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Abstract

Many recent approaches to avoiding the util-
ity problem in speedup learning rely on so-
phisticated utility measures and significant
numbers of training data to accurately esti-
mate the utility of control knowledge. Empir-
ical results presented here and elsewhere indi-
cate that a simple selection strategy of retain-
ing all control rules derived from a training
problem explanation quickly defines an effi-
cient set of control knowledge from few train-
ing problems. This simple selection strategy
provides a low-cost alternative to example-
intensive approaches for improving the speed
of a problem solver.

1 INTRODUCTION

Initial attempts to solve the utility problem in speedup
learning using empirical evaluations of control rules
met with limited success due to a limited under-
standing of the problem solver’s behavior [Etzioni and
Minton, 1992]. More recent work applies statistical
measures to learn control rules for which there is a
high certainty of utility [Gratch and DeJong, 1992;
Greiner and Jurisica, 1992]. However, these ap-
proaches require a large number of training prob-
lems to estimate the distribution and ensure utile
control rules. Preliminary results in [Holder, 1992a;
Holder, 1992b] and more recent results reported here
suggest that a simple intermediate approach may yield
sufficient speedup with fewer training problems and
without specific utility measures.

In this work, control rules take the form of preference
rules combined with a counter of the number of times
the control rule has been extracted from solutions to
previously-encountered training problems. The sim-

ple control-rule selection strategy investigated here is
to retain every control rule, maintaining counters for
repeated control rules, and selecting the control rule,
having the highest count, that is applicable to the cur-
rent goal.

After generating learning curves (match cost on a set of
testing problems as a function of training problems) in
several domains using the simple control rule selection
strategy, we find that the learning curves have a single
global minimum (lowest cost) that occurs after only a
few training problems (< 5 for the domains studied).
This suggests a greedy strategy may be effective for
selecting control rules which learns every control rule
until performance degrades on a separate set of test-
ing problems. Of course, this strategy transfers to the
testing set the need for large numbers of problems to
estimate the problem distribution. However, the main
advantage of this approach is the empirical identifica-
tion of a typically small number of training problems
needed to inject utile control rules into the problem
solver. After empirically identifying the minimum of
the learning-cost curve, the next step is to develop a
theory for predicting the number of training examples
corresponding to the minimum based on characteris-
tics of the domain.

The next section discusses the general utility problem
of degrading performance due to increasing amounts
of learned knowledge. This problem is not isolated to
speedup learning, but affects other learning paradigms
as well. Section 3 describes other approaches to solv-
ing the utility problem in speedup learning. Section 4
illustrates the trend in the learning-cost curve for sev-
eral domains, and Section 5 discusses the implications
of these results. Section 6 presents our conclusions.
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Figure 1: The relationship between cost and knowl-
edge exhibited by a learning method suffering from
the general utility problem.

2 GENERAL UTILITY PROBLEM

Both inductive and speedup learning methods suffer
from the general utility problem: the eventual degra-
dation of performance due to increasing amounts of
low utility learned knowledge. In inductive methods
the performance degradation is due to overfit. Overfit
occurs when the learning method identifies errant pat-
terns in the training data. Inductive learning meth-
ods typically use a set of training examples to gen-
erate knowledge for reducing classification error on
unseen examples. Errant patterns may arise due to
noise in the training data or inadequate stopping cri-
teria of the method. As inductive methods generate
more knowledge, they may increase the complexity
of the learned hypothesis. For example, some induc-
tive learning methods adapt a parameterized model
to training data. As the number of parameters in
the model becomes a sizable fraction of the data, the
method fits the parameters according to trends in the
training data that may not occur in unseen examples.
Thus, a typical cost (classification error) curve as a
function of the amount of learned knowledge will be
similar to that in Figure 1.

The utility problem has been verified in several
speedup learning systems [Minton, 1988b; Tambe and
Rosenbloom, 1989; Mooney, 1989; Markovitch and
Scott, 1989]; however, the underlying cause is less ob-
vious than in inductive learning. From a high-level
perspective, the utility problem is also caused by over-
fit. The learned knowledge applies to the solution of
the training examples, but not necessarily to unseen
examples. At a more detailed level, several factors con-
tribute to the performance of a speedup learning sys-

tem. First, the speedup learning system must search
the learned knowledge for pieces applicable to solving
the problem. As the amount of learned knowledge in-
creases, so does this cost. Second, application of this
knowledge may either increase cost by searching futile
paths in the search space or decrease cost by prefer-
ring more applicable paths in the search space. The
exact interaction of these factors is difficult to predict.
However, the overall trend also follows the behavior in
Figure 1, where cost is typically problem-solving time.

