
3

Graph-based Mining of Complex Data

Diane J. Cook, Lawrence B. Holder, Jeff Coble and Joseph Potts

Summary. We describe an approach to learning patterns in relational data rep-
resented as a graph. The approach, implemented in the Subdue system, searches
for patterns that maximally compress the input graph. Subdue can be used for
supervised learning, as well as unsupervised pattern discovery and clustering.

Mining graph-based data raises challenges not found in linear attribute–value
data. However, additional requirements can further complicate the problem. In par-
ticular, we describe how Subdue can incrementally process structured data that
arrives as streaming data. We also employ these techniques to learn structural con-
cepts from examples embedded in a single large connected graph.

3.1 Introduction

Much of current data-mining research focuses on algorithms to discover sets
of attributes that can discriminate data entities into classes, such as shop-
ping or banking trends for a particular demographic group. In contrast, we
are developing data-mining techniques to discover patterns consisting of com-
plex relationships between entities. The field of relational data mining, of
which graph-based relational learning is a part, is a new area investigating
approaches to mining relational information by finding associations involving
multiple tables in a relational database.

Two main approaches have been developed for mining relational infor-
mation: logic-based approaches and graph-based approaches. Logic-based ap-
proaches fall under the area of inductive logic programming (ILP) [16]. ILP
embodies a number of techniques for inducing a logical theory to describe
the data, and many techniques have been adapted to relational data mining
[6]. Graph-based approaches differ from logic-based approaches to relational
mining in several ways, the most obvious of which is the underlying represen-
tation. Furthermore, logic-based approaches rely on the prior identification
of the predicate or predicates to be mined, while graph-based approaches are
more data-driven, identifying any portion of the graph that has high support.
However, logic-based approaches allow the expression of more complicated

76 Diane J. Cook, Lawrence B. Holder, Jeff Coble and Joseph Potts

patterns involving, e.g., recursion, variables, and constraints among variables.
These representational limitations of graphs can be overcome, but at a com-
putational cost.

Our research is particularly applicable to domains in which the data is
event-driven, such as counter-terrorism intelligence analysis, and domains
where distinguishing characteristics can be object attributes or relational at-
tributes. This ability has also become a crucial challenge in many security-
related domains. For example, the US House and Senate Intelligence Commit-
tees’ report on their inquiry into the activities of the intelligence community
before and after the September 11, 2001 terrorist attacks revealed the necessity
for “connecting the dots” [18], that is, focusing on the relationships between
entities in the data, rather than merely on an entity’s attributes. A natu-
ral representation for this information is a graph, and the ability to discover
previously-unknown patterns in such information could lead to significant im-
provement in our ability to identify potential threats. Similarly, identifying
characteristic patterns in spatial or temporal data can be a critical compo-
nent in acquiring a foundational understanding of important research in many
of the basic sciences.

Problems of such complexity often present additional challenges, such as
the need to assimilate incremental data updates and the need to learn models
from data embedded in a single input graph. In this article we review tech-
niques for graph-based data mining and focus on a method for graph-based
relational learning implemented in the Subdue system. We describe meth-
ods of enhancing the algorithm to handle challenges associated with complex
data, such as incremental discovery of streaming structural data and learning
models from embedded instances in supervised graphs.

3.2 Related Work

Graph-based data mining (GDM) is the task of finding novel, useful, and
understandable graph-theoretic patterns in a graph representation of data.
Several approaches to GDM exist, based on the task of identifying frequently
occurring subgraphs in graph transactions, i.e., those subgraphs meeting a
minimum level of support. Kuramochi and Karypis [15] developed the FSG
system for finding all frequent subgraphs in large graph databases. FSG starts
by finding all frequent single and double edge subgraphs. Then, in each itera-
tion, it generates candidate subgraphs by expanding the subgraphs found in
the previous iteration by one edge. In each iteration the algorithm checks how
many times the candidate subgraph occurs within an entire graph. The candi-
dates whose frequency is below a user-defined level are pruned. The algorithm
returns all subgraphs occurring more frequently than the given level.

