
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. Y, MONTH 1999 1An Empirical Study of Domain Knowledge and ItsBene�ts to Substructure DiscoverySurnjani Djoko, Diane J. Cook and Lawrence B. HolderUniversity of Texas at ArlingtonDepartment of Computer Science and EngineeringBox 19015, Arlington, TX 76019E-mail:fdjoko,cook,holderg@cse.uta.eduAbstract | Discovering repetitive, interesting, and functional sub-structures in a structural database improves the ability to interpretand compress the data. However, scientists working with a databasein their area of expertise often search for predetermined types of struc-tures, or for structures exhibiting characteristics speci�c to the do-main. This paper presents a method for guiding the discovery processwith domain-speci�c knowledge. In this paper, the Subdue discoverysystem is used to evaluate the bene�ts of using domain knowledge toguide the discovery process. Domain knowledge is incorporated intoSubdue following a single general methodology to guide the discoveryprocess. Results show that domain-speci�c knowledge improves thesearch for substructures which are useful to the domain, and leadsto greater compression of the data. To illustrate these bene�ts, ex-amples and experiments from the computer programming, computeraided design circuit, and arti�cially-generated domains are presented.Keywords | data mining, minimum description length principle,data compression, inexact graph match, domain knowledgeI. IntroductionWith the increasing amount and complexity of today'sdata, there is an urgent need to accelerate discovery of in-formation in databases. In response to this need, numerousapproaches have been developed for discovering concepts indatabases using a linear, attribute-value representation [1],[2], [3], [4], [5]. These approaches address issues of datarelevance, missing data, noise, and utilization of domainknowledge. However, much of the data that is collected isstructural in nature, or is composed of parts and relationsbetween the parts. Hence, there exists a need for methodsto analyze and discover concepts in structural databases.Recently, we introduced a method for discovering sub-structures in structural databases using the minimum de-scription length (MDL) principle [6]. The system is calledSubdue, and it discovers substructures that compress theoriginal data and represent structural concepts in the data.Once a substructure is discovered, the substructure is usedto simplify the data by replacing instances of the substruc-ture with a pointer to the newly discovered substructure.The discovered substructures allow abstraction over de-tailed structures in the original data. Iteration of the sub-structure discovery and replacement process constructs ahierarchical description of the structural data in terms ofthe discovered substructures. This hierarchy provides vary-ing levels of interpretation that can be accessed based onthe speci�c goals of the data analysis.Although the MDL principle is useful for discoveringSupported by NASA grant NAS5-32337.

substructures that maximize compression of the data, sci-entists often employ knowledge or assumptions of a spe-ci�c domain to guide the discovery process. A domain-independent discovery method is valuable in that the dis-covery of unexpected substructures is not blocked. How-ever, the discovered substructures might not be useful tothe user. On the other hand, using domain-speci�c knowl-edge can assist the discovery process by focusing searchand can also help make the discovered substructures moremeaningful to the user. Hence, in order to trade o� be-tween domain-independent and domain-dependent discov-ery method, we incorporate domain knowledge into Sub-due system, and combine both the domain-independentand domain-dependent method to guide the search towardthe more appropriate substructures.A variety of approaches to discovery using structuraldata have been proposed [7], [8], [9], [10], [11]. Many ap-proaches use a knowledge base of concepts to classify thestructural data. The purposes of the knowledge base inthese systems are 1) to improve the performance of graphcomparisons and retrieval, where the individual graphs aremaintained in a partial ordering de�ned by the subgraph-ofrelation [7], [8], [9], 2) to deepen the hierarchical descrip-tion, and 3) to group objects into more general concepts [7],[10], [11]. These systems perform concept learning over ex-amples and categorization of observed data. However, thepurpose of the Subdue system is to discover knowledge,and allows the use of both domain-independent heuris-tics and domain-dependent knowledge. In addition, thehierarchical knowledge base is used to help compress thedatabase. While the above methods process individual ob-jects one at a time, our method is designed to process theentire structural database, which consists of many objects.This paper focuses on a method of realizing the bene-�ts of domain-dependent discovery approaches by addingdomain-speci�c knowledge to a domain-independent dis-covery system. Secondly, this paper explicitly evaluatesthe bene�ts and costs of utilizing domain-speci�c informa-tion. In particular, the performance of the Subdue systemis measured with and without domain-speci�c knowledgealong the performance dimensions of compression, timeneeded to discover the substructures, and usefulness of thediscovered substructures.The following sections describe the approach in de-tail. Section II introduces needed de�nitions. Section III

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. Y, MONTH 1999
S1

T1

T2 T3 T4

S2 S3 S4

C1

R1

SubstructureInput Graph

on

sh
ap
e

sh
ap
e

triangle

squareFig. 1. Example substructure in graph form.presents the inexact graph match algorithm employed bySubdue, and Section IV describes the minimum descrip-tion length principle used by this approach, encodingscheme, and the discovery process. Section V describesmethods of incorporating domain knowledge into the sub-structure discovery process. Section VI provides an analy-sis of the run-time complexity of Subdue. The evaluationsdetailed in Section VII, which demonstrate Subdue's abil-ity to �nd substructures that compress the data and tore-discover known concepts in a variety of domains. Weconclude with observations.II. Structural Data RepresentationThe substructure discovery system represents structuraldata as a labeled graph. Objects in the data map to verticesor small subgraphs in the graph, and relationships betweenobjects map to directed or undirected edges in the graph.A substructure is a connected subgraph within the graph-ical representation. This graphical representation servesas input to the substructure discovery system. Figure 1shows a geometric example of such an input graph. Theobjects in the �gure (e.g., T1, S1, R1) become labeled ver-tices in the graph, and the relationships (e.g., on(T1,S1),shape(C1,circle)) become labeled edges in the graph.The graphical representation of the substructure discov-ered by Subdue from this data is also shown in Figure 1.An instance of a substructure in an input graph is a set ofvertices and edges from the input graph that match, graphtheoretically, to the graphical representation of the sub-structure. For example, the instances of the substructurein Figure 1 are shown in Figure 2.III. Inexact Graph MatchThe use of a graph as representation for data and con-cepts, requires methods for matching data to concepts.Methods of graph matching can be categorized into exactgraph matching [11], and inexact matching based on graphdistance or probability [12], transformation cost [13], [14],graph identity [15], and minimal representation criterion[9].Although exact structure match can be used to �ndmany interesting substructures, many of the substructuresshow up in a slightly di�erent form throughout the data.These di�erences may be due to noise, distortion, or mayjust illustrate slight di�erences between instances of the

