from one second up to 24
hours to observe the corresponding distribution of errors for
each method. Finally, in the prompting application, where
the ground truth labels are provided by the actual partici-
pants at the time prompts are delivered, we will also consider
κ-normalization of the prediction results.

6. EXPERIMENTS
In this section we empirically investigate our activity pre-

dictors with real-world data using several evaluation metrics
and compare them with baseline approaches.

6.1 Experimental Setup
Datasets. We evaluate our activity prediction algorithm
using sensor and activity data collected from 24 CASAS
smart homes1. Descriptions of the datasets are provided
in Table 1. Each CASAS smart home test bed used in
this evaluation includes at least one bedroom, a kitchen,
a dining area, and at least one bathroom. While the sizes
and layouts of the apartments vary, each home is equipped
with combination motion/light sensors on the ceilings, com-
bination door/temperature sensors on cabinets, and external
doors. Sensors unobtrusively and continuously collect data
while residents perform their normal daily routines. Figure 2
shows a sample layout and sensor placement for one of the
smart home test beds.

Human annotators label the events in each dataset with
corresponding activities based upon interviews with the res-
idents, photographs of the environment, and a sensor map.
Each sensor event was labeled with the activity that was

1These datasets are available at http://casas.wsu.edu.

Table 1: Description of CASAS smart home testbed
datasets used to evaluate activity predictors.

ID Residents Time Span Sensors Sensor Events

1 1 2 months 36 219,784
2 1 2 months 54 280,318
3 1 2 months 26 112,169
4 1 2 months 66 344,160
5 1 2 months 60 146,395
6 1 2 months 60 201,735
7 2 1 month 54 199,383
8 1 2 months 54 284,677
9 1 2 months 44 399,135
10 1 1 month 38 98,358
11 1 2 months 54 219,477
12 1 4 months 40 468,477
13 1 12 months 58 1,643,113
14 1 1 month 32 133,874
15 1 10 months 40 1,591,442
16 1 2 months 38 386,887
17 1 12 months 32 767,050
18 1 1 month 46 178,493
19 1 1 month 36 92,000
20 1 2 months 40 217,829
21 2 10 months 62 3,361,406
22 1 2 months 56 247,434
23 1 1 month 32 106,836
24 1 2 months 34 216,245

determined to be occurring in the home at that time. The
datasets contain 118 activity classes in total, but many of
them appear infrequently. For our experiments, we have fo-
cused on 11 core activities that happen on an average once
per day in most of the datasets. These activities consist
of many complex functions of daily living and are listed in
Table 2. These activities are reflective of the inhabitant’s
daily health and functioning [28]. Sensor events that do not
fit into one of the core activity classes are labeled as Other

Activity, and serve to provide context for the learned pre-
dictor. The activity labels on each event are collectively
used to determine the activity prediction times y∗ associ-
ated with each event. Multiple annotators label the sensor
data and demonstrate interannotator agreement of κ = .85
for the activities we evaluate in this paper.

Once ground truth labels are provided for a minimum of
one month of sensor data for each dataset, we train the
AR activity recognition algorithm [19] to learn a general-
ized model of the activity classes using data from all of the
testbeds as input. AR achieves 96% classification accuracy
with 10-fold cross validation on the annotated sensor data
for these classes. The AR-provided labels are then used to
learn the prediction models. The predictors were trained
and tested separately for each dataset.

Activity Prediction Algorithms. We evaluate our
Recurrent Activity Predictor (RAP) and the Inde-
pendent Predictor (IP) as a informed baseline. For RAP,
the context features consist of the predictions for the pre-
vious event (H = 1). The predictions are adjusted by the
time since the previous event to account for different time
spacing between events.

Table 2: Activity classes.

Activity Sensor Events

Bathe 208,119
Bed-Toilet Transition 174,047
Cook 2,614,836
Eat 585,377
Enter Home 174,486
Leave Home 311,164
Personal Hygiene 1,916,646
Relax 2,031,609
Sleep 732,785
Wash Dishes 1,139,057
Work 2,028,419

Figure 2: Floor plan of one CASAS smart home
testbed. The location of each sensor is indicated
with the corresponding motion (M), light (LS), door
(D), or temperature (T) sensor number.