Yan and Han [19] introduced gSpan, which combines depth-first search
and lexicographic ordering to find frequent subgraphs. Their algorithm starts
from all frequent one-edge graphs. The labels on these edges, together with

3.3 Graph-based Relational Learning in Subdue 77

labels on incident vertices, define a code for every such graph. Expansion of
these one-edge graphs maps them to longer codes. The codes are stored in a
tree structure such that if α = (a0, a1, ..., am) and β = (a0, a1, ..., am, b), the
β code is a child of the α code. Since every graph can map to many codes, the
codes in the tree structure are not unique. If there are two codes in the code
tree that map to the same graph and one is smaller than the other, the branch
with the smaller code is pruned during the depth-first search traversal of the
code tree. Only the minimum code uniquely defines the graph. Code ordering
and pruning reduces the cost of matching frequent subgraphs in gSpan.

Inokuchi et al. [12] developed the Apriori-based Graph Mining (AGM)
system, which uses an approach similar to Agrawal and Srikant’s [2] Apriori
algorithm for discovering frequent itemsets. AGM searches the space of fre-
quent subgraphs in a bottom-up fashion, beginning with a single vertex, and
then continually expanding by a single vertex and one or more edges. AGM
also employs a canonical coding of graphs in order to support fast subgraph
matching. AGM returns association rules satisfying user-specified levels of
support and confidence.

We distinguish graph-based relational learning (GBRL) from graph-based
data mining in that GBRL focuses on identifying novel, but not necessarily
the most frequent, patterns in a graph representation of data [10]. Only a few
GBRL approaches have been developed to date. Subdue [4] and GBI [20] take
a greedy approach to finding subgraphs, maximizing an information theoretic
measure. Subdue searches the space of subgraphs by extending candidate sub-
graphs by one edge. Each candidate is evaluated using a minimum description
length metric [17], which measures how well the subgraph compresses the in-
put graph if each instance of the subgraph were replaced by a single vertex.
GBI continually compresses the input graph by identifying frequent triples
of vertices, some of which may represent previously-compressed portions of
the input graph. Candidate triples are evaluated using a measure similar to
information gain. Kernel-based methods have also been used for supervised
GBRL [14].

3.3 Graph-based Relational Learning in Subdue

The Subdue graph-based relational learning system1 [4, 5] encompasses several
approaches to graph-based learning, including discovery, clustering and super-
vised learning, which will be described in this section. Subdue uses a labeled
graph G = (V,E,L) as both input and output, where V = {v1, v2, . . . , vn} is
a set of vertices, E = {(vi, vj)|vi, vj ∈ V } is a set of edges, and L is a set of la-
bels that can appear on vertices and edges. The graph G can contain directed
edges, undirected edges, self-edges (i.e., (vi, vi) ∈ E), and multi-edges (i.e.,

1Subdue source code, sample data sets and publications are available at
ailab.uta.edu/subdue.

78 Diane J. Cook, Lawrence B. Holder, Jeff Coble and Joseph Potts

more than one edge between vertices vi and vj). The input graph need not be
connected, but the learned patterns must be connected subgraphs (called sub-
structures) of the input graph. The input to Subdue can consist of one large
graph or several individual graph transactions and, in the case of supervised
learning, the individual graphs are classified as positive or negative examples.

3.3.1 Substructure Discovery

Subdue searches for a substructure that best compresses the input graph.
Subdue uses a variant of beam search for its main search algorithm. A sub-
structure in Subdue consists of a subgraph definition and all its occurrences
throughout the graph. The initial state of the search is the set of substructures
consisting of all uniquely labeled vertices. The only operator of the search is
the ExtendSubstructure operator. As its name suggests, it extends a substruc-
ture in all possible ways by a single edge and a vertex, or by only a single
edge if both vertices are already in the subgraph.

The search progresses by applying the ExtendSubstructure operator to each
substructure in the current state. The resulting state, however, does not con-
tain all the substructures generated by the ExtendSubstructure operator. The
substructures are kept on a queue and are ordered based on their description
length (sometimes referred to as value) as calculated using the MDL principle
described below.

The search terminates upon reaching a user-specified limit on the number
of substructures extended, or upon exhaustion of the search space. Once the
search terminates and Subdue returns the list of best substructures found, the
graph can be compressed using the best substructure. The compression pro-
cedure replaces all instances of the substructure in the input graph by single
vertices, which represent the substructure definition. Incoming and outgoing
edges to and from the replaced instances will point to, or originate in the
new vertex that represents the instance. The Subdue algorithm can be in-
voked again on this compressed graph. This procedure can be repeated a
user-specified number of times, and is referred to as an iteration.

