IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. Y, MONTH 1999 1

An Empirical Study of Domain Knowledge and Its
Benefits to Substructure Discovery

Surnjani Djoko, Diane J. Cook and Lawrence B. Holder
University of Texas at Arlington
Department of Computer Science and Engineering
Box 19015, Arlington, TX 76019
E-mail:{djoko,cook,holder }@Qcse.uta.edu

Abstract Discovering repetitive, interesting, and functional sub-
structures in a structural database improves the ability to interpret
and compress the data. However, scientists working with a database
in their area of expertise often search for predetermined types of struc-
tures, or for structures exhibiting characteristics specific to the do-
main. This paper presents a method for guiding the discovery process
with domain-specific knowledge. In this paper, the SUBDUE discovery
system is used to evaluate the benefits of using domain knowledge to
guide the discovery process. Domain knowledge is incorporated into
SUBDUE following a single general methodology to guide the discovery
process. Results show that domain-specific knowledge improves the
search for substructures which are useful to the domain, and leads
to greater compression of the data. To illustrate these benefits, ex-
amples and experiments from the computer programming, computer
aided design circuit, and artificially-generated domains are presented.

Keywords — data mining, minimum description length principle,

data compression, inexact graph match, domain knowledge

I. INTRODUCTION

With the increasing amount and complexity of today’s
data, there is an urgent need to accelerate discovery of in-
formation in databases. In response to this need, numerous
approaches have been developed for discovering concepts in
databases using a linear, attribute-value representation [1],
[2], [3], [4], [5]. These approaches address issues of data
relevance, missing data, noise, and utilization of domain
knowledge. However, much of the data that is collected is
structural in nature, or is composed of parts and relations
between the parts. Hence, there exists a need for methods
to analyze and discover concepts in structural databases.

Recently, we introduced a method for discovering sub-
structures in structural databases using the minimum de-
scription length (MDL) principle [6]. The system is called
SUBDUE, and it discovers substructures that compress the
original data and represent structural concepts in the data.
Once a substructure is discovered, the substructure is used
to simplify the data by replacing instances of the substruc-
ture with a pointer to the newly discovered substructure.
The discovered substructures allow abstraction over de-
tailed structures in the original data. Iteration of the sub-
structure discovery and replacement process constructs a
hierarchical description of the structural data in terms of
the discovered substructures. This hierarchy provides vary-
ing levels of interpretation that can be accessed based on
the specific goals of the data analysis.

Although the MDL principle is useful for discovering

Supported by NASA grant NAS5-32337.

substructures that maximize compression of the data, sci-
entists often employ knowledge or assumptions of a spe-
cific domain to guide the discovery process. A domain-
independent discovery method is valuable in that the dis-
covery of unexpected substructures is not blocked. How-
ever, the discovered substructures might not be useful to
the user. On the other hand, using domain-specific knowl-
edge can assist the discovery process by focusing search
and can also help make the discovered substructures more
meaningful to the user. Hence, in order to trade off be-
tween domain-independent and domain-dependent discov-
ery method, we incorporate domain knowledge into SUB-
DUE system, and combine both the domain-independent
and domain-dependent method to guide the search toward
the more appropriate substructures.

A variety of approaches to discovery using structural
data have been proposed [7], [8], [9], [10], [11]. Many ap-
proaches use a knowledge base of concepts to classify the
structural data. The purposes of the knowledge base in
these systems are 1) to improve the performance of graph
comparisons and retrieval, where the individual graphs are
maintained in a partial ordering defined by the subgraph-of
relation [7], [8], [9], 2) to deepen the hierarchical descrip-
tion, and 3) to group objects into more general concepts [7],
[10], [11]. These systems perform concept learning over ex-
amples and categorization of observed data. However, the
purpose of the SUBDUE system is to discover knowledge,
and allows the use of both domain-independent heuris-
tics and domain-dependent knowledge. In addition, the
hierarchical knowledge base is used to help compress the
database. While the above methods process individual ob-
jects one at a time, our method is designed to process the
entire structural database, which consists of many objects.

This paper focuses on a method of realizing the bene-
fits of domain-dependent discovery approaches by adding
domain-specific knowledge to a domain-independent dis-
covery system. Secondly, this paper explicitly evaluates
the benefits and costs of utilizing domain-specific informa-
tion. In particular, the performance of the SUBDUE system
is measured with and without domain-specific knowledge
along the performance dimensions of compression, time
needed to discover the substructures, and usefulness of the
discovered substructures.

The following sections describe the approach in de-
tail. Section II introduces needed definitions. Section III

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. Y, MONTH 1999

Substructure

| nput Graph
/i

/A

R1 —

AN

Fig. 1. Example substructure in graph form.

presents the inexact graph match algorithm employed by
SUBDUE, and Section IV describes the minimum descrip-
tion length principle used by this approach, encoding
scheme, and the discovery process. Section V describes
methods of incorporating domain knowledge into the sub-
structure discovery process. Section VI provides an analy-
sis of the run-time complexity of SUBDUE. The evaluations
detailed in Section VII, which demonstrate SUBDUE’s abil-
ity to find substructures that compress the data and to
re-discover known concepts in a variety of domains. We
conclude with observations.

II. STRUCTURAL DATA REPRESENTATION

The substructure discovery system represents structural
data as a labeled graph. Objects in the data map to vertices
or small subgraphs in the graph, and relationships between
objects map to directed or undirected edges in the graph.
A substructure is a connected subgraph within the graph-
ical representation. This graphical representation serves
as input to the substructure discovery system. Figure 1
shows a geometric example of such an input graph. The
objects in the figure (e.g., T1, S1, R1) become labeled ver-
tices in the graph, and the relationships (e.g., on(T1,S1),
shape(Cl,circle)) become labeled edges in the graph.
The graphical representation of the substructure discov-
ered by SUBDUE from this data is also shown in Figure 1.

An instance of a substructure in an input graph is a set of
vertices and edges from the input graph that match, graph
theoretically, to the graphical representation of the sub-
structure. For example, the instances of the substructure
in Figure 1 are shown in Figure 2.