T2

S2

T3

S3

T4

S4

T1

S1

Instance 1 Instance 2 Instance 3 Instance 4

Substructure

on

shape

sha
pe

triangle

square

object

object

Fig. 2. Instances of the substructure.same general class of structures.Given an input graph and a set of de�ned substructures,we want to �nd those subgraphs of the input graph thatmost closely resemble the given substructures. To associatea measure between a pair of graphs consisting of a givensubstructure and a subgraph of the input graph, we adoptthe approach of inexact graph match given by Bunke andAllermann [13]. In addition to that, we extend the Bunke'sapproach in order to speed up the search which will bedescribed later in this section.In this inexact match approach, each distortion of agraph is assigned a cost. A distortion is described in termsof basic transformations such as deletion, insertion, andsubstitution of vertices and edges. The distortion costscan be determined by the user to bias the match for oragainst particular types of distortions.Given graphs g1 with n vertices and g2 with m vertices,m � n, the complexity of the full inexact graph match isO(nm+1). Because this routine is used heavily throughoutthe discovery and evaluation process, the complexity of thealgorithm can signi�cantly degrade the performance of thesystem.To improve the performance of the inexact graph matchalgorithm, we extend Bunke's approach by applying abranch-and-bound search to the tree. The cost from theroot of the tree to a given vertex is computed as describedabove. Vertices are considered for pairings in order fromthe most heavily connected vertex to the least connected, asthis constrains the remaining match. Because branch-and-bound search guarantees an optimal solution, the searchends as soon as the �rst complete mapping is found.In addition, the user can place a limit on the number ofsearch vertices considered by the branch-and-bound proce-dure (de�ned as a function of the size of the input graphs).

DJOKO, COOK AND HOLDER: AN EMPIRICAL STUDY OF DOMAIN KNOWLEDGE AND ITS BENEFITS TO SUBSTRUCTURE DISCOVERY3Once the number of vertices expanded in the search treereaches the de�ned limit, the search resorts to hill climb-ing using the cost of the mapping so far as the measure forchoosing the best vertex at a given level. By de�ning sucha limit, signi�cant speedup can be realized at the expenseof accuracy for the computed match cost. A complete de-scription of the inexact graph match procedure used bySubdue is provided in [16].IV. Substructure Discovery Using MinimumDescription Length PrincipleThe minimum description length (MDL) principle intro-duced by Rissanen [17] states that the best theory to de-scribe a set of data is a theory which minimizes the descrip-tion length of the entire data set. The MDL principle hasbeen used for decision tree induction [5], image process-ing [18], [19], [20], concept learning from relational data[21], and learning models of non-homogeneous engineeringdomains [22].We demonstrate how the minimum description lengthprinciple can be used to discover substructures in complexdata. In particular, a substructure is evaluated based onhow well it can compress the entire data set. We de�ne theminimum description length of a graph to be the minimumnumber of bits necessary to completely describe the graph.Subdue searches for a substructure that minimizes I(S)+I(GjS), where S is the discovered substructure, G is theinput graph, I(S) is the number of bits (description length)required to encode the discovered substructure, and I(GjS)is the number of bits required to encode the input graph Gwith respect to S.A. Graph Encoding SchemeThe graph connectivity can be represented by an adja-cency matrix. Consider a graph that has n vertices, whichare numbered 0; 1; : : : ; n�1. An n�n adjacency matrix Acan be formed with entry A[i; j] set to 0 or 1. If A[i; j] = 0,then there is no connection from vertex i to vertex j. IfA[i; j] = 1, then there is at least one connection from ver-tex i to vertex j. Undirected edges are recorded in onlyone entry of the matrix.The encoding of the graph consists of the following steps.We assume that the decoder has a table of the lu uniquelabels in the original graph G.1. Determine the number of bits vbits needed to encodethe vertex labels of the graph. First, we need (lg v) bitsto encode the number of vertices v in the graph. Then,encoding the labels of all v vertices requires (v lg lu)bits. We assume the vertices are speci�ed in the sameorder they appear in the adjacency matrix. The totalnumber of bits to encode the vertex labels isvbits = lg v + v lg lu:2. Determine the number of bits rbits needed to encodethe rows of the adjacency matrix A. Typically, in largegraphs, a single vertex has edges to only a small per-centage of the vertices in the entire graph. Therefore,

a typical row in the adjacency matrix will have muchfewer than v 1s, where v is the total number of ver-tices in the graph. We apply a variant of the codingscheme used by [5] to encode bit strings with length nconsisting of k 1s and (n � k) 0s, where k � (n� k).In our case, row i (1 � i � v) can be representedas a bit string of length v containing ki 1s. If we letb = maxi ki, then the ith row of the adjacency matrixcan be encoded as follows:(a) Encoding the value of ki requires lg(b+ 1) bits.(b) Given that only ki 1s occur in the row bit string oflength v, only� vki � strings of 0s and 1s are possible.Since all of these strings have equal probability ofoccurrence, lg� vki � bits are needed to encode thepositions of 1s in row i. The value of v is knownfrom the vertex encoding.Finally, we need an additional lg(b+1) bits to encodethe number of bits needed to specify the value of kifor each row. The total encoding length in bits for theadjacency matrix isrbits = lg(b+ 1) + vXi=1(lg(b+ 1) + lg� vki �)= (v + 1) lg(b+ 1) + vXi=1 lg� vki� :3. Determine the number of bits ebits needed to encodethe edges represented by the entries A[i; j] = 1 of theadjacency matrix A. The number of bits needed toencode entry A[i; j] is (lgm) + e(i; j)[1 + lg lu], wheree(i; j) is the actual number of edges between vertex iand j in the graph and m = maxi;j e(i; j). The (lgm)bits are needed to encode the number of edges betweenvertex i and j, and [1+lg lu] bits are needed per edge toencode the edge label and whether the edge is directedor undirected. In addition to encoding the edges, weneed to encode the number of bits (lgm) needed tospecify the number of edges per entry. The total en-coding of the edges isebits = lgm+ vXi=1 vXj=1(lgm+ e(i; j)[1 + lg lu])= lgm+ e(1 + lg lu) + vXi=1 vXj=1A[i; j] lgm= e(1 + lg lu) + (K + 1) lgm;where e is the number of edges in the graph, and K isthe number of 1s in the adjacency matrix A.B. Substructure Discovery without domain knowledgeThe substructure discovery algorithm used by Subdueis a computationally-constrained beam search. The algo-rithm begins with an initial set of substructures matchingevery distinctly-labeled vertex in the graph. Each iteration