In order to determine the best-performance limit for RAP,
we also test the Oracle recurrent predictor. The oracle pre-
dictor employs the same features as RAP, except that the
features Ψcontext are the true activity times drawn from the
labeled data instead of the predicted values. This represents
the upper bound of performance enhancement that could be
achieved with RAP using the DAgger algorithm [24] by
learning to correct from erroneous lag values. DAgger is
an iterative algorithm which generates a sequence of predic-
tors that progressively learn to correct from training errors
made by previous predictors. The best-performing predictor
is then chosen as the final predictor, which should be most
capable of correcting from erroneous predictions. Thus, Or-
acle represents the performance that could occur if RAP is
trained to perfectly correct from erroneous lag values.

We also create a second baseline called Exponential,
which is uninformed. This method does not learn a com-
plex model of activity times. Instead, it models the relative
times of each occurrence for each activity as an exponential
distribution. The Exponential method then samples from
the distribution in order to generate activity predictions.

6.2 Evaluation Procedure
To evaluate the performance of our predictors on these

temporal datasets, we employ a sliding window validation

Table 3: Overall MAE and RMSE results for the
different predictors (in seconds). These values were
found by averaging the individual metrics across all
the datasets. A one-way ANOVA indicates that the
differences in performance are significant (p < .05).

Method MAE RMSE

Exponential 13,709.05 27,772.89
IP 19,050.85 173,501.54
RAP 8,433.38 22,337.32
Oracle 2,686.47 12,758.97

� ���� ����� ����� ����� ����� ����� ����� �����

���	

�
��
���
��
���������

����

���

���
�����

�
��
����

�
�����������
�

�
��

!�

"

#��	�$��	
�

#���

������������	
����
�
�
����������

�������� "��
����� %� �&� '��(�

Figure 3: Average MAE for each activity. These
values were averaged for each activity across all
datasets.

procedure. This method is similar to k-fold cross-validation,
but allows us to maintain the temporal ordering of the sensor
event data. We select a window of w=2000 events which we
use along with the corresponding ground-truth values as the
training examples {xi, y∗i }Ni=1. We learn a predictor from
this training data and employ it to make predictions for the
next 5000 events after the window. The window is then
shifted forward by 1000 events and the process is repeated.
For exact-imitation training, the lag (context) values are
provided using the ground-truth values from the training
data, while the predicted values are employed during testing.

6.3 Results and Analysis
Average Errors The average MAE and RMSE results

for each of the methods are shown in Table 3. The addition
of context features for RAP allows it to greatly improve com-
pared to IP, with nearly and eightfold reduction of RMSE.
The MAE also improves, lowering by over 10,500 seconds
(about 3 hours). We note that the predictions for IP tend
to be highly variable, as shown in Figure 4. This is largely
due to the fact that it only uses the local features. RAP’s
predictions are more stable, with the context features al-
lowing it to take previous predictions into account. This
indicates that RAP is more robust against individual event
fluctuations, such as those caused by label errors.

The average MAE results for each activity are shown in
Figure 3. Again, RAP has a lower average error than IP for
all activities. In fact, even the Exponential method gener-
ally outperforms IP. This graph also indicates some of the

0

5000

10000

15000

20000

25000

30000

0 1000 2000 3000 4000 5000

A
ve

ra
ge

 M
A

E
(s

e
co

n
d

s)

Test Event Horizon
(Number of Events Past End of Training Window)

Average MAE At Each Horizon

Random Exponential IP RAP Oracle

Figure 4: MAE plotted for each predictor against
the test horizon. The test horizon indicates how far
(in number of events) the test event is from the end
of the training window. MAE values are averaged
over all activities and datasets at each test horizon.

volatility of the IP method. For activities such as Cook,
Eat, Wash Dishes the error for RAP is much lower than
that for IP. This may be due to the relationship these ac-
tivities have with other activities (e.g., cooking, eating, and
washing dishes tend to happen sequentially). RAP is able
to account for this context through the lag features. RAP
also performs well when compared to IP for the Personal
Hygiene and Relax activities, which can occur in multiple
contexts throughout the day and may not be easily related
to information in the sensor events alone. RAP can provide
improved performance for these activities by discovering use-
ful relationships in the activity context. These MAE values
indicate that RAP can provide significant improvement over
the baseline Exponential and IP learners.

The Oracle predictor improves even further upon the per-
formance of RAP. It achieves an average MAE of about 1.5
hours lower, and performs better than the other predictors
for all activities (Figure 3). In fact, for some activities, such
as Cook, Personal Hygiene, and Relax, Oracle has almost
no error. This indicates that by using DAgger, we may be
able to improve RAP by learning to recover from errors.