III. INEXACT GRAPH MATCH

The use of a graph as representation for data and con-
cepts, requires methods for matching data to concepts.
Methods of graph matching can be categorized into exact
graph matching [11], and inexact matching based on graph
distance or probability [12], transformation cost [13], [14],
graph identity [15], and minimal representation criterion
[9].

Although exact structure match can be used to find
many interesting substructures, many of the substructures
show up in a slightly different form throughout the data.
These differences may be due to noise, distortion, or may
just illustrate slight differences between instances of the

Substructure

Instance 1 Instance 2 Instance 3 Instance 4
Fig. 2. Instances of the substructure.

same general class of structures.

Given an input graph and a set of defined substructures,
we want to find those subgraphs of the input graph that
most closely resemble the given substructures. To associate
a measure between a pair of graphs consisting of a given
substructure and a subgraph of the input graph, we adopt
the approach of inexact graph match given by Bunke and
Allermann [13]. In addition to that, we extend the Bunke’s
approach in order to speed up the search which will be
described later in this section.

In this inexact match approach, each distortion of a
graph is assigned a cost. A distortion is described in terms
of basic transformations such as deletion, insertion, and
substitution of vertices and edges. The distortion costs
can be determined by the user to bias the match for or
against particular types of distortions.

Given graphs g, with n vertices and g» with m vertices,
m > n, the complexity of the full inexact graph match is
O(n™*1). Because this routine is used heavily throughout
the discovery and evaluation process, the complexity of the
algorithm can significantly degrade the performance of the
system.

To improve the performance of the inexact graph match
algorithm, we extend Bunke’s approach by applying a
branch-and-bound search to the tree. The cost from the
root of the tree to a given vertex is computed as described
above. Vertices are considered for pairings in order from
the most heavily connected vertex to the least connected, as
this constrains the remaining match. Because branch-and-
bound search guarantees an optimal solution, the search
ends as soon as the first complete mapping is found.

In addition, the user can place a limit on the number of
search vertices considered by the branch-and-bound proce-
dure (defined as a function of the size of the input graphs).

DJOKO, COOK AND HOLDER: AN EMPIRICAL STUDY OF DOMAIN KNOWLEDGE AND ITS BENEFITS TO SUBSTRUCTURE DISCOVERY3

Once the number of vertices expanded in the search tree
reaches the defined limit, the search resorts to hill climb-
ing using the cost of the mapping so far as the measure for
choosing the best vertex at a given level. By defining such
a limit, significant speedup can be realized at the expense
of accuracy for the computed match cost. A complete de-
scription of the inexact graph match procedure used by
SUBDUE is provided in [16].

IV. SUBSTRUCTURE DISCOVERY USING MINIMUM
DESCRIPTION LENGTH PRINCIPLE

The minimum description length (MDL) principle intro-
duced by Rissanen [17] states that the best theory to de-
scribe a set of data is a theory which minimizes the descrip-
tion length of the entire data set. The MDL principle has
been used for decision tree induction [5], image process-
ing [18], [19], [20], concept learning from relational data
[21], and learning models of non-homogeneous engineering
domains [22].

We demonstrate how the minimum description length
principle can be used to discover substructures in complex
data. In particular, a substructure is evaluated based on
how well it can compress the entire data set. We define the
minimum description length of a graph to be the minimum
number of bits necessary to completely describe the graph.
SUBDUE searches for a substructure that minimizes I(S) +
I(G|S), where S is the discovered substructure, G is the
input graph, I(S) is the number of bits (description length)
required to encode the discovered substructure, and I(G|S)
is the number of bits required to encode the input graph G
with respect to S.

A. Graph Encoding Scheme

The graph connectivity can be represented by an adja-
cency matrix. Consider a graph that has n vertices, which
are numbered 0,1,...,n—1. An n x n adjacency matrix A
can be formed with entry A[i, j] set to 0 or 1. If A[i, j] = 0,
then there is no connection from vertex i to vertex j. If
Ali, j] = 1, then there is at least one connection from ver-
tex ¢ to vertex j. Undirected edges are recorded in only
one entry of the matrix.

The encoding of the graph consists of the following steps.
We assume that the decoder has a table of the [, unique
labels in the original graph G.

1. Determine the number of bits vbits needed to encode
the vertex labels of the graph. First, we need (lgv) bits
to encode the number of vertices v in the graph. Then,
encoding the labels of all v vertices requires (vlgl,)
bits. We assume the vertices are specified in the same
order they appear in the adjacency matrix. The total
number of bits to encode the vertex labels is

vbits = lgv+ovlgl,.

2. Determine the number of bits rbits needed to encode
the rows of the adjacency matrix A. Typically, in large
graphs,; a single vertex has edges to only a small per-
centage of the vertices in the entire graph. Therefore,

a typical row in the adjacency matrix will have much
fewer than v 1s, where v is the total number of ver-
tices in the graph. We apply a variant of the coding
scheme used by [5] to encode bit strings with length n
consisting of k£ 1s and (n — k) 0s, where k < (n — k).
In our case, row i (1 < i < v) can be represented
as a bit string of length v containing k; 1s. If we let
b = max; k;, then the it” row of the adjacency matrix
can be encoded as follows:
(a) Encoding the value of k; requires lg(b + 1) bits.
(b) Given that only k; 1s occur in the row bit string of

length v, only (l::)) strings of s and 1s are possible.
(]

Since all of these strings have equal probability of

occurrence, lg]: bits are needed to encode the
(2

positions of 1s in row i. The value of v is known
from the vertex encoding.
Finally, we need an additional lg(b+ 1) bits to encode
the number of bits needed to specify the value of k;
for each row. The total encoding length in bits for the
adjacency matrix is

rbits =

lg(b+1)+> (lgb+1)+1g (;’J)

i=1

(v+1)lg(b+1)+§1g<:i>.