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. Y, MONTH 1999DiscoverSubstructure1(S;L)/* S = candidate substructuresL = the user-de�ned limit on the number of substructuresconsidered for expansion */D = fgn = 0S = sort candidate substructures by Compressionwhile (n < L) and (S 6= fg) don = n+ 1s = first(S)insert s into D sorted by CompressionE = s extended in all possible waysfor each e 2 E doevaluate(e) /* evaluate the Compression */if (Compression(e) < Compression(s)) /* pruning */insert e into S sorted by Compressionreturn DFig. 3. The algorithm for the discovery without domain knowledge.through the algorithm selects the best substructure accord-ing to its ability to minimize the description length of theentire graph, and expands the instances of the best sub-structure by one neighboring edge in all possible ways. Thenew unique generated substructures become candidates forfurther expansion. The algorithm searches for the best sub-structure until all possible substructures have been consid-ered or the total amount of computation exceeds a givenlimit. The evaluation of each substructure is guided by theMDL principle.Once the description length (DL) of an expanding sub-structure begins to increase, further expansion of the sub-structure may not yield a smaller description length. As aresult, Subdue makes use of an optional pruning mecha-nism that eliminates substructure expansions from consid-eration when the description lengths for these expansionsincreases (see Figure 3).To represent an input graph using a discovered substruc-ture involves additional overhead to replace the substruc-ture's instances with a pointer to the newly-discovered sub-structure. Therefore, the number of bits needed to repre-sent G, given the discovered substructure S, isI(GjS) = I(G) � nXi=1 I(S) + nXi=1 I(pointer)= I(G) � nI(S) + nI(pointer);where n represents the number of instances found for thediscovered substructure. The second term represents thesum of bits saved over the discovered substructure, andthe last term represents the sum of bits needed for theoverhead.We de�ne a compression measure to evaluate a substruc-ture's ability to compress an input graph as the following:Compression = 1� (DL of compressed graphDL of original graph);where DL of compressed graph is I(GjS) + I(S), andDL of original graph is I(G). If Compression is greater

shape

on

below

C1

R1

S1

circle

rectangleS1
shape

on

S1 S1

below

belowFig. 4. The graph after compression using the discovered substruc-ture S1.than zero, the representation of G using S is used insteadof the original representation, since it required less bits.Both the input graph and the discovered substructurecan be encoded using the above encoding scheme. After asubstructure is discovered, each instance of the substruc-ture in the input graph is replaced by a single vertex repre-senting the entire substructure. Figure 4 showed compres-sion of the input graph in Figure 1 using the discoveredsubstructure.V. Adding domain knowledge to the SUBDUEsystemThe Subdue discovery system was initially developedusing only domain independent heuristics to evaluate po-tential substructures. As a result, some of the discoveredsubstructures may not be useful and relevant to speci�cdomains of interest. For instance, in a programming do-main, the BEGIN and END statements may appear repeti-tively within a program; however, they do not perform anymeaningful function on their own; hence they exhibit lim-ited usefulness. Similarly, in the CAD circuit domain, somesubcircuits or substructures may appear repetitively withinthe data; however, they may not perform meaningful func-tions within the domain of usage. To make Subdue's dis-covered substructures more interesting and useful acrossa wide variety of domains, domain knowledge is added toguide the discovery process. Furthermore, compressing thegraph using the domain knowledge can increase the chanceof realizing greater compression than without using the do-main knowledge.In this section we present two types of domain knowledgethat are used in the discovery process and explain how theybias discovery toward certain types of substructures.A. Model/Structure knowledgeModel/Structure knowledge provides to the discoverysystem speci�c types of structures that are likely to ex-ist in a database and that are of particular interest to ascientist using the system. The model knowledge is orga-nized in a hierarchy that speci�es the connection betweenindividual structures. Nodes of the hierarchical graph canbe classi�ed as either primitive (nondecomposable) or non-primitive. The primitive nodes reside in the lowest level,

DJOKO, COOK AND HOLDER: AN EMPIRICAL STUDY OF DOMAIN KNOWLEDGE AND ITS BENEFITS TO SUBSTRUCTURE DISCOVERY5

Fig. 5. A hierarchical graph.i.e., the leaves, and all nonprimitive nodes reside in thehigher levels of the hierarchy. The primitive nodes repre-sent basic elements of the domain, whereas the nonprimi-tive nodes represent models or structures which consist of aconglomeration of primitive nodes and/or lower-level non-primitive . The higher the node's level, the more complexis the structure it represents. The hierarchy for a particu-lar domain is supplied by a domain expert. The structuresin the hierarchy and their functionalities are well known inthe context of that domain. This knowledge is formed ina bottom-up fashion. Users can extend the hierarchy byadding new models.To illustrate the structure knowledge, a simple exam-ple is shown in Figure 5, representing a hierarchical graphbased on the shape structure. The primitive nodes are tri-angle, square, circle and rectangle. The nonprimitive nodesare built upon the primitive nodes and/or nonprimitivenodes. While Figure 5 represents a hierarchy built usingcommonalities between individuals' shape, in the program-ming and computer aided design (CAD) circuit domain,the hierarchical graphs are built based on commonalitiesbetween individuals' functional structure. For example,in the programming domain, special symbols and reservedwords are represented by primitive nodes, and functionalsubroutines (e.g., swap, sort, increment) are representedby nonprimitive nodes. In the CAD circuit domain, basiccomponents of a circuit (e.g., resistor, transistor) are repre-sented by primitive nodes, and functional subcircuits suchas operational ampli�er, �lter, etc. are represented by nonprimitive nodes. This hierarchical representation allowsexamining of the structure knowledge at various level ofabstraction, focusing the search and reducing the searchspace.A.1 Using model/structure knowledge to guide the discov-eryAlthough the minimum description length principle stilldrives the discovery process, domain knowledge is used toglean certain types of known structures from the inputgraph. First, the modi�ed version of Subdue can be biasedto look speci�cally for structures of the type speci�ed in themodel hierarchy. The discovery process begins by match-