Subdue’s search is guided by the minimum description length (MDL) [17]
principle, which seeks to minimize the description length of the entire data
set. The evaluation heuristic based on the MDL principle assumes that the
best substructure is the one that minimizes the description length of the input
graph when compressed by the substructure [4]. The description length of the
substructure S given the input graph G is calculated as DL(S) + DL(G|S),
where DL(S) is the description length of the substructure, and DL(G|S) is
the description length of the input graph compressed by the substructure. De-
scription length DL() is calculated as the number of bits in a minimal encoding
of the graph. Subdue seeks a substructure S that maximizes compression as
calculated in Equation (3.1).

Compression =
DL(S) + DL(G|S)

DL(G)
(3.1)

3.4 Supervised Learning from Graphs 79

As an example, Figure 3.1a shows a collection of geometric objects de-
scribed by their shapes and their “ontop” relationship to one another. Fig-
ure 3.1b shows the graph representation of a portion (“triangle on square”) of
the input graph for this example and also represents the substructure minimiz-
ing the description length of the graph. Figure 3.1c shows the input example
after being compressed by the substructure.

S1

S1 S1 S1

object

object

triangle

square

on

shape

shape

(a) Input (b) Substructure (c) Compressed

Fig. 3.1. Example of Subdue’s substructure discovery capability.

3.3.2 Graph-Based Clustering

Given the ability to find a prevalent subgraph pattern in a larger graph and
then compress the graph with this pattern, iterating over this process until
the graph can no longer be compressed will produce a hierarchical, conceptual
clustering of the input data. On the ith iteration, the best subgraph Si is used
to compress the input graph, introducing new vertices labeled Si in the graph
input to the next iteration. Therefore, any subsequently-discovered subgraph
Sj can be defined in terms of one or more Si, where i < j. The result is a
lattice, where each cluster can be defined in terms of more than one parent
subgraph. For example, Figure 3.2 shows such a clustering done on a portion
of DNA. See [13] for more information on graph-based clustering.

3.4 Supervised Learning from Graphs

Extending a graph-based discovery approach to perform supervised learning
involves, of course, the need to handle negative examples (focusing on the
two-class scenario). In the case of a graph the negative information can come
in two forms. First, the data may be in the form of numerous small graphs,
or graph transactions, each labelled either positive or negative. Second, data
may be composed of two large graphs: one positive and one negative.

80 Diane J. Cook, Lawrence B. Holder, Jeff Coble and Joseph Potts

OCH2

O

N

N

N
N

N

H

H

H

O

N

O CH3

O

O
OCH2

O

N
O

PO OH

O

O

PO OH

OCH2

O

O

PO OH

CH2

O

P OHO

H

H

O

CH3

O

CH2

O
NO

N
N

NN

N

P OHO

O

O

CH2

O

N H

N
N O

H

P OHO

O

O

N
N

OCH3

H

H N

N
N

N

H

N

adenine

guanine

thymine adenine

cytosine

thymine

C N C C

O

P OHO

O

CH2

O

P OHO

N

C

C

C

C

C N C

C

C

O

O

C C

O

DNA

Fig. 3.2. Example of Subdue’s clustering (bottom) on a portion of DNA (top).

3.5 Incremental Discovery from Streaming Data 81

The first scenario is closest to the standard supervised learning problem in
that we have a set of clearly defined examples. Figure 3.3a depicts a simple set
of positive and negative examples. Let G+ represent the set of positive graphs,
and G− represent the set of negative graphs. Then, one approach to supervised
learning is to find a subgraph that appears often in the positive graphs, but not
in the negative graphs. This amounts to replacing the information-theoretic
measure with an error-based measure. For example, we would find a subgraph
S that minimizes

|{g ∈ G+|S "⊆ g}| + |g ∈ G−|S ⊆ g}|
|G+| + |G−| ,

where S ⊆ g means S is isomorphic to a subgraph of g. The first term of the
numerator is the number of false negatives and the second term is the number
of false positives.