The general utility problem in machine learning refers
to the degradation of performance due to increas-
ing amounts of learned knowledge [Holder, 1990].
This term derives from the wtility problem used
by Minton [1988a] to describe this phenomenon in
speedup learning, but generalizes to other machine
learning paradigms. Other researchers have observed
the ubiquity of the utility problem in machine learning
paradigms and compare the utility problem in speedup
learning to the problems of noise and overfit in induc-
tive learning [Yoo and Fisher, 1991]. This work sug-
gests that individual methods for avoiding the general
utility problem may derive from a general model of
the relationship between learned knowledge and per-
formance that applies to several learning paradigms.
Empirical instances of this model also indicate that
minimizing the utility problem in speedup learning
may involve fewer training examples than predicted
by other approaches to avoiding the utility problem.

3 RELATED WORK

Most approaches to avoiding the utility problem rely
on training examples to empirically evaluate the utility
of learned knowledge. The Prodigy system [Minton,
1988a] evaluates the utility of problem-solving con-
trol knowledge by estimating the application cost, fre-
quency and savings afforded by the control knowledge
based on the training problems.

Eskey and Zweben [1990] describe a plausible approach
to speedup learning when several examples are needed
to support an instance of the target concept. They em-
ploy a decision function that evaluates control knowl-
edge based on the explanation’s probability of correct-
ness, expected cost to match search control rule, and
expected degradation in solution quality. Several ex-
amples are needed to support an explanation with high
confidence and adopt the corresponding control rules.

The Composer system [Gratch and DeJong, 1992] em-
bodies a probabilistic solution to the utility problem.
Composer defines the utility of a planner as the sum of
the utility of each problem in the distribution weighted



by its probability of occurrence. A candidate control
rule is evaluated in the context of the existing plan-
ner. If there is high confidence that a rule will bene-
fit the planner, then the rule is added to the planner
control knowledge. Other candidate rules are then re-
evaluated in the context of the new planner. Composer
incrementally adds control rules to its control strategy.
The utility of the rule depends on the current control
strategy. A rule is added only after demonstrating
benefit to a pre-specified confidence level. Higher con-
fidence levels require larger numbers of examples.

The PALO (Probably Approximately Locally Opti-
mal) [Greiner and Jurisica, 1992] approach adopts a
hill-climbing technique that evaluates transformations
to the performance element (as effected by control
knowledge) using a statistical method. Learning ter-
minates when PALO has identified (with high prob-
ability) a near-local maximum in the transformation
space. PALO provides stronger guarantees than Com-
poser (and Prodigy/EBL) at the cost of more exam-
ples. Harmful rules are not discarded in PALO as
quickly as they are in Composer. This results in a
larger candidate (control rule) set in PALO which in-
creases the cost to solve each training example. On the
other hand, while Composer uses utility analysis when
climbing to performance elements with superior per-
formance, the analysis does not guarantee to produce
optimal performance elements.

The above systems depend on the training examples
for the distribution of problems in the domain. Typ-
ically, a large number of training examples are neces-
sary to accurately estimate the problem distribution
and the utility of control knowledge. Moreover, the
task of finding the optimal set of control knowledge,
even knowing the distribution, is intractable most of
the time [Greiner and Jurisica, 1992]. On the other
end of the spectrum, simply limiting the amount of
the learned knowledge (while ignoring utility) may be
advantageous in terms of learning time saved. PALO
tries to estimate the unknown distribution, but the
learning time is extremely high. Hence, concentrat-
ing on the amount of learned knowledge rather than
the utility of the learned knowledge might be feasible.
Excessive knowledge degrades performance. Limit-
ing learned knowledge, without utility evaluation, may
save learning time and eliminate degradation.

4 EXPERIMENTATION

This section presents empirical results on learning con-
trol knowledge in several domains. The results indi-
cate that an efficient set of control rules (relative to
the cost of the original domain theory) can be learned

using a simple selection strategy and a small number
of training examples.

4.1 Methodology

The experiments use a backward-chaining Prolog-like
deductive retriever with proof tree and control rule
generation capabilities. A depth bound of 20 was used
during proof tree generation. Explanation-based gen-
eralization [Mitchell et al., 1986] is used to generalize
the proofs. The generalized proof is used to generate
the search control knowledge (control rules) for guid-
ing the retrieval process.

The number of matches (unifications) serves as a per-
formance criteria for monitoring performance changes
with increase in the amount of learned knowledge, i.e.,
control rules. The database rules are Horn clauses,
and control rules are of the form:

if goal
then database rule

The control rules are preference rules which choose a
particular rule for solving the current goal. If the an-
tecedent of the control rule matches (unifies with) the
current goal then the consequent of the control rule
is preferred over other rules to solve the current goal.
The antecedent of the control rule points to a rule in
the database. A weight is associated with each control
rule. The weight represents the total number of times
the control rule has been successfully used for solv-
ing problems (i.e., proving goals and subgoals). The
weight is incremented by one, each time the control
rule is used. If more than one control rule can help in
solving the current goal then the rule with the maxi-
mum weight is chosen.