DiscoverSubstructure2(S) /* S = initial substructure */D = fgS = sort initial substructures by Compressionwhile (S 6= fg) docandidate = first(S)M = �nd candidate's modelswhile (size(candidate) � size(M)) doE = candidate extended in all possible waysfor each substructure e 2 E dofor each model m 2M doif (gmatch(e;m) � Threshold) then/* inexact whole graph match */evaluate(e)insert e into L sorted by Compressionreturn Delse if (subgmatch(e;m) � Threshold) then/* inexact subgraph match */evaluate(e)insert e into S sorted by Compressionelse discard ereturn DFig. 6. The algorithm for discovery using the domain knowledge.ing a single vertex in the input graph to primitive nodesof the model knowledge hierarchy. If the primitive nodesdo not match the input vertices, the higher level nodesof the hierarchy are pursued. The models in the hierarchypointed to by the matched vertex in the input graph are se-lected as candidate models and are matched with the inputsubstructure. Each iteration through the process, Subdueselects a substructure from the input graph which providesthe best match to the one of selected models, and whichcan be used to compress the input graph. The match caneither be a subgraph match or a whole graph match. Ifthe match is a subgraph match, Subdue expands the in-stances of the best substructure by one neighboring edgein all possible ways. The newly generated substructure be-comes a candidate for the next iteration. However, if thematch is a whole graph match, the process has found thedesired substructure, and the chosen substructure is usedto compress the entire input graph. The process continuesto expand the substructure until either a substructure hasbeen found or all possible substructures have been consid-ered (see Figure 6).To represent an input graph using a discovered substruc-ture from the model hierarchy, the representation incursadditional overhead to replace the substructure's instanceswith a pointer to the model hierarchy. In addition to thisoverhead, some domains involve extra parameters. Con-sider an example in the programming domain where a sub-structure of the model hierarchy (e.g., Sort(a; b), where aand b are dummy variables) is discovered in a program.Subdue replaces each of the discovered substructure's in-stances with Sort(ai; bi), where Sort is a pointer to themodel hierarchy, and ai and bi are parameters of the ithinstance.Therefore, the number of bits needed to represent G,given substructure S which matches model M , isI(GjM) = I(G)� nXi=1 I(S) + nXi=1 I(pointer) + nXi=1 I(parametersi)

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. Y, MONTH 1999= I(G) � nI(S) + nI(pointer) + nXi=1 I(parametersi);where n represents the number of instances found for thediscovered substructures. The second term represents thesum of the bits saved over the discovered substructure, andthe last two terms represent the sum of bits needed for theoverhead.When the substructure only matches part of a modelgraph (subgraph match), then representing the model in-cludes an overhead associated with specifying the path tothe model in the hierarchy (I(path)), and the mapping ofall substructure's vertices and edges to part of the model'svertices and edges (I(mappingv) and I(mappinge)). Themapping describes the number of vertices of the model, thenumber of edges of the model, and which vertices and edgesof the model are matched to the substructure. However,when the substructure matches all parts of model graph(whole graph match), there is no need to indicate the map-ping, because we assume the same order of vertex and edgelabels in each graph.Hence, the number of bits needed to represent M isI(M) = I(path) + I(mappingv) + I(mappinge):I(path) is encoded as a path in the hierarchy of modelknowledge, where a path is initiated at the matched nodeand terminated at the found model.I(path) = Level� lg lh;where Level is the depth of model in the hierarchy and lhis the number of unique models in the hierarchy.I(mappingv) is encoded as the following:I(mappingv) = lgnvs + lg�nvmnvs � ;where nvs is the number of substructure vertices and nvm isthe number of model vertices. The �rst term describes howmany vertices are mapped, and the second term describeswhich vertices are mapped.Similarly, I(mappinge) is encoded as the following:I(mappinge) = lgnes + lg�nemnes � ;where nes is the number of substructure edges and nem isthe number of model edges. The �rst term describes howmany edges are mapped, and the second term describeswhich edges are mapped.The description length of the compressed graph isI(GjM) + I(M):Therefore, if the portion of the substructure representedby the model is too small, the savings may not cover theoverhead cost. If Compression is greater than zero, therepresentation of G using S which matches the model Mis used instead of the original representation.

After a substructure is discovered, each instance of thesubstructure in the input graph is replaced by a pointerto a prede�ned model in the model hierarchy representsthe substructure S. DiscoverSubstructure2 is repeatedon the newly compressed input graph until no more sub-structures can be found. The newly compressed graph is in-put into DiscoverSubstructure1 to discover new substruc-tures. DiscoverSubstructure1 is repeated until no moresubstructures can be discovered.B. Graph match rulesAt the heart of the Subdue system lies an inexact graphmatch algorithm that �nds instances of a substructure def-inition. The graph match is used to identify isomorphicsubstructures in the input graph. Since many of thosesubstructures could show up in a slightly di�erent formthroughout the data, and each of these di�erences is de-scribed in terms of basic transformations performed by thegraph match, we can use graph match rules to assign eachtransformation a cost based on the domain of usage. Thistype of domain-speci�c information is represented using if-then rules such as the following:IF (domain = x) and (perform graph match transforma-tion y)THEN (graph match cost = z)To illustrate this rule, consider an example in the pro-gramming domain. We allow a vertex representing a vari-able to be substituted by another variable vertex, and donot allow a vertex representing an operator which is a spe-cial symbol, a reserved word, or a function call, to be sub-stituted by another vertex. These rules can then be repre-sented as the following:IF (domain = programming) and (substitute variablevertex)THEN graph match cost = 0.0;IF (domain = programming) and (substitute operatorvertex)THEN graph match cost = 2.0The graph match rules allow a speci�cation of theamount of acceptable generality between a substructurede�nition and its instances, or between a model de�ni-tion and its instances in the domain graph. Given g1,g2, and a set of distortion costs, the actual computationof matchcost(g1; g2) can be performed using a tree searchprocedure. As long as matchcost(g1; g2) does not exceedthe threshold set by the user, the two graphs g1 and g2 areconsidered to be isomorphic.VI. Computational complexity analysisSince knowledge discovery algorithms should scale foruse on large databases, the issue of computational com-plexity is very signi�cant. The algorithms employed bySubdue are computationally expensive. For example, an