ETF and Uncertainty Figure 5 shows the ETF values
for varying thresholds. The Exponential predictor has less
than 1% of its errors below one second, reflecting the fact
that it simply returns “average” errors, in contrast to the
more active predictions of the other methods. RAP has an
improved performance with about 18% of errors less than
a second. About 55% of RAP errors are below 15 minutes,
compared to about 40% of errors for the independent pre-
dictor. Both methods converge to about 99% of errors being
below 24 hours. These results indicate that RAP is able to
predict more often with smaller error when compared to the
independent case, while also having a majority of its pre-
dictions be within one hour of the ground-truth time, which
is sufficient for many applications. This performance is im-
proved upon further by Oracle, which achieves over 90% of
errors less than one second. Thus, the greatest improve-
ment in performance with DAgger may lie with increasing
the overall fraction of perfect predictions. While there are

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 20000 40000 60000 80000

ET
F(

v)

Threshold (v, seconds)

ETF Values as a Function of v

Random Exponential IP RAP Oracle

Figure 5: ETF plotted for each predictor. Threshold
values range from one second up to one day.

ETF Values

Threshold (s): 1 10 30 60 300 900 1800 2700

Random Exponential 0.000877 0.008052 0.021956 0.040105 0.140538 0.279528 0.396495 0.471458

IP 0.054794 0.077886 0.108998 0.14146 0.271172 0.398206 0.488978 0.545858

RAP 0.179134 0.218016 0.261274 0.300643 0.435413 0.552686 0.628695 0.673433

Oracle 0.9224 0.922889 0.92357 0.924397 0.929274 0.935667 0.940659 0.943969

perfect 1 1 1 1 1 1 1 1

mean 0.407868 stdev 0.362446

0.47143 0.328968

0.581312 0.28257

0.945155 0.023671

exponential 0.040178 0.300076 0.930914 21.67711 126.0197 304.2103 390.5791 448.873

ip 0.597062 1.868836 3.756861 49.51578 200.8134 399.2328 465.6762 510.2175

rap 1.787173 4.792893 8.428747 88.32675 296.4298 531.6211 585.9572 620.2007

oracle 8.3038 18.46459 27.71951 222.4406 559.4824 844.3468 848.0824 850.7699

9 20 30 240 600 900 900 900

Normalized by 0.04

IP-Normalized 0.094794 0.117886 0.148998 0.18146 0.311172 0.438206 0.528978 0.585858

RAP-Normalized 0.219134 0.258016 0.301274 0.340643 0.475413 0.592686 0.668695 0.713433

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 20000 40000 60000 80000

E
T

F
(v

)

Threshold (v, seconds)

κ-Normalized ETF Values as a Function of v

IP RAP IP Normalied RAP Normalized

Figure 6: Original and normalized ETF plotted for
IP and RAP. Threshold values range from one sec-
ondup to one day.

still some large outlier errors, nearly all predictions are very
accurate.

We note the similarity between the ETF curves in Figure 5
and a standard ROC curve. In this case, the discrimination
threshold is based on the time-based threshold for prediction
error. As with the Area Under a ROC Curve, a perfect
predictor will have an Area Under the ETF Curve (AUETF)
of 1.0. The AUETF values for our three predictors are given
in Table 4. Consistent with the ETF plots, the RAP method
outperforms IP and both informed predictors outperform
the Exponential method.

The ETF values share some similarities with classification
accuracy values. At a given threshold v, the ETF equates to
an accuracy measure if a “correct” prediction is considered
one with error below the threshold. Using this interpreta-
tion, we can use Cohen’s Kappa from the accuracy of AR
labels to normalize ETF values. Since the accuracy of AR
on the labeled data is 96%, we can generate κ-normalized

Table 4: Area under the ETF curve (AUETF) values
for each predictor.

Method AUETF

Exponential 0.8673
IP 0.8757
RAP 0.9091
Oracle 0.9972

Table 5: Correlation of AR labeling classification
metrics with RAP MAE performance.

Classification Metric Correlation

Activity Accuracy 0.289
Sensitivity -0.323
Specificity 0.319
G-Mean -0.197
Precision 0.063
Recall -0.323
F1 Measure -0.077

ETF plots, as shown in Figure 6. With the normalization
factor taken into account, nearly 100% of the errors for both
methods are below one day.