3. Determine the number of bits ebits needed to encode
the edges represented by the entries A[i, j] = 1 of the
adjacency matrix A. The number of bits needed to
encode entry Afi,j] is (lgm) + e(i, 7)[1 + 1gl,], where
e(i,7) is the actual number of edges between vertex i
and j in the graph and m = max; ; e(i, j). The (lgm)
bits are needed to encode the number of edges between
vertex i and j, and [1+1gl,] bits are needed per edge to
encode the edge label and whether the edge is directed
or undirected. In addition to encoding the edges, we
need to encode the number of bits (lgm) needed to
specify the number of edges per entry. The total en-
coding of the edges is

lgm +» Y (lgm + e, j)[1+1gl))

i=1 j=1

= lgm+e(l+l1gl,)+ ZZA[Z]] lgm

i=1 j=1
= e(l+1gl)+ (K +1)lgm,

ebits =

where e is the number of edges in the graph, and K is
the number of 1s in the adjacency matrix A.

B. Substructure Discovery without domain knowledge

The substructure discovery algorithm used by SUBDUE
is a computationally-constrained beam search. The algo-
rithm begins with an initial set of substructures matching
every distinctly-labeled vertex in the graph. Each iteration

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. Y, MONTH 1999

Discover Substructurel(S, L)
/* S = candidate substructures
I, = the user-defined limit on the number of substructures
considered for expansion */

D=1
n=20
S = sort candidate substructures by Compression
while (n < L) and (S # {}) do
n=n+1
s = first(S)
insert s into D sorted by Compression
E = s extended in all possible ways
for each e € E do
evaluate(e) /* evaluate the Compression */
if (Compression(e) < Compression(s)) /* pruning */
insert e into S sorted by Compression
return D

Fig. 3. The algorithm for the discovery without domain knowledge.

through the algorithm selects the best substructure accord-
ing to its ability to minimize the description length of the
entire graph, and expands the instances of the best sub-
structure by one neighboring edge in all possible ways. The
new unique generated substructures become candidates for
further expansion. The algorithm searches for the best sub-
structure until all possible substructures have been consid-
ered or the total amount of computation exceeds a given
limit. The evaluation of each substructure is guided by the
MDL principle.

Once the description length (DL) of an expanding sub-
structure begins to increase, further expansion of the sub-
structure may not yield a smaller description length. As a
result, SUBDUE makes use of an optional pruning mecha-
nism that eliminates substructure expansions from consid-
eration when the description lengths for these expansions
increases (see Figure 3).

To represent an input graph using a discovered substruc-
ture involves additional overhead to replace the substruc-
ture’s instances with a pointer to the newly-discovered sub-
structure. Therefore, the number of bits needed to repre-
sent G, given the discovered substructure S, is

1(G]S)

1(G) - Z I1(S) + Z I(pointer)
= I(G) — n}(S) + nI(;Jointer),

where n represents the number of instances found for the
discovered substructure. The second term represents the
sum of bits saved over the discovered substructure, and
the last term represents the sum of bits needed for the
overhead.

We define a compression measure to evaluate a substruc-
ture’s ability to compress an input graph as the following:

DL of compressed graph

1 (

C ion =
ompresson DL of original graph

where DL of compressed graph is I(G|S) + I(S), and
DL of original graph is I(G). If Compression is greater

shape

Fig. 4. The graph after compression using the discovered substruc-
ture S1.

than zero, the representation of G using S is used instead
of the original representation, since it required less bits.

Both the input graph and the discovered substructure
can be encoded using the above encoding scheme. After a
substructure is discovered, each instance of the substruc-
ture in the input graph is replaced by a single vertex repre-
senting the entire substructure. Figure 4 showed compres-
sion of the input graph in Figure 1 using the discovered
substructure.

V. ADDING DOMAIN KNOWLEDGE TO THE SUBDUE
SYSTEM

The SUBDUE discovery system was initially developed
using only domain independent heuristics to evaluate po-
tential substructures. As a result, some of the discovered
substructures may not be useful and relevant to specific
domains of interest. For instance, in a programming do-
main, the BEGIN and END statements may appear repeti-
tively within a program; however, they do not perform any
meaningful function on their own; hence they exhibit lim-
ited usefulness. Similarly, in the CAD circuit domain, some
subcircuits or substructures may appear repetitively within
the data; however, they may not perform meaningful func-
tions within the domain of usage. To make SUBDUE’s dis-
covered substructures more interesting and useful across
a wide variety of domains, domain knowledge is added to
guide the discovery process. Furthermore, compressing the
graph using the domain knowledge can increase the chance
of realizing greater compression than without using the do-
main knowledge.

In this section we present two types of domain knowledge
that are used in the discovery process and explain how they
bias discovery toward certain types of substructures.

A. Model/Structure knowledge

Model/Structure knowledge provides to the discovery
system specific types of structures that are likely to ex-
ist in a database and that are of particular interest to a
scientist using the system. The model knowledge is orga-
nized in a hierarchy that specifies the connection between
individual structures. Nodes of the hierarchical graph can
be classified as either primitive (nondecomposable) or non-
primitive. The primitive nodes reside in the lowest level,

DJOKO, COOK AND HOLDER: AN EMPIRICAL STUDY OF DOMAIN KNOWLEDGE AND ITS BENEFITS TO SUBSTRUCTURE DISCOVERY5

N
B
@/

Fig. 5.

L]

A hierarchical graph.

i.e., the leaves, and all nonprimitive nodes reside in the
higher levels of the hierarchy. The primitive nodes repre-
sent basic elements of the domain, whereas the nonprimi-
tive nodes represent models or structures which consist of a
conglomeration of primitive nodes and/or lower-level non-
primitive . The higher the node’s level, the more complex
is the structure it represents. The hierarchy for a particu-
lar domain is supplied by a domain expert. The structures
in the hierarchy and their functionalities are well known in
the context of that domain. This knowledge is formed in
a bottom-up fashion. Users can extend the hierarchy by
adding new models.

To illustrate the structure knowledge, a simple exam-
ple is shown in Figure 5, representing a hierarchical graph
based on the shape structure. The primitive nodes are tri-
angle, square, circle and rectangle. The nonprimitive nodes
are built upon the primitive nodes and/or nonprimitive
nodes. While Figure 5 represents a hierarchy built using
commonalities between individuals’ shape, in the program-
ming and computer aided design (CAD) circuit domain,
the hierarchical graphs are built based on commonalities
between individuals’ functional structure. For example,
in the programming domain, special symbols and reserved
words are represented by primitive nodes, and functional
subroutines (e.g., swap, sort, increment) are represented
by nonprimitive nodes. In the CAD circuit domain, basic
components of a circuit (e.g., resistor, transistor) are repre-
sented by primitive nodes, and functional subcircuits such
as operational amplifier, filter, etc. are represented by non
primitive nodes. This hierarchical representation allows
examining of the structure knowledge at various level of
abstraction, focusing the search and reducing the search
space.