This approach will lead the search toward a small subgraph that discrim-
inates well, e.g., the subgraph in Figure 3.3b. However, such a subgraph does
not necessarily compress well, nor represent a characteristic description of the
target concept. We can bias the search toward a more characteristic descrip-
tion by using the information-theoretic measure to look for a subgraph that
compresses the positive examples, but not the negative examples. If I(G) rep-
resents the description length (in bits) of the graph G, and I(G|S) represents
the description length of graph G compressed by subgraph S, then we can look
for an S that minimizes I(G+|S) + I(S) + I(G−) − I(G−|S), where the last
two terms represent the portion of the negative graph incorrectly compressed
by the subgraph. This approach will lead the search toward a larger subgraph
that characterizes the positive examples, but not the negative examples, e.g.,
the subgraph in Figure 3.3c.

Finally, this process can be iterated in a set-covering approach to learn
a disjunctive hypothesis. If using the error measure, then any positive ex-
ample containing the learned subgraph would be removed from subsequent
iterations. If using the information-theoretic measure, then instances of the
learned subgraph in both the positive and negative examples (even multiple
instances per example) are compressed to a single vertex. See [9] for more
information on graph-based supervised learning.

3.5 Incremental Discovery from Streaming Data

Many challenging problems require processing and assimilation of periodic
increments of new data, which provides new information in addition to that
which was previously processed. We introduce our first enhancement of Sub-
due, called Incremental-Subdue (I-Subdue), which summarizes discoveries
from previous data increments so that the globally-best patterns can be com-
puted by examining only the new data increment.

82 Diane J. Cook, Lawrence B. Holder, Jeff Coble and Joseph Potts

(a)

+

−

(b) (c)shape

shape

on

shape

shape

on

on

square

triangleobj

obj square

triangleobj

obj

obj

Fig. 3.3. Graph-based supervised learning example with (a) four positive and four
negative examples, (b) one possible graph concept and (c) another possible graph
concept.

In our work, we assume that data is received in incremental blocks, as
is the case for many long-term analytical tasks. Continuously reprocessing
the accumulated graph after each increment would be intractable, so instead
we wish to develop methods to iteratively refine the substructure discoveries
with a minimal amount of reexamination of old data so that the globally-best
patterns can be identified based on previous local discoveries.

This work is related to the problem of online sequential learning in which
training data is received sequentially [3, 8]. Because learning must start again
with each increment, a summary must be generated of prior data to lighten
the computational load in building a new model. Online approaches also deal

3.5 Incremental Discovery from Streaming Data 83

with this incremental mining problem, but restrict the problem to itemset data
and assume the data arrives in complete and independent units [1, 7, 11].

Fig. 3.4. Incremental data can be viewed as a unique extension to the accumulated
graph.

In our approach, we view each new data increment as a distinct data
structure. Figure 3.4 illustrates one conceptual approach to mining sequential
data, where each new increment received at time step ti is considered indepen-
dently of earlier data increments so that the accumulation of these structures
is viewed as one large, but disconnected, graph. The original Subdue algo-
rithm would still work equally well if we applied it to the accumulated graph
after each new data increment is received. The obstacle is the computational
burden required for repeated full batch processing.

The concept depicted in Figure 3.4 can be intuitively applied to real prob-
lems. For example, a software agent deployed to assist an intelligence analyst
would gradually build up a body of data as new information streams in over
time. This streaming data could be viewed as independent increments from
which common structures are to be derived. Although the data itself may
be generated in very small increments, we would expect to accumulate some
minimum amount before we mine it. Duplicating nodes and edges in the accu-
mulated graph serves the purpose of giving more weight to frequently-repeated
patterns.

84 Diane J. Cook, Lawrence B. Holder, Jeff Coble and Joseph Potts

3.5.1 Sequential Discovery

Storing all accumulated data and continuing to periodically repeat the entire
structure discovery process is intractable both from a computational perspec-
tive and for data storage purposes. Instead, we wish to devise a method by
which we can discover structures from the most recent data increment and
simultaneously refine our knowledge of the globally-best substructures dis-
covered so far. However, we can often encounter a situation where sequential
applications of Subdue to individual data increments will yield a series of
locally-best substructures that are not the globally-best substructures, that
would be found if the data were evaluated as one aggregate block.