DJOKO, COOK AND HOLDER: AN EMPIRICAL STUDY OF DOMAIN KNOWLEDGE AND ITS BENEFITS TO SUBSTRUCTURE DISCOVERY7unconstrained graph match is exponential in the numberof graph vertices. In practice, Subdue employs constraintsthat makes the program more scalable. Since the algorithmspends most of its time perform graph matches, the to-tal running time of the algorithm can be expressed as thenumber of search vertices expanded during graph matchesthroughout the entire discovery process. In this section,the computational complexity of algorithms employed bySubdue is analyzed. We show how the algorithm can avoidexponential behavior, and we generate an upper bound onthe complexity of Subdue as a function of the number ofvertices in the input graph. Additionally, the algorithmwithout using domain knowledge and the algorithm usingdomain knowledge are compared.In what follows, we will be using the following de�nitions:� L = the user-de�ned limit on the number of substruc-tures considered for expansion� nv = the number of vertices in the input graph� nsub = the total number of substructures that can begenerated� gm = the user-de�ned maximum number of partialmappings that are considered during each graphmatch� ninst = the total number of instances of a given sub-structure� m = the maximum number of model vertices in themodel knowledge� M = the average model branching factor in the modelknowledge� MC = the average number of models that are parentsof other models in the model kowledge� N1 = the total number of vertices expanded in Subduewithout using domain knowledge� N2 = the total number of vertices expanded in Subdueusing model knowledge and graph match rulesA. Complexity without domain knowledgeThis section provides an expression for the run-time re-quirement of the algorithm without using domain knowl-edge, showing that it depends on the number of vertices inthe input graph and the limitations set by the user.Since the algorithm spends most of its time performgraph match, the total running time of the algorithm canbe expressed asN1 = nsub� ninst � gm:Considering an upper bound time complexity, assumethe input graph is a fully connected graph, where the num-ber of neighbors for a given vertex is (nv � 1), the maxi-mum size of a substructure generated in iteration i of the al-gorithm is i vertices, and the number of vertices which havealready been considered in previous iterations is (i � 1).Hence, the total number of vertices that can be expandedis ((nv � 1) � (i � 1)). Therefore, the total number ofsubstructures that can be generated isnsub = LXi=1(i� ((nv � 1)� (i� 1))):

The total number of instances needed to be compared fora given substructure is a�ected by the instances of the sub-structure itself and the instances of the substructure's par-ent. For a substructure with i vertices, the maximum num-ber of nonoverlapping instances is nvi . Since we consideran upper bound case, the maximum number of nonoverlap-ping instances is nv. Hence, the total number of instancesneeded to be compared for a given substructure isninst = nv � (L� 1):We have shown that by placing a limit on gm and L, thetime complexity for the graph match is polynomial in nv. Ifeither of the two limits L or gm is removed, the complexityof the discovery algorithm becomes exponential in nv. Aparallel implementation of Subdue that is underway mayfurther improve the scalability of the algorithm.B. Complexity using domain knowledgeThis section provides an expression for the run-time re-quirement of the algorithm using domain knowledge, show-ing that it depends on the number of vertices in the inputgraph, the limitations set by the user, and the model knowl-edge used. We will point out that for the upper boundcase, the number of vertices expanded for discovery usingdomain knowledge can be less than the number of verticesexpanded for discovery without using domain knowledgeunder certain circumstances.Since the algorithm not only searches for the instances ofa substructure, it also searches for a model in the model hi-erarchy which matches the substructure, the total runningtime of the algorithm can be expressed asN2 = (nsub� ninst � gm) + (nsub�M �MC � gm);where the �rst term represents the number of verticesexpanded for the search of substructures' instances, and thesecond term represents the number of vertices expanded forthe search of a model in the model hierarchy.The maximum number of expanded vertices for a sub-structure is limited to the maximum number of vertices ofa model in the model hierarchy (m). Hence, the number ofiterations is limited tom. Therefore, nsub can be expressedas nsub = mXi=1 i� ((nv � 1)� (i� 1)):The total number of instances needed to be comparedfor a given substructure isninst = nv � (m� 1):We have shown that by placing a limit on gm, the timecomplexity for the graph match algorithm is polynomial innv. If the gm limitation is removed, the complexity of thediscovery algorithm becomes exponential in nv.(M � MC) is dependent upon the size of the modelknowledge. In general, L is set to half of the input graph,