We are correlate AR’s classification performance with the
RAP MAE results to understand how label accuracy affects
prediction. AR labels were compared against human labels
for the datasets in Table 1. The resulting correlations, shown
in Table 5, indicate that AR classification performance does
not necessarily correlate with performance of the RAP al-
gorithm. For example, RAP MAE tends to increase with
increased AR accuracy, which seems counterintuitive. How-
ever, the error rate decreases when AR has higher sensitivity
and recall. Further examination of the individual activity re-
sults indicates that the correlations do not wholly describe
these relationships.

These results highlight the difficulty in analyzing the ac-
tivity prediction problem. There are a number of factors
that can influence performance, and relating this to uncer-
tainty in the underlying data can be challenging. It appears
that simply having additional training points can improve
prediction performance, though even this is not always con-
sistent. The combination of data uncertainty and complex
activity relationships makes activity prediction a compli-
cated process. We hope to further explore these compli-
cations in our future work.

7. PROMPTING APPLICATION
One important use of an activity predictor is generating

predictions for an activity prompting application. Activity
prompting can be used to remind a memory-impaired indi-
vidual of an activity they typically perform or to encourage
integration of a new healthy behavior into a normal routine.
Prompting technologies have been shown to increase adher-
ence to medical interventions and increase independence for
individuals with cognitive impairment [8, 25].

A prompting application may be affected by many of the
same data uncertainty issues as in the overall prediction

Figure 7: Interface for the EMA and CAFE apps.

Table 6: Description of CAFE testbeds.

Testbed Residents Time span Sensors #Events

kyoto 2 2 weeks 81 147,919
navan 1 2 weeks 28 57,241

problem. For instance, if an activity is mis-labeled, the
learned predictor could predict its occurrence at the wrong
time of day. This could lead the prompting application to
prompt the user to perform the activity at the wrong time,
potentially confusing or frustrating the user. We are inter-
ested in better understanding the effects of data uncertainty
on prompt accuracy and users’ experience.

To that end, we have evaluated an activity prompting app
called CAFE (CASAS Activity Forecasting Environment).
CAFE uses predicted activity times to determine when to
generate activity prompts, rather than manual scheduling
or rule generation [1, 14]. The app runs on an iOS mobile
device and periodically queries a server for the predicted
times of selected activities. These predictions are provided
by our IP algorithm and are generated every 15 minutes
for new sensor events arriving from smart homes. When
the predicted occurrence time is reached, CAFE issues a
notification, as shown in Figure 7.

We evaluate CAFE over a period of two weeks for two indi-
viduals who were living in smart homes described in Table 6.
These homes are instrumented with sensors for motion, tem-
perature, light, and door usage. Participant 1’s apartment
(referred to as “kyoto”) houses two residents. Participant
2’s apartment (referred to as “navan”) houses a single resi-
dent. We utilize the generalized AR model that was trained
from the datasets described in Table 1 to generate training
data. Neither apartment was part of the training set, so
the training labels rely on the generalization power of the
learned activity recognizer. The predictor model for kyoto
was trained on two months of labeled data from that apart-
ment; and four months of data were used for navan.

The two participants responded to CAFE activity prompts
over a period of two weeks. The participants were prompted
for seven activities: Bathe, Cook, Eat, Leave Home, Relax,
Sleep, and Work. The participants provided a total of 112
responses, which were evenly distributed between “I will do

Table 7: Evaluation of CAFE prompts. MAE value
is in seconds. Normalized MAE is normalized 43,200
seconds. ETF values are for a threshold of 30 min-
utes.

MAE Normalized MAE ETF κ-Normalized ETF

2,925 0.07 0.64 0.72

it now”, “I already did it”, and “I will do it later”. We note
that delays may occur between the activity occurring and
the prompt being generated. This is partly due to the fact
that the database is updated every 15 minutes, after which
AR provides labels and the prompts are generated. Once
the prompt is generated, notification is scheduled for deliv-
ery but can be delayed due to the iOS behavior for obtaining
updates from the server. As a result, the participants ob-
served that occasionally they would receive a prompt to start
an activity while they are in fact currently performing the
activity. Therefore, they respond with “I already did it” or
“I will do it later”.