Figure 3.5 illustrates an example where Subdue is applied sequentially to
each data increment as it is received. At each increment, Subdue discovers
the best substructure for the respective data increment, which turns out to be
only a local best. However, if we aggregate the same data, as depicted in Fig-
ure 3.6, and then apply the baseline Subdue algorithm we get a different best
substructure, which in fact is globally best. This is illustrated in Figure 3.7.
Although our simple example could easily be aggregated at each time step,
realistically large data sets would be too unwieldy for this approach.

In general, sequential discovery and action brings with it a set of unique
challenges, which are generally driven by the underlying system that is gen-
erating the data. One problem that is almost always a concern is how to re-
evaluate the accumulated data at each time step in the light of newly-added
data. There is a tradeoff between the amount of data that can be stored and
re-evaluated, and the quality of the result. A summarization technique is of-
ten employed to capture salient metrics about the data. The richness of this
summarization is a tradeoff between the speed of the incremental evaluation
and the range of new substructures that can be considered.

3.5.2 Summarization Metrics

We need to develop a summarization metric that can be maintained from each
incremental application of Subdue and will allow us to derive the globally-best
substructure without reapplying Subdue when new data arrives. To accom-
plish this goal, we rely on a few artifacts of Subdue’s discovery algorithm.
First, Subdue maintains a list of the n best substructures discovered from any
data set, where n is configurable by the user.

Second, we modify the Compression measure used by Subdue, as shown
in Equation (3.2).

Compressm(Si) =
DL(Si) +

∑m
j=1 DL(Gj |Si)∑m

j=1 DL(Gj)
(3.2)

I-Subdue calculates compression achieved by a particular substructure, Si,
through the current data increment m. The DL(Si) term is the description

3.5 Incremental Discovery from Streaming Data 85

Fig. 3.5. Three data increments received serially and processed individually by
Subdue. The best substructure is shown for each local increment.

86 Diane J. Cook, Lawrence B. Holder, Jeff Coble and Joseph Potts

Fig. 3.6. Accumulated graph for Subdue batch processing.

length of the substructure, Si, under consideration. The term
∑m

j=1 DL(Gj |Si)
represents the description length of the accumulated graph after it is com-
pressed by substructure Si. Finally, the term

∑m
j=1 DL(Gj) represents the full

description length of the accumulated graph. I-Subdue then can re-evaluate
substructures using Equation (3.3) (an inverse of Equation (3.2)), choosing
the one with the lowest value as globally best.

argmax(i)

[
DL(Si) +

∑m
j=1 DL(Gj |Si)∑m

j=1 DL(Gj)

]
(3.3)

The process of computing the global substructure value takes place in
addition to the normal operation of Subdue on the isolated data increment. We
only need to store the requisite description-length metrics after each iteration
for use in our global computation.

As an illustration of our approach, consider the results from the example
depicted in Figure 3.6. The top n = 3 substructures from each iteration are
shown in Figure 3.8. Table 3.1 lists the values returned by Subdue from the
local top n substructures discovered in each increment. The second best sub-
structures in increments 2 and 3 (S22, S32) are the same as the second best
substructure in increment 1 (S12), which is why the column corresponding

3.5 Incremental Discovery from Streaming Data 87

Fig. 3.7. Result from applying Subdue to the three aggregated data increments.

Fig. 3.8. The top n=3 substructures from each local increment.

88 Diane J. Cook, Lawrence B. Holder, Jeff Coble and Joseph Potts

Table 3.1. Substructure values computed independently for each iteration.

Substructures from Substructures from Substructures from
Increment Increment #1 Increment #2 Increment #3

S11 S12 S13 S21 S23 S31 S33

1 1.2182 1.04808 0.9815
2 1.04808 1.21882 0.981511
3 1.03804 1.15126 0.966017

Table 3.2. Using I-Subdue to calculate the global value of each substructure.

Substructures from Substructures from Substructures from
Increment Increment #1 Increment #2 Increment #3

S11 S12 S13 S21 S23 S31 S33 DL(Gj)
1 1.2182 1.04808 0.9815 117
2 1.0983 1.1235 0.9906 1.0986 0.9906 117
3 1.0636 1.1474 0.9937 1.0638 0.9937 1.0455 0.9884 116

DL(Si) 15 15 25.7549 15 25.7549 15 26.5098

to S12 has a value for each iteration. The values in Table 3.1 are the result
of the compression evaluation metric from Equation (3.1). The locally-best
substructures illustrated in Figure 3.5 have the highest values overall.