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. Y, MONTH 1999gm is set to the forth power of the size of a substruc-ture or model, whichever is bigger. Therefore, L is muchlarger than m. When the size of a substructure is big,which means that (M �MC) is small compared to gm,and (M � MC) is negligible, the number of vertices ex-panded for discovery using domain knowledge is less thannumber of vertices expanded for discovery without domainknowledge.In conclusion, the number of vertices expanded fordiscovery using domain knowledge and without domainknowledge depends on the size of the input graph andmodel knowledge (m;M;MC), the size of the discoveredsubstructures, and the limitations set by the user.VII. Evaluation of SUBDUE'Sdomain-independent versusdomain-dependent discoveryIn this section, we evaluate the bene�ts and costs of uti-lizing the domain-speci�c information to perform substruc-ture discovery. We will measure the performance of Sub-due with and without domain-speci�c information whenapplied to databases in the programming, circuit, and ar-ti�cial domains. The goals of our substructure discoverysystem are to e�ciently �nd substructures that can reducethe description length needed to describe the data, and todiscover substructures that are considered useful for thegiven domain.To evaluate Subdue, we apply human ratings to eachof Subdue's discovered substructures. If the approachdemonstrates some validity, Subdue should prefer sub-structures which were rated highly by humans. Two typesof discovered substructures are evaluated: 1) substructuresdiscovered without using the domain knowledge, and 2)substructures discovered using domain knowledge. Theperformance of the system is measured along three dimen-sions: 1) compression, which shows a substructure's abilityto compress an input graph, 2) number of search verticesexpanded by Subdue, which indicates the time to discovera substructure, and 3) average evaluation value and stan-dard deviation of human rating, which measure the inter-estingness of a substructure according to human experts.The interestingness of Subdue's discovered substructuresare rated by a group of 8 domain experts on a scale of 1to 5, where 1 means not useful in the domain and 5 meansvery useful. The number of instances of the discoveredsubstructure that exist in the input database is also listed.The discovered substructures are plotted, and groupedinto �gures. Substructures inside the boxes indicate sub-structures discovered in earlier iterations. Therefore, ifthe newly discovered substructures are de�ned in terms ofpreviously discovered substructure concepts, the substruc-ture de�nitions form a hierarchy of substructure concepts.Numbers inside the circles indicate the iteration in whichthe substructures are discovered.A. Evaluation of substructures in programming domainThe discovery of familiar structures in a program canhelp a programmer to understand the function and mod-

sorted = 0; /* bubble sort */while (sorted == 0)sorted = 1;for (j = 0; j < listsize� 1; j ++)if (list[j] > list[j + 1])temp = list[j];list[j] = list[j + 1];list[j + 1] = temp;sorted = 0;for (gap = n=2; gap > 0; gap = gap=2) /* shell sort */for (i = gap; i < n; i++)for (j = i� gap; j >= 0 && v[j] > v[j + gap]; j = j � gap)temp = v[j];v[j] = v[j + gap];v[j + gap] = temp;/* bubble sort operates as a type of selection sort */for (i = n; i > 0; i��)for (j = 2; j >= i; j ++)if (a[j � 1] > a[j])t = a[j � 1];a[j � 1] = a[j];a[j] = t;Fig. 7. Part of a sample program concatenating three di�erent sortprocedures.ularity of the code. The recognition of substructures fromthe domain knowledge helps in understanding the codes,and the discovery of repetitive and functional substructureshelps in modularizing the codes. Hence, Subdue helps de-scribe a program which in turn helps facilitate many tasksthat require program understanding, e.g., maintenance andtranslation.In this domain, the model graphs are built based oncommonalities between subroutines' functional structure.For example, special symbols and reserved words are rep-resented by primitive nodes, and functional subroutines(e.g., swap, sort, increment) are represented by nonprimi-tive nodes. Furthermore, the graph match rule is used toallow two variables to be matched as long as their bindingis consistent.In order to determine the value of substructures discov-ered by Subdue, we concatenate three di�erent sort rou-tines (written in C) into one program (see Figure 7), andtransform it into a graph representation which is indepen-dent of the source language.The description length of the sample program shown inFigure 7 is 2598.99 (in bits). Figure 8 shows discoveredsubstructures without domain knowledge from the sampleprogram. Figure 9 demonstrates discovered substructuresusing domain kowledge.The substructures discovered without domain knowledgeyield low human ratings. The overall compression achievedis 0.11, and the total number of search vertices consideredis 118,950. On the other hand, the discovered substructureusing domain knowledge receive very high human rating,because the substructure represent a conditional swap func-tion, which is useful to programming experts. The overallcompression achieved is 0.2 and the total number of searchvertices considered is 21,648. The results demonstrate thatthe discovery using domain knowledge achieve better hu-man rating and compression than the discovery without

DJOKO, COOK AND HOLDER: AN EMPIRICAL STUDY OF DOMAIN KNOWLEDGE AND ITS BENEFITS TO SUBSTRUCTURE DISCOVERY9
Discovered Substructures
Without Domain Knowledge Compression

Number
of Vertices
Expanded

Number of
Instances

next

=

=

1

var

compl

no

i

j >=

2 =

=

next

j
var

0.07

0.04

68,386

50,564

9

2

Average
Human
Rating
[std dev]

1.33[1.2]

2.0[1.4]

Fig. 8. Program{Discovered substructures without domain knowl-edge.
Discovered Substructures
Without Domain Knowledge Compression

Number
of Vertices
Expanded

Number of
Instances

0.07

Average
Human
Rating
[std dev]

17,974 4.8[0.41] 2

compl compr

yes
val

no
var

next

parameter

>

=

a[j−1]

t

a[j]

j

Increment_by_one

=

=

next

next

a[j−1]
var

var

a[j−1]

a[j]

t

a[j]

val

val

Fig. 9. Program{Discovered substructures using domain knowledge.domain knowledge. Futhermore, the number of search ver-tices considered for discovery using domain knowledge issigni�cantly less than discovery without domain knowl-edge.B. Evaluation of substructures in CAD circuit domainAs a result of increased complexity of design and changesin the implementation technologies of integrated electroniccircuitry, the discovery of familiar structures in circuitrycan help a designer to understand the design, and to iden-tify common reusable parts in circuitry.We evaluate Subdue by using CAD circuit data repre-senting a sixth-order bandpass \leapfrog" ladder [23]. Thecircuit is made up of a chain of somewhat similar structures

+

−

op

c

r
edge opin1

opin2
opout

c

tr op

gnd

t
edge

edge edge

circuit graph representation

Fig. 10. The transformation from a sample circuit into a graphrepresentation.
+ −