A.1 Using model/structure knowledge to guide the discov-
ery

Although the minimum description length principle still
drives the discovery process, domain knowledge is used to
glean certain types of known structures from the input
graph. First, the modified version of SUBDUE can be biased
to look specifically for structures of the type specified in the
model hierarchy. The discovery process begins by match-

Discover Substructure2(S)
D ={}
S = sort initial substructures by Compression
while (S # {}) do
candidate = first(S)
M = find candidate’s models
while (size(candidate) < size(M)) do
FE = candidate extended in all possible ways
for each substructure e € E do
for each model m € M do
if (gmatch(e,m) < Threshold) then
/* inexact whole graph match */
evaluate(e)
insert e into I sorted by Compression
return D
else if (subgmatch(e, m) < Threshold) then
/* inexact subgraph match */
evaluate(e)
insert e into S sorted by Compression
else discard e

/* S = initial substructure */

return D

Fig. 6. The algorithm for discovery using the domain knowledge.

ing a single vertex in the input graph to primitive nodes
of the model knowledge hierarchy. If the primitive nodes
do not match the input vertices, the higher level nodes
of the hierarchy are pursued. The models in the hierarchy
pointed to by the matched vertex in the input graph are se-
lected as candidate models and are matched with the input
substructure. Each iteration through the process, SUBDUE
selects a substructure from the input graph which provides
the best match to the one of selected models, and which
can be used to compress the input graph. The match can
either be a subgraph match or a whole graph match. If
the match is a subgraph match, SUBDUE expands the in-
stances of the best substructure by one neighboring edge
in all possible ways. The newly generated substructure be-
comes a candidate for the next iteration. However, if the
match is a whole graph match, the process has found the
desired substructure, and the chosen substructure is used
to compress the entire input graph. The process continues
to expand the substructure until either a substructure has
been found or all possible substructures have been consid-
ered (see Figure 6).

To represent an input graph using a discovered substruc-
ture from the model hierarchy, the representation incurs
additional overhead to replace the substructure’s instances
with a pointer to the model hierarchy. In addition to this
overhead, some domains involve extra parameters. Con-
sider an example in the programming domain where a sub-
structure of the model hierarchy (e.g., Sort(a,b), where a
and b are dummy variables) is discovered in a program.
SUBDUE replaces each of the discovered substructure’s in-
stances with Sort(a;,b;), where Sort is a pointer to the
model hierarchy, and a; and b; are parameters of the ith

instance.
Therefore, the number of bits needed to represent G,
given substructure S which matches model M, is

I(GIM) = I(G)— Z I(S) + Z I(pointer) + Z I(parameters;)
i=1 i=1

i=1

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. Y, MONTH 1999

n
= I(GQ) —nI(S) + nl(pointer) + Z I(parameters;),

i=1

where n represents the number of instances found for the
discovered substructures. The second term represents the
sum of the bits saved over the discovered substructure, and
the last two terms represent the sum of bits needed for the
overhead.

When the substructure only matches part of a model
graph (subgraph match), then representing the model in-
cludes an overhead associated with specifying the path to
the model in the hierarchy (I(path)), and the mapping of
all substructure’s vertices and edges to part of the model’s
vertices and edges (I(mapping,) and I(mapping.)). The
mapping describes the number of vertices of the model, the
number of edges of the model, and which vertices and edges
of the model are matched to the substructure. However,
when the substructure matches all parts of model graph
(whole graph match), there is no need to indicate the map-
ping, because we assume the same order of vertex and edge
labels in each graph.

Hence, the number of bits needed to represent M is

I(M) = I(path) + I(mapping,) + I(mapping.).

I(path) is encoded as a path in the hierarchy of model
knowledge, where a path is initiated at the matched node
and terminated at the found model.

I(path) = Level x1gly,
where Level is the depth of model in the hierarchy and [,
is the number of unique models in the hierarchy.

I(mapping,) is encoded as the following:

I(mapping,) = lgnvs+lg <21;)m> ,

where nv, is the number of substructure vertices and nv,, is
the number of model vertices. The first term describes how
many vertices are mapped, and the second term describes
which vertices are mapped.

Similarly, I(mapping,) is encoded as the following:

I(mapping.) = lgnes+lg <777';3€m> 7

where neg is the number of substructure edges and ne,, is
the number of model edges. The first term describes how
many edges are mapped, and the second term describes
which edges are mapped.

The description length of the compressed graph is

I(GIM) + I(M).

Therefore, if the portion of the substructure represented
by the model is too small, the savings may not cover the
overhead cost. If Compression is greater than zero, the
representation of G using S which matches the model M
is used instead of the original representation.

After a substructure is discovered, each instance of the
substructure in the input graph is replaced by a pointer
to a predefined model in the model hierarchy represents
the substructure S. DiscoverSubstructure2 is repeated
on the newly compressed input graph until no more sub-
structures can be found. The newly compressed graph is in-
put into DiscoverSubstructurel to discover new substruc-
tures. DiscoverSubstructurel is repeated until no more
substructures can be discovered.