Table 3.2 depicts our application of I-Subdue to the increments from Fig-
ure 3.5. After each increment is received, we apply Equation (3.3) to select
the globally-best substructure. The values in Table 3.2 are the inverse of
the compression metric from Equation (3.2). As an example, the calcula-
tion of the compression metric for substructure S12 after iteration 3 would
be DL(S12)+DL(G1|S12)+DL(G2|S12)+DL(G3|S12)

DL(G1)+DL(G2)+DL(G3) . Consequently the value of S12

would be (117 + 117 + 116) / (15 + 96.63 + 96.63 + 96.74) = 1.1474.
For this computation, we rely on the metrics computed by Subdue when it

evaluates substructures in a graph, namely the description length of the dis-
covered substructure, the description length of the graph compressed by the
substructure, and the description length of the graph. By storing these values
after each increment is processed, we can retrieve the globally-best substruc-
ture using Equation (3.3). In circumstances where a specific substructure is
not present in a particular data increment, such as S31 in iteration 2, then
DL(G2|S31) = DL(G2) and the substructure’s value would be calculated as
(117 + 117 + 116) / (15 + 117 + 117 + 85.76) = 1.0455.

3.5.3 Experimental Evaluation

To illustrate the relative value of I-Subdue with respect to performance in
processing incremental data, we have conducted experiments with a synthetic

3.5 Incremental Discovery from Streaming Data 89

data generator. This data generator takes as input a library of data labels,
configuration parameters governing the size of random graph patterns and
one or more specific substructures to be embedded within the random data.
Connectivity can also be controlled.

I-Subdue vs Subdue Run-Time

0

20

40

60

80

10 20 30 40 50

Number of Increments

T
im

e
in

 S
ec

on
ds

I-Subdue

Subdue

11000
vertices,

7183
edges

8800
vertices,

6049
edges

6600
vertices,

4409
edges

4400
vertices,

2859
edges

2200
vertices,

1499
edges

11000
vertices,

7183
edges

8800
vertices,

6049
edges

6600
vertices,

4409
edges

4400
vertices,

2859
edges

2200
vertices,

1499
edges

A

CB

D

A

CB

D

Fig. 3.9. Comparison of I-Subdue with Subdue on 10–50 increments, each with 220
new vertices and 0 or 1 outgoing edges.

For the first experiment, illustrated in Figure 3.9, we compare the per-
formance of I-Subdue to Subdue at benchmarks ranging from 10 to 50 in-
crements. Each increment introduced 220 new vertices, within which five in-
stances of the four-vertex substructure pictured in Figure 3.9 were embedded.
The quality of the result, in terms of the number of discovered instances, was
the same.

The results from the second graph are depicted in Figure 3.10. For this
experiment, we increased the increment size to 1020 vertices. Each degree
value between 1 and 4 was shown with 25% probability, which means that on
average there are about twice as many edges as vertices. This more densely
connected graph begins to illustrate the significance of the run-time difference
between I-Subdue and Subdue. Again, five instances of the four-vertex sub-
structure shown in Figure 3.10 were embedded within each increment. The
discovery results were the same for both I-Subdue and Subdue with the only
qualitative difference being in the run time.

90 Diane J. Cook, Lawrence B. Holder, Jeff Coble and Joseph Potts

I-Subdue vs Subdue Run-Time

0

100

200

300

400

500

10 20 30 40 50

Number of Increments

T
im

e
in

 S
ec

on
ds

I-Subdue

Subdue

51000
vertices,
102402
edges

40800
vertices,
81974
edges

30600
vertices,
61175
edges

20400
vertices,
40649
edges

10200
vertices,
20490
edges

51000
vertices,
102402
edges

40800
vertices,
81974
edges

30600
vertices,
61175
edges

20400
vertices,
40649
edges

10200
vertices,
20490
edges

A

CB

D

A

CB

D

Fig. 3.10. Comparison of I-Subdue with Subdue on 10–50 increments, each with
1020 new vertices and 1 to 4 outgoing edges.

3.5.4 Learning from Supervised Graphs

In a highly relational domain, the positive and negative examples of a concept
are not easily separated. We call such a graph a supervised graph, in that
the graph as a whole contains embedded class information which may not
easily be separated into individual labeled components. For example, consider
a social network in which we seek to find relational patterns distinguishing
various income levels. Individuals of a particular income level can appear
anywhere in the graph and may be related to individuals at other income
levels, so we cannot easily partition the graph into separate training cases
without potentially severing the target relationships.