In the control rule store, control rules whose conse-
quents have the same predicate are clustered together.
The predicate of the goal (subgoal) is used to hash into
the control rule store, leading to the control rule clus-
ter having the same predicate as the goal (subgoal).
Any of these rules (in the cluster) could (potentially)
help in proving the goal. Hence the cost of using a
control rule includes the unification cost of finding the
maximum weighted rule (in this cluster), whose con-
sequent unifies with the goal.

The average cost of using a control rule is the average
number of unifications required to match a goal with
the consequent of the control rules having the same
predicate. The cost also includes the match cost of
using wrong rules and facts from the database as a
result of choosing a bad control rule. The savings in
terms of number of matches from using a good control



rule is the savings resulting from not trying useless
rules and facts from the database for proving the goal.

Since the cost of unification of facts (with goals) is usu-
ally less than that of rules (with the cascading effect
of proving antecedents of the rule), facts are preferred
over rules in our deductive retriever.

If the control rule store (for a particular domain) in-
cludes rules like

1. The consequent is:
abed(X, objl)
The weight is: 4
The antecedent is:
abed(X0,Y0) <
read(X0), my(XO0, YO0)
lips(Y0).

3

2. The consequent is:
abced(obj2, Y)
The weight is: 4
The antecedent is:
abced(X0,Y0) <—
ur(X0), so(X0, Y0),
kool(Y0).

3. The consequent is:
abed(X, Y)
The weight is: 5
The antecedent is:
abed(X0,Y0) <
make(X0), my(XO0, YO0),
day(YO0).

4. The consequent is:
abcd(objl, Z)
The weight is: 7
The antecedent is:
abced(X0,Y0) <—
quid(X0), pro(X0, Y0),
quo(Y0).

then the cost of using a control rule for proving a goal
abed(obj2, objl) will include the cost of unification of
the consequents of the rules enumerated above, with
abed(0bj2, obj1). Note the consequent of control rule 4
does not unify with the goal and hence the correspond-
ing antecedent (a database rule) will not be used to
prove the goal. However the cost of unifying abed(0bj1,
7) with abcd(0bj2, obj1) contributes to the cost of us-
ing a control rule. The consequents of control rules 1,
2 and 3 unify with the goal (the cost of using a con-
trol rule includes this unification cost). However, the

antecedent of rule 3 will be used to solve the goal be-
cause it has the highest weight. If this rule successfully
solves the goal then the savings due to this control rule
includes the savings resulting from not searching (po-
tential) futile paths futile paths resulting from the
use of antecedents of control rules 1, 2 and/or 4 and
any other rule in the database whose consequent uni-
fies with the goal. If this control rule fails to solve
the goal then the other control rules are tried (using
the same procedure). The use of the control rule, in
this case, leads to the exploration of futile paths which
contributes to the cost. If all the control rules (namely
1, 2 and 3 for the example shown above) fail, a rule
from the database (different from the antecedents of
the control rules 1, 2 and 3 and whose consequent uni-
fies with the goal) is chosen randomly to solve the goal.
In this situation, contol rules have contributed only to
the cost.

The results in the next section are generated according
to the following learning loop:

e Control_Rule_Store = Nil

e Solve a list of testing problems and record perfor-
marnce;

e For each training example in the training set

— Pick a training example and solve it

— Append new control rules to the Con-
trol_Rule_Store

— Solve the list of testing problems and record
performance

4.2 Results

Three different domains were used in these experi-
ments. The sentence domain consisted of 14 rules
implementing a simple natural language parser. The
artificial domain consists of 24 rules for determining
family relationships combined with 21 artificial rules
increasing the number of alternative rules applicable to
certain goals. The blocks domain contains 8 rules for a
situational calculus implementation consisting of one
operator for transferring blocks and building towers.

Figure 2 shows the cost (averaged over 90 trials) of
solving 9 testing problems in the sentence domain af-
ter learning control rules from each of 18 training
problems sampled randomly from a set of 28 prob-
lems (queries). After an initial increase due to the
control rules learned from the first training problem,
the match cost decreased to a point below the cost of
the initial rules, but then increased steadily with more
training problems. The learning-cost curve follows the
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Figure 2: Sentence domain with general control rules.
Match values averaged over 90 trials consisting of 18
training and 9 testing sampled from 28 queries.
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Figure 3: Artificial domain with general control rules.
Match values average over 90 trials consisting of 18
training and 9 testing sampled from 28 queries.

trend of Figure 1. The minimum cost occurred after
the fourth training problem.