+−

+− +−+−

+−

+ −

+−

+−Fig. 11. Bandpass \leapfrog": sixth-order.(see Figure 11). We transform the circuit into a graph rep-resentation in which the component units and interconnec-tion between several component units appear as verticesand the current ows appear as edges (see Figure 10).In this domain, the hierarchical graphs are built based oncommonalities between circuits' functional structure. Forexample, basic components of a circuit (e.g., resistor, tran-sistor) are represented by primitive nodes, and functionalsubcircuits such as operational ampli�er, �lter, etc. arerepresented by nonprimitive nodes. Furthermore, a graphmatch rule is used to allow two similar components withdi�erent labels to be matched.The description length of the circuit shown in Figure11 is 3139.05 (in bits). Figure 12 shows discovered sub-structures of the circuit without domain knowledge andFigure 13 shows discovered substructures of circuit usingdomain knowledge.When the domain knowledge is used, all of the discov-ered substructures receive very high human ratings, be-cause the substructures represent functional circuits. Theoverall compression achieved is 0.79, and the total num-ber of vertices expanded is 161,515. When the domainknowledge is not used, the discovered substructures receivelower human ratings. The �rst substructure obtains a highhuman rating, because the substructure represents an in-verter and appears many times in the input graph. Theoverall compression achieved is 0.72, and the total num-ber of search vertices considered is 677,678. The resultsagain reveal that discovery using domain knowledge o�ersbetter human ratings and greater compression than discov-ery without domain knowledge. Additionally, the numberof search vertices considered using domain knowledge is

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. Y, MONTH 1999
1

+

−

2
+

−
+

−

3 +

−
+

−

+

−

3

Compression Nodes
Expanded

Instances

0.63

0.68

0.72

571,370

46,422

59.886

Human
Rating
[std dev]

4.2 [1.2]

2.7 [1.2]

2.7 [1.0]

9

3

2

Discovered Substructures without
domain knowledge

Fig. 12. CAD circuit{Discovered substructures without domainknowledge.
1

Compression Nodes
Expanded

InstancesHuman
Rating
[std dev]

Discovered Substructures
using domain knowledge

+

−
+

−

+

−
+

−

+

−

0.18

0.33

8,107

119,047

3.7[1.0]

4.5[0.8]

3

2

Fig. 13. CAD circuit{Discovered substructures using domain knowl-edge.smaller than without domain knowledge.C. Evaluation of substructures in the arti�cial domainWhile we have evaluated the result of discovery using do-main knowledge in two domains, we also examine whethersuch domain knowledge is useful in general. We would liketo evaluate whether the use of domain knowledge can im-prove Subdue's average case performance in an arti�cially-controlled graph.To test this performance, we create two tests. Firstly, anarti�cial substructure is created and is embedded in largergraphs of varying sizes. The graphs vary in terms of graphsize and the amount of deviation in the substructure's in-

Derivation

C
om

pr
es

si
on

a) without domain knowledge
b) using domain knowledge

0 0.5−0.5 1 1.5 2 2.5
0.1

0.2

0.3

0.4

0.5

0.6

Fig. 14. Deviation versus compression.
Nu

m
be

r o
f v

er
tic

es
 e

xp
an

de
d

Derivation

a) without domain knowledge
b) using domain knowledge

0 0.5−0.5 1 1.5 2 2.5
0

2 10

4 10

6 10

8 10

1 10

1.2 10

1.4 10

5

6

5

5

5

6

6

Fig. 15. Deviation versus number of vertices expanded.stances, but are constant with respect to the percentage ofthe graph that is covered by the substructure's instances.For each deviation value, we run Subdue on the graphsuntil no more compression can be achieved with cases: a)without domain knowledge, b) with domain knowledge.The e�ects of the varying deviation values are measuredagainst the average compression value (Figure 14), the av-erage number of vertices expanded (Figure 15) , and theaverage number of embedded instances discovered (Fig-ure 16). As the amount of deviation increases, the com-pression in all cases decreases as expected, except at thedeviation of 1.5. A slight increase in compression at 1.5 isdue to the randomness of the data. Case (b) yields bettercompression and expand lesser vertices than case (a). Thenumber of vertices expanded by case (b) remains aboutthe same for all deviations, because the same instances (ofthe same size) are discovered consistently. Furthermore,as the deviation is increased, case (b) is capable of �ndingembedded instances, and case (a) is not capable of �ndingembedded instances for a slight increase in deviation.Secondly, we again embed an arti�cial substructure into

DJOKO, COOK AND HOLDER: AN EMPIRICAL STUDY OF DOMAIN KNOWLEDGE AND ITS BENEFITS TO SUBSTRUCTURE DISCOVERY11

Derivation

a) without domain knowledge
b) using domain knowledge

N
um

be
r o

f e
m

be
dd

ed
 in

st
an

ce
s

fo
un

d

0 0.5−0.5 1 1.5 2 2.5
−1

0

1

2

3

4

5

Fig. 16. Deviation versus number of instances found.
a) without domain knowledge
b) using domain knowledge

N
um

be
r o

f e
m

be
dd

ed
 in

st
an

ce
s

fo
un

d

2.5
−1

0

1

2

3

4

5

Coverage
0 0.2 0.4 0.6 0.8 1Fig. 17. Coverage versus number of instances found.a larger graphs of varying sizes. Each of the graphs varies inthe size, as well as the amount of the input graph coveredby the embedded substructure. For each coverage value,we evaluate the same two cases. The e�ect of the varyingcoverage values are measured against the average numberof embedded instances discovered (Figure 17). As the cov-erage is increased, case (b) �nds an increasing number ofembedded instances. Case (a) does not �nd any instance.The e�ects con�rm the results demonstrated by the ap-plication domains. Therefore, we conclude that Subdueusing domain knowledge is capable of discovering usefulsubstructures, achieving better compression, and focusingthe search for concepts.VIII. ConclusionsSubdue is a system devised for experimenting withgeneral-purpose automated discovery using domain knowl-edge, allows the domain knowledge to be generic, and canbe reused over a class of similar applications. Hence, themethod can be applied to many structural domains.