This scenario presents a challenge to any data mining system, but espe-
cially to a graph-based relational learning system, where clearly classified data
(data labeled with a class value) may be tightly related to less clearly classified
data. This is the second challenge discussed in this chapter. We are investi-
gating two approaches to this task. We assume that the class values of certain
vertices and edges are specified in the input data file. Not all vertices and
edges will have such a value, as some may provide supplementary supporting
information.

For the first approach, we rely upon a cost mechanism available in Subdue.
A cost mechanism was added because expenses might be associated with the
retrieval of portions of data. For example, adding personal details such as

3.5 Incremental Discovery from Streaming Data 91

credit history to our social network can enhance the input data, but may be
acquired at a price in terms of money, time, or other resources. To implement
the cost feature, the cost of specific vertices and edges is specified in the input
file. The cost for substructure S averaged over all of its instances, Cost(S),
is then combined with the MDL value of S using the equation E(S) =
(1 − Cost(S)) × MDL(S). The evaluation measure, E(S), determines the
overall value of the substructure and is used to order candidate substructures.

Class membership in a supervised graph can now be treated as a cost,
which varies from no cost for clearly positive members to +1 for clearly neg-
ative members. As an example, we consider the problem of learning which
regions of the ocean surface can expect a temperature increase in the next
time step. Our data set contains gridded sea surface temperatures (SST) de-
rived from NASA’s Pathfinder algorithm and a five-channel Advanced Very
High Resolution Radiometer instrument. The data contains location, time of
year, and temperature data for each region of the globe.

The portion of the data used for training is represented as a graph with
vertices for each month, discretized latitude and longitude values, hemisphere,
and change in temperature from one month to the next. Vertices labelled with
“increase” thus represent the positive examples and “decrease” or “same” la-
bels represent negative examples. A portion of the graph is shown in Fig-
ure 3.11. The primary substructure discovered by Subdue for this data set
reports the rule that when there are two regions in the Southern hemisphere,
one just north of the other, an increase in temperature can be expected for
the next month in the southernmost of the two regions. Using three-fold cross
validation experimentation, Subdue classified this data set with 71% accuracy.

DECREASE

JAN

N

120

DeltaNextMonth

HEMI

TEMP
N

JAN

S

32766 INCREASE

HEMI

TEMP
DeltaNextMonth

JAN SAME

−299

S

DeltaNextMonth

HEMI

TEMP

N
W

W

N

Fig. 3.11. Graph representation of a portion of NASA’s SST data.

The second approach we intend to explore involves modifying the MDL
encoding to take into account the amount of information necessary to describe

92 Diane J. Cook, Lawrence B. Holder, Jeff Coble and Joseph Potts

the class membership of the compressed graph. Substructures would now be
discovered that not only compress the raw data of the graph but also express
class membership for vertices and edges within the graph.

3.6 Conclusions

There are several future directions for our graph-based relational learning
research that will improve our ability to handle such challenging data as de-
scribed in this chapter. The incremental discovery technique described in this
chapter did not address data that is connected across increment boundaries.
However, many domains will include event correlations that transcend mul-
tiple data iterations. For example, a terrorist suspect introduced in one data
increment may be correlated to events that are introduced in later incre-
ments. As each data increment is received it may contain new edges that
extend from vertices in the new data increment to vertices received in pre-
vious increments. We are investigating techniques of growing substructures
across increment boundaries. We are also considering methods of detecting
changes in the strengths of substructures across increment boundaries, that
could represent concept shift or drift.

The handling of supervised graphs is an important direction for mining
structural data. To extend our current work, we would like to handle embed-
ded instances without a single representative instance node (the “increase”
and “decrease” nodes in our NASA example) and instances that may possibly
overlap.

Finally, improved scalability of graph operations is necessary to learn pat-
terns, evaluate their accuracy on test cases and, ultimately, to use the patterns
to find matches in future intelligence data. The graph and subgraph isomor-
phism operations are a significant bottleneck to these capabilities. We need
to develop faster and approximate versions of these operations to improve the
scalability of graph-based relational learning.