In addition to the activity predictor, we also ran the AR
algorithm to provide activity labels for the observed events.
The AR model was the same as the one used to generate
the training data described in the previous paragraph. Us-
ing these labels, we can compute the error of each activity
prompt relative to the labeled data, as shown in Table 7.
Since each activity usually occurred at least once per day, we
normalize the MAE by a maximum error of 43,200 seconds,
or half of a day. The MAE is approximately 48 minutes,
which is about 15 minutes longer than the infrastructure
delay in pushing new predictions to the app.

We also compute the ETF value for a threshold of 30 min-
utes, which is the approximate infrastructure-initiated delay.
This ETF value, shown in Table 7, indicates that 64% of er-
rors are below the threshold. In order to observe the effect of
mislabeling by the AR algorithm, we also collected activity
information directly from the participants using a separate
mobile app. This app, called Ecological Momentary Assess-
ment (EMA), uses an established method of obtaining par-
ticipant information “in the moment”, when it is likely to be
most accurate [13]. The app would query the participants
every 15 minutes about the activity they were currently per-
forming and their responses were stored in a database.

Using these responses, we report AR accuracy of 92% for
these seven activities. We can find the κ-normalized ETF
value accordingly, as shown in Table 7. This value indicates
that over 70% of the errors would be expected to be below
30 minutes if the activity labels were more accurate. It also
indicates that about 8% of the prediction error may be due
to errors in the activity labels. Thus, it is important to keep
the inaccuracies in the activity labels in mind when assessing
a prompting application.

Because all of the sensor data is labeled by an activity
recognition algorithm, we also analyzed participant respon-
siveness to the prompt. During this pilot study, we observed
that each time the participants responded “I will do it now”,
they did initiate the activity within the next 20 minutes. In-
terestingly, the participants noted that the app sometimes
actually created a modification in their behavior. One resi-
dent pointed out that he was debating between leaving home
to get groceries or watching television. Upon receiving the
CAFE prompt, he left immediately to perform his errands.

On another occasion, a participant started working earlier
than originally planned due to the prompt notification. Inte-
grating activity prompts into daily behavioral routines thus
raises interesting challenges for intervention design that need
to be carefully considered in future work.

8. RELATED WORK
Activity recognition algorithms have been investigated over

the last decade for a plethora of sensor platforms, including
ambient sensors, wearable sensors, phone sensors, and au-
dio/video data [2, 3, 15, 22, 31]. Some existing work also
addresses complex scenarios including real-time recognition
and recognition with multiple residents [26, 30]. These al-
gorithms map a sequence of sensor readings onto an activity
class value. They can be used to track occurrences of well-
known activities or partnered with activity discovery algo-
rithms to model a person’s routine behaviors [4]. A number
of data mining approaches to this problem have been tested
including generative, discriminative, and ensemble methods.

While activity prediction is not as heavily investigated as
activity modeling or recognition, there are some representa-
tive first efforts in this area. Most of these techniques focus
on sequence prediction to generate a label for the activity
that will occur next. This work includes the Active LeZi
algorithm by Gopalratnam and Cook [9] to predict the next
event generated by sensors in an instrumented home. Other
researchers [12, 17, 18] have investigated the use of proba-
bilistic graphical models for sequential prediction in video
data. In the work by Koppula and Saxena [18], the antici-
pated event was supplied to robots in order to provide better
assistance. The authors report prediction F1 scores of 37.9
for 10 activities monitored in a scripted environment.

On the other hand, automated prompting systems have
been developed and studied for some time. Most of these
systems are rule-driven or require knowledge of a user’s daily
schedule [1, 14]. While these systems are able to adjust
prompts based on user activities, they also require input of
a user’s daily schedule or predefined activity steps. In con-
trast, the methods we describe in this paper are data-driven.
They utilize activity-labeled sensor events to learn an in-
dividual’s normal routine and generate predictions based
solely upon this data.

9. CONCLUSION
We studied the prediction of human activities from sensor

data in the context of time series analysis. We described how
difficulties in acquiring activity labels can lead to uncertain-
ties in prediction data. We showed that regression learners
can be designed to address these uncertainties to form effec-
tive activity predictors that are robust to data variability.
Our experiments with twenty-four smart home datasets val-
idate the effectiveness of these approaches and allowed us to
explore evaluation metrics for uncertain data. The consid-
erations regarding use of our predictors in the context of the
CAFE prompting app were also discussed.

While the methods and evaluation presented here provide
a useful basis for activity prediction in uncertain datasets,
there are many aspects of this problem to be addressed. One
particular concern lies in determining how to normalize error
metrics based on annotator reliability. While this has been
explored for accuracy-like values, the application of these
methods to error measurements remains an open question.