B. Graph match rules

At the heart of the SUBDUE system lies an inexact graph
match algorithm that finds instances of a substructure def-
inition. The graph match is used to identify isomorphic
substructures in the input graph. Since many of those
substructures could show up in a slightly different form
throughout the data, and each of these differences is de-
scribed in terms of basic transformations performed by the
graph match, we can use graph match rules to assign each
transformation a cost based on the domain of usage. This
type of domain-specific information is represented using if-
then rules such as the following:

IF (domain = z) and (perform graph match transforma-
tion y)
THEN (graph match cost = z)

To illustrate this rule, consider an example in the pro-
gramming domain. We allow a vertex representing a vari-
able to be substituted by another variable vertex, and do
not allow a vertex representing an operator which is a spe-
cial symbol, a reserved word, or a function call, to be sub-
stituted by another vertex. These rules can then be repre-
sented as the following;:

IF (domain = programming) and (substitute variable
vertex)
THEN graph match cost = 0.0;

IF (domain =
vertex)
THEN graph match cost = 2.0

programming) and (substitute operator

The graph match rules allow a specification of the
amount of acceptable generality between a substructure
definition and its instances, or between a model defini-
tion and its instances in the domain graph. Given g1,
g2, and a set of distortion costs, the actual computation
of matchcost(gl, g2) can be performed using a tree search
procedure. As long as matchcost(gl, g2) does not exceed
the threshold set by the user, the two graphs g1 and g2 are
considered to be isomorphic.

VI. COMPUTATIONAL COMPLEXITY ANALYSIS

Since knowledge discovery algorithms should scale for
use on large databases, the issue of computational com-
plexity is very significant. The algorithms employed by
SUBDUE are computationally expensive. For example, an

DJOKO, COOK AND HOLDER: AN EMPIRICAL STUDY OF DOMAIN KNOWLEDGE AND ITS BENEFITS TO SUBSTRUCTURE DISCOVERY7

unconstrained graph match is exponential in the number
of graph vertices. In practice, SUBDUE employs constraints
that makes the program more scalable. Since the algorithm
spends most of its time perform graph matches, the to-
tal running time of the algorithm can be expressed as the
number of search vertices expanded during graph matches
throughout the entire discovery process. In this section,
the computational complexity of algorithms employed by
SUBDUE is analyzed. We show how the algorithm can avoid
exponential behavior, and we generate an upper bound on
the complexity of SUBDUE as a function of the number of
vertices in the input graph. Additionally, the algorithm
without using domain knowledge and the algorithm using
domain knowledge are compared.
In what follows, we will be using the following definitions:
o L = the user-defined limit on the number of substruc-
tures considered for expansion
e nv = the number of vertices in the input graph
o nsub = the total number of substructures that can be
generated
e gm = the user-defined maximum number of partial
mappings that are considered during each graph match
e Ninst = the total number of instances of a given sub-
structure
e m = the maximum number of model vertices in the
model knowledge
e M = the average model branching factor in the model
knowledge
o MC = the average number of models that are parents
of other models in the model kowledge
o N1 = the total number of vertices expanded in Subdue
without using domain knowledge
e N2 = the total number of vertices expanded in Subdue
using model knowledge and graph match rules

A. Complexity without domain knowledge

This section provides an expression for the run-time re-
quirement of the algorithm without using domain knowl-
edge, showing that it depends on the number of vertices in
the input graph and the limitations set by the user.

Since the algorithm spends most of its time perform
graph match, the total running time of the algorithm can
be expressed as

N1 = nsub X Njust X gm.

Considering an upper bound time complexity, assume
the input graph is a fully connected graph, where the num-
ber of neighbors for a given vertex is (nv — 1), the maxi-
mum size of a substructure generated in iteration 4 of the al-
gorithm is ¢ vertices, and the number of vertices which have
already been considered in previous iterations is (i — 1).
Hence, the total number of vertices that can be expanded
is ((nv — 1) — (i — 1)). Therefore, the total number of
substructures that can be generated is

L

D (i x ((w—=1) = (i —1))).

i=1

nsub =

The total number of instances needed to be compared for
a given substructure is affected by the instances of the sub-
structure itself and the instances of the substructure’s par-
ent. For a substructure with i vertices, the maximum num-
ber of nonoverlapping instances is %*. Since we consider
an upper bound case, the maximum number of nonoverlap-
ping instances is nv. Hence, the total number of instances
needed to be compared for a given substructure is

Ninst = nv X (L —1).

We have shown that by placing a limit on gm and L, the
time complexity for the graph match is polynomial in nv. If
either of the two limits L or gm is removed, the complexity
of the discovery algorithm becomes exponential in nv. A
parallel implementation of SUBDUE that is underway may
further improve the scalability of the algorithm.

B. Complezity using domain knowledge

This section provides an expression for the run-time re-
quirement of the algorithm using domain knowledge, show-
ing that it depends on the number of vertices in the input
graph, the limitations set by the user, and the model knowl-
edge used. We will point out that for the upper bound
case, the number of vertices expanded for discovery using
domain knowledge can be less than the number of vertices
expanded for discovery without using domain knowledge
under certain circumstances.

Since the algorithm not only searches for the instances of
a substructure, it also searches for a model in the model hi-
erarchy which matches the substructure, the total running
time of the algorithm can be expressed as
N2 = (nsub X nist X gm) + (nsubx M x MC x gm),

where the first term represents the number of vertices
expanded for the search of substructures’ instances, and the
second term represents the number of vertices expanded for
the search of a model in the model hierarchy.

The maximum number of expanded vertices for a sub-
structure is limited to the maximum number of vertices of
a model in the model hierarchy (m). Hence, the number of
iterations is limited to m. Therefore, nsub can be expressed
as

m

d ix((no—1)—(i—1)).

i=1

nsub =

The total number of instances needed to be compared
for a given substructure is
Ninst = nov X (m —1).

We have shown that by placing a limit on gm, the time
complexity for the graph match algorithm is polynomial in
nv. If the gm limitation is removed, the complexity of the
discovery algorithm becomes exponential in nv.

(M x MC) is dependent upon the size of the model
knowledge. In general, L is set to half of the input graph,

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. Y, MONTH 1999

gm is set to the forth power of the size of a substruc-
ture or model, whichever is bigger. Therefore, L is much
larger than m. When the size of a substructure is big,
which means that (M x MC) is small compared to gm,
and (M x MC) is negligible, the number of vertices ex-
panded for discovery using domain knowledge is less than
number of vertices expanded for discovery without domain
knowledge.

In conclusion, the number of vertices expanded for
discovery using domain knowledge and without domain
knowledge depends on the size of the input graph and
model knowledge (m, M, MC), the size of the discovered

3

substructures, and the limitations set by the user.