Acknowledgments: This research is sponsored by the Air Force Research
Laboratory (AFRL) under contract F30602-01-2-0570. The views and conclu-
sions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or
implied, of AFRL or the United States Government.

References

[1] Agrawal, R. and G. Psaila, 1995: Active data mining. Proceedings of the
Conference on Knowledge Discovery in Databases and Data Mining .

[2] Agrawal, R. and R. Srikant, 1994: Fast algorithms for mining association
rules. Proceedings of the Twentieth Conference on Very Large Databases,
487–99.

References 93

[3] Blum, A., 1996: On-line algorithms in machine learning. Proceedings of
the workshop on on-line algorithms.

[4] Cook, D. J. and L. B. Holder, 1994: Substructure discovery using mini-
mum description length and background knowledge. Journal of Artificial
Intelligence Research, 1, 231–55.

[5] — 2000: Graph-based data mining. IEEE Intelligent Systems, 15, 32–41.
[6] Dzeroski, S. and N. Lavrac, eds., 2001: Relational Data Mining . Springer.
[7] Fang, H., W. Fan, P. Yu and J. Han, 2003: Mining concept-drifting

data streams using ensemble classifiers. Proceedings of the Conference
on Knowledge Discovery and Data Mining .

[8] Friedman, N. and M. Goldszmidt, 1997: Sequential update of Bayesian
network structure. Proceedings of the Conference on Uncertainty in Ar-
tificial Intelligence.

[9] Gonzalez, J., L. Holder and D. Cook, 2002: Graph-based relational con-
cept learning. Proceedings of the Nineteenth International Conference on
Machine Learning .

[10] Holder, L. B. and D. J. Cook, 2003: Graph-based relational learning:
Current and future directions. ACM SIGKDD Explorations, 5, 90–93.

[11] Hulten, G., L. Spencer and P. Domingos, 2001: Mining time-changing
data streams. Proceedings of the Conference on Knowledge Discovery and
Data Mining .

[12] Inokuchi, A., T. Washio and H. Motoda, 2003: Complete mining of fre-
quent patterns from graphs: Mining graph data. Machine Learning , 50,
321–54.

[13] Jonyer, I., D. Cook and L. Holder, 2001: Graph-based hierarchical con-
ceptual clustering. Journal of Machine Learning Research, 2, 19–43.

[14] Kashima, H. and A. Inokuchi, 2002: Kernels for graph classification. Pro-
ceedings of the International Workshop on Active Mining .

[15] Kuramochi, M. and G. Karypis, 2001: Frequent subgraph discovery. Pro-
ceedings of the First IEEE Conference on Data Mining .

[16] Muggleton, S., ed., 1992: Inductive Logic Programming . Academic Press,
San Diego, CA, USA.

[17] Rissanen, J., 1989: Stochastic Complexity in Statistical Inquiry. World
Scientific, Singapore.

[18] US Senate, 2002: Joint inquiry into intelligence community activities be-
fore and after the terrorist attacks of September 11, 2001. S. Rept.107-
351.

[19] Yan, X. and J. Han, 2002: gSpan: Graph-based substructure pattern min-
ing. Proceedings of the International Conference on Data Mining.

[20] Yoshida, K., H. Motoda and N. Indurkhya, 1994: Graph-based induction
as a unified learning framework. Journal of Applied Intelligence, 4, 297–
328.

	Advanced Methods for Knowledge Discovery from Complex Data
	Contents
	Contributors
	Preface
	Part I -- Foundations
	1 - Knowledge Discovery and Data Mining
	2 - Automatic Discovery of Class Hierarchies via Output Space Decomposition
	3 - Graph-based Mining of Complex Data
	4 - Predictive Graph Mining with Kernel Methods
	5 - TreeMiner: An Efficient Algorithm for Mining Embedded Ordered Frequent Trees
	6 - Sequence Data Mining
	7 - Link-based Classification

	Part II -- Applications
	8 - Knowledge Discovery from Evolutionary Trees
	9 - Ontology-Assisted Mining of RDF Documents
	10 - Image Retrieval using Visual Features and Relevance Feedback
	11 - Significant Feature Selection Using Computational Intelligent Techniques for Intrusion Detection
	12 - On-board Mining of Data Streams in Sensor Networks
	13 - Discovering an Evolutionary Classifier over a High-speed Nonstatic Stream

	Index