Figure 3 shows the cost (averaged over 90 trials) of
solving 9 testing problems in the artificial domain after
learning control rules from each of 18 training prob-
lems sampled randomly from a set of 28 problems
(queries). Again, the learning-cost curve follows the
trend of Figure 1, and the minimum cost occurred af-
ter 3 training problems.

Figure 4 shows the cost (averaged over 30 trials) of
solving 5 testing problems in the blocks domain after
learning control rules from each of 10 training prob-
lems sampled randomly from a set of 15 problems
(queries). The problems all involved building towers of
height 2 from 6 blocks initially on the table. Since each
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Figure 4: Blocks domain with general control rules.
Match values average over 30 trials consisting of 10
training and 5 testing sampled from 15 queries con-
sisting of towers of height 2.

query was essentially the same, the necessary control
rules were learned after the first training example and
remained fixed thereafter.

Figure 5 shows the cost (averaged over 30 trials) of
solving 10 testing problems in the blocks domain after
learning control rules from each of 20 training prob-
lems sampled randomly from a set of 30 problems
(queries). The 30 queries consisted of 18 towers of
height 2, 9 towers of height 3, and 3 towers of height
4. Once again, the familiar trend of the general util-
ity problem is evident. The control rules preferred by
the harder queries degrade the search for control rules
effective for the easier queries.

5 DISCUSSION

Although the experimental results indicate that few
training examples are necessary to learn a utile set
of control rules, the main issue is how to predict the
number of training examples corresponding to the min-
imum of the learning-cost curve. First, as is evident
from Figure 3, there can be local minima in the curve.
However, a single global minimum can be argued based
on two factors affecting the performance behavior of
the problem solver during the course of control-rule
learning. One factor is the time spent testing the appli-
cability of the control rules and following futile paths
in the search space not explored by the original domain
theory. The second factor is the cost savings due to
the avoidance of futile paths explored by the original
domain theory.

Initially, as the system learns control rules generated
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Figure 5: Blocks domain with general control rules.
Match values average over 30 trials consisting of 20
training and 10 testing sampled from 30 queries con-
sisting of towers of height 2 (18), height 3 (9) and
height 4 (3).

from randomly-sampled training problems, cost in-
creases slightly with the inclusion of low-utility control
rules. However, the learning curve quickly turns down-
ward (lower cost) as control rules are learned from
training problems containing goals that are prevalent
in the problem distribution. Eventually, after the utile
control rules have appeared, subsequent control rule
learning follows statistically insignificant trends in the
problem distribution that drive up the cost of solving
the testing problems. These factors combine to form
a single minimum in the learning-cost curve.

Another difficulty in identifying the minimum is that
several control rules are learned per training example.
Finer control may be possible by limiting the number
of control rules instead of training examples. Since
more general control rules seem to have higher utility,
control rules learned from higher levels in the explana-
tion structure may be preferable to those learned from
lower levels.

Although empirical results predict a learning-curve
minimum at small numbers of training examples, no
theory is available to predict this number. Currently,
this point is determined empirically based on the sam-
ple of the problem distribution contained in the testing
set. One direction is to consider the testing set as a
pruning set and deriving lower bounds on the size of
the pruning set to ensure proper identification of the
minimum. However, this approach would be similar
to current statistical approaches and would probably
require a similar number of problems in the pruning
set.

A second approach to predicting the number of
training examples corresponding to minimum of the
learning-cost curve is to use characteristics of the do-
main to predict the number of training problems neces-
sary to ensure control rules are learned for traversing
the search space in an efficient manner. We are at-
tempting to relate domain characteristics (e.g., size
and shape of the search space, size of the problem
space, recursive versus non-recursive) to the probabil-
ity of seeing a majority of training problems that fol-
low a certain, highly-efficient path through the search
space that is also followed by a large number of other
problems prevalent in the problem distribution.

6 CONCLUSION

The simple control-rule selection strategy lies at the
opposite end of the spectrum from approaches to
the utility problem dependent upon large numbers of
training problems to estimate the problem distribu-
tion. Empirical results indicate that few training prob-
lems are needed to learn a utile set of control rules
minimizing the learning-cost curve. The next step is
to compare the minimum of the learning-cost curve to
the speedup obtained using other approaches to the
utility problem, and compare the number of training
examples at the minimum to the number suggested by
statistical approaches. Eventually, a similar statistical
approach will be developed for accurately predicting
the necessary number of training problems based on
domain characteristics. If the empirical results are in-
dicative of behavior in other domains, there should be
no need for large numbers of training problems, and a
utile set of control rules can be learned with less cost.
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