VII. EvaruaTioN oF SUBDUE’S
DOMAIN-INDEPENDENT VERSUS
DOMAIN-DEPENDENT DISCOVERY

In this section, we evaluate the benefits and costs of uti-
lizing the domain-specific information to perform substruc-
ture discovery. We will measure the performance of SUB-
DUE with and without domain-specific information when
applied to databases in the programming, circuit, and ar-
tificial domains. The goals of our substructure discovery
system are to efficiently find substructures that can reduce
the description length needed to describe the data, and to
discover substructures that are considered useful for the
given domain.

To evaluate SUBDUE, we apply human ratings to each
of SUBDUE’s discovered substructures. If the approach
demonstrates some validity, SUBDUE should prefer sub-
structures which were rated highly by humans. Two types
of discovered substructures are evaluated: 1) substructures
discovered without using the domain knowledge, and 2)
substructures discovered using domain knowledge. The
performance of the system is measured along three dimen-
sions: 1) compression, which shows a substructure’s ability
to compress an input graph, 2) number of search vertices
expanded by SUBDUE, which indicates the time to discover
a substructure, and 3) average evaluation value and stan-
dard deviation of human rating, which measure the inter-
estingness of a substructure according to human experts.
The interestingness of SUBDUE’s discovered substructures
are rated by a group of 8 domain experts on a scale of 1
to 5, where 1 means not useful in the domain and 5 means
very useful. The number of instances of the discovered
substructure that exist in the input database is also listed.

The discovered substructures are plotted, and grouped
into figures. Substructures inside the boxes indicate sub-
structures discovered in earlier iterations. Therefore, if
the newly discovered substructures are defined in terms of
previously discovered substructure concepts, the substruc-
ture definitions form a hierarchy of substructure concepts.
Numbers inside the circles indicate the iteration in which
the substructures are discovered.

A. Evaluation of substructures in programming domain

The discovery of familiar structures in a program can
help a programmer to understand the function and mod-

sorted = 0; /* bubble sort */
while (sorted == 0)
sorted = 1;

for (j =0;j5 < listsize — 155 + +)
if (list[j] > list[j + 1])
temp = list[j];
list[j] = list[j + 1];
list[j + 1] = temp;
sorted = 0;
for (gap = n/2; gap > 0; gap = gap/2)
for (i = gap;i <n;i+ +)
for (j =1i—gap;j >= 0 && v[j] > v[j + gapl;j = j — gap)
temp = v[j];
olj] = olj + gapl;
v[j + gap] = temp;
/* bubble sort operates as a type of selection sort */
for (i=mn;i>0;i— —)
for (j =25 >=1d;5++)
if (alj = 1] > alj)

/* shell sort */

t=alj -~ 1;
alj —1] = a[jl;
alj] = t;

Fig. 7. Part of a sample program concatenating three different sort
procedures.

ularity of the code. The recognition of substructures from
the domain knowledge helps in understanding the codes,
and the discovery of repetitive and functional substructures
helps in modularizing the codes. Hence, SUBDUE helps de-
scribe a program which in turn helps facilitate many tasks
that require program understanding, e.g., maintenance and
translation.

In this domain, the model graphs are built based on
commonalities between subroutines’ functional structure.
For example, special symbols and reserved words are rep-
resented by primitive nodes, and functional subroutines
(e.g., swap, sort, increment) are represented by nonprimi-
tive nodes. Furthermore, the graph match rule is used to
allow two variables to be matched as long as their binding
is consistent.

In order to determine the value of substructures discov-
ered by SUBDUE, we concatenate three different sort rou-
tines (written in C) into one program (see Figure 7), and
transform it into a graph representation which is indepen-
dent of the source language.

The description length of the sample program shown in
Figure 7 is 2598.99 (in bits). Figure 8 shows discovered
substructures without domain knowledge from the sample
program. Figure 9 demonstrates discovered substructures
using domain kowledge.

The substructures discovered without domain knowledge
yield low human ratings. The overall compression achieved
is 0.11, and the total number of search vertices considered
is 118,950. On the other hand, the discovered substructure
using domain knowledge receive very high human rating,
because the substructure represent a conditional swap func-
tion, which is useful to programming experts. The overall
compression achieved is 0.2 and the total number of search
vertices considered is 21,648. The results demonstrate that
the discovery using domain knowledge achieve better hu-
man rating and compression than the discovery without

DJOKO, COOK AND HOLDER: AN EMPIRICAL STUDY OF DOMAIN KNOWLEDGE AND ITS BENEFITS TO SUBSTRUCTURE DISCOVERY?9

Discovered Substructures _ | Number Average
Without Domain Knowledge Compression | of Vertices Euman Number of
Expanded | Raing | Instances
[std dev]
@ 0.07 68,386 133[1.2) 9
next
var
compl | " 0.04 50564 | 20[L4] | 2
no
var

Fig. 8. Program Discovered substructures without domain knowl-
edge.
i Average
Discovered Substructures .| Number
Without Domain Knowledge | COMPression | of Vertices | Human | Number of
Expanded | Rating | Instances
[std dev]
compl compr
0.07 17,974 4.8[0.41] 2

ncrement_hy one

parameter

Fig. 9. Program Discovered substructures using domain knowledge.

domain knowledge. Futhermore, the number of search ver-
tices considered for discovery using domain knowledge is
significantly less than discovery without domain knowl-
edge.

B. Ewvaluation of substructures in CAD circuit domain

As aresult of increased complexity of design and changes
in the implementation technologies of integrated electronic
circuitry, the discovery of familiar structures in circuitry
can help a designer to understand the design, and to iden-
tify common reusable parts in circuitry.

We evaluate SUBDUE by using CAD circuit data repre-
senting a sixth-order bandpass “leapfrog” ladder [23]. The
circuit is made up of a chain of somewhat similar structures

circuit graph representation

edge edge

— Edge 0p|n1 l

W;v gt

Fig. 10. The transformation from a sample circuit into a graph
representation.

Fig. 11. Bandpass “leapfrog”: sixth-order.

(see Figure 11). We transform the circuit into a graph rep-
resentation in which the component units and interconnec-
tion between several component units appear as vertices
and the current flows appear as edges (see Figure 10).