This paper describes the process by which a scientistreduces the complexity of a problem by applying what isknown and abstracting detail in the form of regular struc-ture. For the domains of CAD circuit, programming, Sub-due has shown success in compressing data and discoveringuseful substructures. Subdue can aid the scientist in re-ducing the complexity of the data and may uncover newconcepts of importance to the domain. Results indicatethat discovery using domain-speci�c knowledge has betterchance of discovering substructures which are useful to do-main experts, leads to greater compression of the data, hasbetter performance than the results of discovery withoutusing domain knowledge.A parallel implementation of Subdue is underway thatmay further improve the scalability of the algorithm. Par-allelization on a MIMD machine by distributing the searchspace will allow Subdue to scale up to much largerdatabases without signi�cant increase in processing time.References[1] P. Cheeseman, J. Kelly, M. Self, J. Stutz, W. Taylor, and D. Free-man, \Autoclass: A bayesian classi�cation system", in Proceed-ings of the Fifth International Workshop on Machine Learning,1988, pp. 54{64.[2] D. H. Fisher, \Knowledge acquisition via incremental conceptualclustering", Machine Learning, vol. 2, pp. 139{172, 1987.[3] W. J. Frawley, G. Piatetsky-Shapiro, and editors C. J. Matheus,Knowledge Discovery in Databases, AAAI Press / The MITPress, 1991.[4] J. R. Quinlan, \Induction of decision trees", Machine Learning,vol. 1, pp. 81{106, 1986.[5] J. R. Quinlan and R. L. Rivest, \Inferring decision trees usingthe minimum description length principle", Information andComputation, vol. 80, pp. 227{248, 1989.[6] D. J. Cook, L. B. Holder, and S. Djoko, \Knowledge discov-ery from structural data", Journal of Intelligent InformationSystems, vol. 5, no. 3, pp. 229{245, 1995.[7] D. Conklin, S. Fortier, J. Glasgow, and F. Allen, \Discovery ofspatial concepts in crystallographic databases", in Proceedingsof the Ninth International Machine Learning Workshop, 1992,pp. 111{116.[8] R. Levinson, \A self-organizing retrieval system for graphs",in Proceedings of the Second National Conference on Arti�cialIntelligence, 1984, pp. 203{206.[9] J. Segen, \Learning graph models of shape", in Proceedings ofthe �fth International Conference on Machine Learning, 1988,pp. 29{35.[10] K. Thompson and P. Langley, \Concept formation in structureddomains", in Concept Formation: Knowledge and Experiencein Unsupervised Learning, D. H. Fisher and M. Pazzani, Eds.Morgan Kaufmann Publishers, Inc., 1991.[11] P. H. Winston, \Learning structural descriptions from exam-ples", in The Psychology of Computer Vision, P. H. Winston,Ed., pp. 157{210. McGraw-Hill, 1975.[12] A. K. C. Wong and M. You, \Entropy and distance of randomgraphs with application to structural pattern recognition", IEEETransactions on Pattern Analysis and Machine Intelligence, vol.7, no. 5, pp. 599{609, 1985.[13] H. Bunke and G. Allermann, \Inexact graph matching for struc-tural pattern recognition", Pattern Recognition Letters, vol. 1,no. 4, pp. 245{253, 1983.[14] A. Sanfeliu and K. S. Fu, \A distance measure between at-tributed relational graphs for pattern recognition", IEEE Trans-actions on Systems, Man and Cybernetic, vol. 13, pp. 353{362,1983.[15] K. Yoshida, H. Motoda, and N. Indurkhya, \Unifying learningmethods by colored digraphs", in Proceedings of the Learningand Knowledge Acquisition Workshop at IJCAI-93, 1993.[16] D. J. Cook and L. B. Holder, \Substructure discovery using min-imum description length and background knowledge", Journalof Arti�cial Intelligence Research, vol. 1, pp. 231{255, 1994.

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. Y, MONTH 1999[17] J. Rissanen, Stochastic Complexity in Statistical Inquiry, WorldScienti�c Publishing Company, 1989.[18] Y. G. Leclerc, \Constructing simple stable descriptions for imagepartitioning", International Journal of Computer Vision, vol.3, no. 1, pp. 73{102, 1989.[19] E. P. D. Pednault, \Some experiments in applying inductiveinference principles to surface reconstruction", in Proceedingsof the International Joint Conference on Arti�cial Intelligence,1989, pp. 1603{1609.[20] A. Pentland, \Part segmentation for object recognition", NeuralComputation, vol. 1, pp. 82{91, 1989.[21] M. Derthick, \A minimal encoding approach to feature dis-covery", in Proceedings of the Ninth National Conference onArti�cial Intelligence, 1991, pp. 565{571.[22] R. B. Rao and S. C. Lu, \Learning engineering models with theminimum description length principle", in Proceedings of theTenth National Conference on Arti�cial Intelligence, 1992, pp.717{722.[23] L. T. Bruton, RC-Active Circuits Theory and Design, PrenticeHall, 1980. Surnjani Djoko received the B.S.E.E. de-gree from Tamkang University, Taiwan, R.O.C.in 1986, the M.S.E.E. degree and the Ph.D.degree in Computer Science and Engineeringfrom the University of Texas at Arlington, TX,in 1989 and 1995, respectively. Her researchinterests have been in the areas of knowledgediscovery in databases, machine learning, sta-tistical methods for inducing models from data,and parallel algorithms. She is currently aMember of Scienti�c Sta� at Bell Northern Re-search, Richardson, TX.Diane Cook is an Assistant Professor in theComputer Science and Engineering Depart-ment at the University of Texas at Arlington.Dr. Cook received her B.S. fromWheaton Col-lege in 1985, and her M.S. and Ph.D. from theUniversity of Illinois in 1987 and 1990, respec-tively. Dr. Cook's research interests include ar-ti�cial intelligence, machine planning, machinelearning, robotics, and parallel algorithms forarti�cial intelligence.Lawrence Holder is currently an AssistantProfessor in the Department of Computer Sci-ence and Engineering at the University ofTexas at Arlington. He received his M.S. andPh.D. degrees in Computer Science from theUniversity of Illinois at Urbana-Champaign in1988 and 1991. He received his B.S. degree inComputer Engineering also from the Univer-sity of Illinois at Urbana-Champaign in 1986.Dr. Holder's research interests include arti�-cial intelligence and machine learning.