Also of interest is determining how to make activity predic-
tion methods more robust to errors in training data. This
will rely on enabling prediction methods to adapt to bet-
ter correct for variations in users’ habits and activity times.
It is also important to develop new methods for obtaining
activity labels to reduce the uncertainty in the data. We
intent to continue exploring these questions and finding new
methods to make activity prediction from unreliable data
more accurate and robust.

Acknowledgments
This material is based upon work supported by the National
Science Foundation under Grants 0900781 and 1262814 and
by the National Institute of Biomedical Imaging and Bio-
engineering under Grant R01EB015853.

10. REFERENCES
[1] J. Boger, P. Poupart, J. Hoey, C. Boutilier, G. Fernie,

and A. Mihailidis. A decision-theoretic approach to
task assistance for persons with dementia. In
International Joint Conference on Artificial
Intelligence, pages 1293–1299, 2005.

[2] A. Bulling, U. Blanke, and B. Schiele. A tutorial on
human activity recognition using body-worn inertial
sensors. ACM Computing Surveys, 46:107–140, 2015.

[3] D. J. Cook. Learning setting-generalized activity
models for smart spaces. IEEE Intelligent Systems,
27(1):32–38, 2012.

[4] D. J. Cook, N. Krishnan, and P. Rashidi. Activity
discovery and activity recognition: A new partnership.
IEEE Transactions on Systems, Man, and
Cybernstics, Part B, 43(3):820–828, 2013.

[5] J. R. Doppa, A. Fern, and P. Tadepalli. HC-Search: A
learning framework for search-based structured
prediction. JAIR, 50:369–407, 2014.

[6] J. R. Doppa, A. Fern, and P. Tadepalli. Structured
prediction via output space search. JMLR,
15:1317–1350, 2014.

[7] J. R. Doppa, J. Yu, C. Ma, A. Fern, and P. Tadepalli.
HC-Search for Multi-Label Prediction: An Empirical
Study. In AAAI, 2014.

[8] N. Epstein, M. G. Willis, C. K. Conners, and D. E.
Johnson. Use of technological prompting device to aid
a student with attention deficit hyperactivity disorder
to initiate and complete daily activities: An
exploratory study. Journal of Special Education
Technology, 16:19–28, 2001.

[9] K. Gopalratnam and D. J. Cook. Online sequential
prediction via incremental parsing: The active lezi
algorithm. IEEE Intelligent Systems, 22:52–58, 2007.

[10] K. L. Gwet. Handbook of Inter-Rater Reliability.
Advanced Analytics, LLC, 2014.

[11] Hal Daumé III, J. Langford, and D. Marcu.
Search-based structured prediction. MLJ,
75(3):297–325, 2009.

[12] K. P. Hawkins, N. Vo, S. Bansal, and A. Bobick.
Probabilistic human action prediction and
wait-sensitive planning for responsive human-robot
collaboration. In IEEE-RAS International Conference
on Humanoid Robots, pages 499–506, 2013.

[13] K. E. Heron and J. M. Smyth. Ecological momentary
interventions: Incorporating mobile technology into
psychosocial and health behavior treatment. Journal
of Health Psychology, 15:1–39, 2010.

[14] P. Kaushik, S. S. Intille, and K. Larson. User-adaptive
reminders for home-based medical tasks: A case study.
Methods of Information in Medicine, 47:203–207, 2008.

[15] S. Ke, H. Thuc, Y. Lee, J. Hwang, J. Yoo, and
K. Choi. A review on video-based human activity
recognition. Computers, 2(2):88–131, 2013.

[16] R. Khardon. Learning to take actions. MLJ,
35(1):57–90, 1999.

[17] K. M. Kitani, B. D. Ziebart, J. A. Bagnell, and
M. Hebert. Activity forecasting. In Proceedings of the
European Conference on Computer Vision, 2012.

[18] H. S. Koppula and A. Saxena. Anticipating human
activities using object affordances for reactive robotic
response. In Robotics: Sciences and Systems, 2013.

[19] N. Krishnan and D. J. Cook. Activity recognition on
streaming sensor data. Pervasive and Mobile
Computing, 10:138–154, 2014.