In this domain, the hierarchical graphs are built based on
commonalities between circuits’ functional structure. For
example, basic components of a circuit (e.g., resistor, tran-
sistor) are represented by primitive nodes, and functional
subcircuits such as operational amplifier, filter, etc. are
represented by nonprimitive nodes. Furthermore, a graph
match rule is used to allow two similar components with
different labels to be matched.

The description length of the circuit shown in Figure
11 is 3139.05 (in bits). Figure 12 shows discovered sub-
structures of the circuit without domain knowledge and
Figure 13 shows discovered substructures of circuit using
domain knowledge.

When the domain knowledge is used, all of the discov-
ered substructures receive very high human ratings, be-
cause the substructures represent functional circuits. The
overall compression achieved is 0.79, and the total num-
ber of vertices expanded is 161,515. When the domain
knowledge is not used, the discovered substructures receive
lower human ratings. The first substructure obtains a high
human rating, because the substructure represents an in-
verter and appears many times in the input graph. The
overall compression achieved is 0.72, and the total num-
ber of search vertices considered is 677,678. The results
again reveal that discovery using domain knowledge offers
better human ratings and greater compression than discov-
ery without domain knowledge. Additionally, the number
of search vertices considered using domain knowledge is

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. Y, MONTH 1999

Discovered Substructures without Compressiorl Nodes | Human | Instances
domain knowledge Expanded | Rating
[std dev]

063 [571,370(42[L2] 9
068 | 464222712 3
0.72 | 50.886/2.7[L0] 2

Fig. 12. CAD circuit Discovered substructures without domain
knowledge.
Discovered Substructures Compressiorl ENOdej d Euman Instances
using domain knowledge Xpande [sétic?r(]i%v]
@] \
W 0.18 8,107 | 3.7[1.0] 3
0.33 119,047 | 4.5[0.8] 2

Fig. 13. CAD circuit-Discovered substructures using domain knowl-
edge.

smaller than without domain knowledge.

C. Evaluation of substructures in the artificial domain

While we have evaluated the result of discovery using do-
main knowledge in two domains, we also examine whether
such domain knowledge is useful in general. We would like
to evaluate whether the use of domain knowledge can im-
prove SUBDUE’s average case performance in an artificially-
controlled graph.

To test this performance, we create two tests. Firstly, an
artificial substructure is created and is embedded in larger
graphs of varying sizes. The graphs vary in terms of graph
size and the amount of deviation in the substructure’s in-

0.6
_ . a) without domain knowledge
\ _ o . b) using domain knowledge
- 0.5 .
o \\
B 0.4
o
3 \
@) 0.3 \ e
@) LS VAR
SN L7 \
0.2 L Sv N
0.1
-0.5 0 0.5 1 1.5 2 2.5
Derivation
Fig. 14. Deviation versus compression.
1.418 . .
_ o a) without domain knowledge
\ _ o _ b) using domain knowledge
= 1.216
D
=
s\
@ 110
o
; \
»n 810
5]
\
5 610
= \
© 410
5]
2 \
E 210
= — -;\
° -0.5 [0} 0.5 1 1.5 2 2.5
Derivation

Fig. 15. Deviation versus number of vertices expanded.

stances, but are constant with respect to the percentage of
the graph that is covered by the substructure’s instances.
For each deviation value, we run SUBDUE on the graphs
until no more compression can be achieved with cases: a)
without domain knowledge, b) with domain knowledge.
The effects of the varying deviation values are measured
against the average compression value (Figure 14), the av-
erage number of vertices expanded (Figure 15) , and the
average number of embedded instances discovered (Fig-
ure 16). As the amount of deviation increases, the com-
pression in all cases decreases as expected, except at the
deviation of 1.5. A slight increase in compression at 1.5 is
due to the randomness of the data. Case (b) yields better
compression and expand lesser vertices than case (a). The
number of vertices expanded by case (b) remains about
the same for all deviations, because the same instances (of
the same size) are discovered consistently. Furthermore,
as the deviation is increased, case (b) is capable of finding
embedded instances, and case (a) is not capable of finding
embedded instances for a slight increase in deviation.
Secondly, we again embed an artificial substructure into

DJOKO, COOK AND HOLDER: AN EMPIRICAL STUDY OF DOMAIN KNOWLEDGE AND ITS BENEFITS TO SUBSTRUCTURE DISCOVERY11

5

__ . a) without domain knowledge

_ o _ b) using domain knowledge
4 . j

\\
3) N
\

2

o

Number of embedded instances found

|
[

-0.5 0 0.5 1 1.5 2 2.5
Derivation
Fig. 16. Deviation versus number of instances found.
-g 5 T B T Al T
5 _ o a) without domain knowledge
L __o_ b) using domain knowledge
0 -
g 4 7
c e
s 7
[%2] v
g 3 i
3 s
3 2 ra
2 R
c /
kS]
z
c 0
>
=
-1
0 0.2 0.4 0.6 0.8 1 25
Coverage

Fig. 17. Coverage versus number of instances found.

a larger graphs of varying sizes. Each of the graphs varies in
the size, as well as the amount of the input graph covered
by the embedded substructure. For each coverage value,
we evaluate the same two cases. The effect of the varying
coverage values are measured against the average number
of embedded instances discovered (Figure 17). As the cov-
erage is increased, case (b) finds an increasing number of
embedded instances. Case (a) does not find any instance.

The effects confirm the results demonstrated by the ap-
plication domains. Therefore, we conclude that SUBDUE
using domain knowledge is capable of discovering useful
substructures, achieving better compression, and focusing
the search for concepts.

VIII. CONCLUSIONS

SUBDUE is a system devised for experimenting with
general-purpose automated discovery using domain knowl-
edge, allows the domain knowledge to be generic, and can
be reused over a class of similar applications. Hence, the
method can be applied to many structural domains.

This paper describes the process by which a scientist
reduces the complexity of a problem by applying what is
known and abstracting detail in the form of regular struc-
ture. For the domains of CAD circuit, programming, SUB-
DUE has shown success in compressing data and discovering
useful substructures. SUBDUE can aid the scientist in re-
ducing the complexity of the data and may uncover new
concepts of importance to the domain. Results indicate
that discovery using domain-specific knowledge has better
chance of discovering substructures which are useful to do-
main experts, leads to greater compression of the data, has
better performance than the results of discovery without
using domain knowledge.

A parallel implementation of SUBDUE is underway that
may further improve the scalability of the algorithm. Par-
allelization on a MIMD machine by distributing the search
space will allow SUBDUE to scale up to much larger
databases without significant increase in processing time.

REFERENCES

[1] P. Cheeseman, J. Kelly, M. Self, J. Stutz, W. Taylor, and D. Free-
man, “Autoclass: A bayesian classification system”, in Proceed-
ings of the Fifth International Workshop on Machine Learning,
1988, pp. 54 64.

[2] D.H. Fisher, “Knowledge acquisition via incremental conceptual
clustering”, Machine Learning, vol. 2, pp. 139-172, 1987.

[3] W. J. Frawley, G. Piatetsky-Shapiro, and editors C. J. Matheus,
Knowledge Discovery in Databases, AAAT Press / The MIT
Press, 1991.

[4] J. R. Quinlan, “Induction of decision trees”, Machine Learning,
vol. 1, pp. 81-106, 1986.

[5] J. R. Quinlan and R. L. Rivest, “Inferring decision trees using
the minimum description length principle”, Information and
Computation, vol. 80, pp. 227 248, 1989.

[6] D. J. Cook, L. B. Holder, and S. Djoko, “Knowledge discov-
ery from structural data”, Journal of Intelligent Information
Systems, vol. 5, no. 3, pp. 229 245, 1995.

[7] D. Conklin, S. Fortier, J. Glasgow, and F. Allen, “Discovery of
spatial concepts in crystallographic databases”, in Proceedings
of the Ninth International Machine Learning Workshop, 1992,
pp. 111 116.

[8] R. Levinson, “A self-organizing retrieval system for graphs”,
in Proceedings of the Second National Conference on Artificial
Intelligence, 1984, pp. 203 206.

[9] J. Segen, “Learning graph models of shape”, in Proceedings of

the fifth International Conference on Machine Learning, 1988,

pp- 29-35.

K. Thompson and P. Langley, “Concept formation in structured

domains”, in Concept Formation: Knowledge and Fzperience

in Unsupervised Learning, D. H. Fisher and M. Pazzani, Eds.

Morgan Kaufmann Publishers, Inc., 1991.

P. H. Winston, “Learning structural descriptions from exam-

ples”, in The Psychology of Computer Vision, P. H. Winston,

Ed., pp. 157-210. McGraw-Hill, 1975.

A. K. C. Wong and M. You, “Entropy and distance of random

graphs with application to structural pattern recognition”, IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol.

7, no. 5, pp. 599 609, 1985.

H. Bunke and G. Allermann, “Inexact graph matching for struc-

tural pattern recognition”, Pattern Recognition Letters, vol. 1,

no. 4, pp. 245-253, 1983.

A. Sanfeliu and K. S. Fu, “A distance measure between at-

tributed relational graphs for pattern recognition”, IEEE Trans-

actions on Systems, Man and Cybernetic, vol. 13, pp. 353 362,

1983.

K. Yoshida, H. Motoda, and N. Indurkhya, “Unifying learning

methods by colored digraphs”, in Proceedings of the Learning

and Knowledge Acquisition Workshop at IJCAI-93, 1993.

D. J. Cook and L. B. Holder, “Substructure discovery using min-

imum description length and background knowledge”, Journal

of Artificial Intelligence Research, vol. 1, pp. 231 255, 1994.

[10]

(11]

(12]

[15]

[16]

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. Y, MONTH 1999

[17] J. Rissanen, Stochastic Complezity in Statistical Inquiry, World
Scientific Publishing Company, 1989.

[18] Y. G. Leclerc, “Constructing simple stable descriptions for image
partitioning”, International Journal of Computer Vision, vol.
3, no. 1, pp. 73 102, 1989.

[19] E. P. D. Pednault, “Some experiments in applying inductive
inference principles to surface reconstruction”, in Proceedings
of the International Joint Conference on Artificial Intelligence,
1989, pp. 1603 1609.

[20] A.Pentland, “Part segmentation for object recognition”, Neural
Computation, vol. 1, pp. 82 91, 1989.

[21] M. Derthick, “A minimal encoding approach to feature dis-
covery”, in Proceedings of the Ninth National Conference on
Artificial Intelligence, 1991, pp. 565—-571.

[22] R. B. Rao and S. C. Lu, “Learning engineering models with the
minimum description length principle”, in Proceedings of the
Tenth National Conference on Artificial Intelligence, 1992, pp.
717 722.

[23] L. T. Bruton, RC-Active Circuits Theory and Design, Prentice
Hall, 1980.

Surnjani Djoko received the B.S.E.E. de-
gree from Tamkang University, Taiwan, R.O.C.
in 1986, the M.S.E.E. degree and the Ph.D.
degree in Computer Science and Engineering
from the University of Texas at Arlington, TX,
in 1989 and 1995, respectively. Her research
interests have been in the areas of knowledge
discovery in databases, machine learning, sta-
tistical methods for inducing models from data,
and parallel algorithms. She is currently a
Member of Scientific Staff at Bell Northern Re-
search, Richardson, TX.

Diane Cook is an Assistant Professor in the
Computer Science and Engineering Depart-
ment at the University of Texas at Arlington.
Dr. Cook received her B.S. from Wheaton Col-
lege in 1985, and her M.S. and Ph.D. from the
University of Tllinois in 1987 and 1990, respec-
tively. Dr. Cook’s research interests include ar-
tificial intelligence, machine planning, machine
learning, robotics, and parallel algorithms for
artificial intelligence.

Lawrence Holder is currently an Assistant
Professor in the Department of Computer Sci-
ence and Engineering at the University of
Texas at Arlington. He received his M.S. and
Ph.D. degrees in Computer Science from the
University of Illinois at Urbana-Champaign in
1988 and 1991. He received his B.S. degree in
Computer Engineering also from the Univer-
sity of Tllinois at Urbana-Champaign in 1986.
Dr. Holder’s research interests include artifi-
cial intelligence and machine learning.