[20] M. Lam, J. R. Doppa, S. Todorovic, and T. Dietterich.
Learning to detect basal tubules of nematocysts in
sem images. In ICCV Workshop on Computer Vision
for Accelerated Biosciences, 2013.

[21] M. Lam, J. R. Doppa, S. Todorovic, and T. Dietterich.
HC-Search for structured prediction in computer
vision. In CVPR, 2015.

[22] O. Lara and M. A. Labrador. A survey on human
activity recognition using wearable sensors. IEEE
Communication Survey Tutorials, 15:1195–1209, 2013.

[23] C. Ma, J. R. Doppa, W. Orr, P. Mannem, X. Fern,
T. Dietterich, and P. Tadepalli. Prune-and-Score:
Learning for greedy coreference resolution. In
EMNLP, 2014.

[24] S. Ross, G. J. Gordon, and D. Bagnell. A reduction of
imitation learning and structured prediction to
no-regret online learning. In AISTATS, 2011.

[25] M. Schmitter-Edgecome, S. Pavawalla, J. T. Howard,
L. Howell, and A. Rueda. Dyadic interventions for
Persons with Early-Stage Dementia: A Cognitive
Rehabilitative Focus, chapter 3, pages 39–56. Nova
Science Publishers, 2009.

[26] D. Stowell and M. D. Plumbley. Segregating event
streams and noise with a Markov renewal process
model. Journal of Machine Learning Research,
14:2213–2238, 2013.

[27] B. L. Thomas and A. S. Crandall. A demonstration of
PyViz, a flexible smart home visualization tool. In
2011 IEEE International Conference on Pervasive
Computing and Communications Workshops, pages
304–306, 2011.

[28] V. G. Wadley, O. Okonkwo, M. Crowe, and L. A.
Ross-Meadows. Mild cognitive impairment and
everyday function: Evidence of reduced speed in
performing instrumental activities of daily living. The
American Journal of Geriatric Psychiatry, 15:416–424,
2008.

[29] J. Xie, C. Ma, J. R. Doppa, P. Mannem, X. Fern,
T. Dietterich, and P. Tadepalli. Learning greedy
policies for the easy-first framework. In AAAI, 2015.

[30] J. Ye, G. Stevenson, and S. Dobson. KCAR: A
knowledge-driven appraoch for concurrent activity
recognition. Pervasive and Mobile Computing,
19:47–70, 2015.

[31] Y. Zheng, W.-K. Wong, X. Guan, and S. Trost.
Physical activity recognition from accelerometer data
using a multi-scale ensemble method. In Proceedings of
the Innovative Applications of Artificial Intelligence
Conference, pages 1575–1581, 2013.

APPENDIX

Table 8: Activity prediction features.

Feature Description

lastSensorEventHours* Hour of day for current event
lastSensorEventSeconds* Seconds since the beginning of

the day for the current event
windowDuration* Window duration (sec)
timeSinceLastSensorEvent*Seconds since previous event
prevDominantSensor1* Most frequent sensor in the

previous window
prevDominantSensor2* Most frequent sensor in the

window before that
lastSensorID* Current event sensor
lastLocation* Most recent location sensor
sensorCount** Number of events in the win-

dow for each sensor
sensorElTime** Time since each sensor fired
timeStamp* Normalized time since begin-

ning of the day
laggedTimestamp* Previous event timeStamps
laggedPredictions*** Previous event predictions
maximumValue# Maximum value of sensor
minimumValue # Minimum value of sensor
sum# Sum of sensor values
mean# Mean of sensor values
meanAbsoluteDeviation# Average difference from mean
medianAbsoluteDeviation#Avg. difference from median
standardDeviation# Value standard deviation
coeffVariation# Coefficient of value variation
numZeroCrossings# Number of median crossings
percentiles# Number below which a per-

centage of values fall
sqSumPercentile# Sq. sum values < percentile
interQuartileRange# Difference between 25th and

75th percentiles
binCount# Values binned into 10 bins
skewness# Symmetry of values
kurtosis# Measure of value“peakedness”
signalEnergy# Sum of squares of values
logSignalEnergy# Sum of logs of squares
signalPower# SignalEnergy average
peakToPeak# Maximum - minimum
avgTimeBetweenPeaks# Time between local maxima
numPeaks# Number of peaks

*Used for IP and RAP experiments. **Used for IP and
RAP, one sensorCount and one sensorElTime for each
sensor used. ***Used for RAP, one per activity. #Based
on window of recent values for each sensor.

