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Lawrence B. Holder and Anurag ChaudhryDepartment of Computer Science EngineeringUniversity of Texas at ArlingtonBox 19015, Arlington, TX 76019-0015Email: holder@cse.uta.edu, chaudhry@cse.uta.eduAbstractMany recent approaches to avoiding the util-ity problem in speedup learning rely on so-phisticated utility measures and signi�cantnumbers of training data to accurately esti-mate the utility of control knowledge. Empir-ical results presented here and elsewhere indi-cate that a simple selection strategy of retain-ing all control rules derived from a trainingproblem explanation quickly de�nes an e�-cient set of control knowledge from few train-ing problems. This simple selection strategyprovides a low-cost alternative to example-intensive approaches for improving the speedof a problem solver.1 INTRODUCTIONInitial attempts to solve the utility problem in speeduplearning using empirical evaluations of control rulesmet with limited success due to a limited under-standing of the problem solver's behavior [Etzioni andMinton, 1992]. More recent work applies statisticalmeasures to learn control rules for which there is ahigh certainty of utility [Gratch and DeJong, 1992;Greiner and Jurisica, 1992]. However, these ap-proaches require a large number of training prob-lems to estimate the distribution and ensure utilecontrol rules. Preliminary results in [Holder, 1992a;Holder, 1992b] and more recent results reported heresuggest that a simple intermediate approach may yieldsu�cient speedup with fewer training problems andwithout speci�c utility measures.In this work, control rules take the form of preferencerules combined with a counter of the number of timesthe control rule has been extracted from solutions topreviously-encountered training problems. The sim-

ple control-rule selection strategy investigated here isto retain every control rule, maintaining counters forrepeated control rules, and selecting the control rule,having the highest count, that is applicable to the cur-rent goal.After generating learning curves (match cost on a set oftesting problems as a function of training problems) inseveral domains using the simple control rule selectionstrategy, we �nd that the learning curves have a singleglobal minimum (lowest cost) that occurs after only afew training problems (< 5 for the domains studied).This suggests a greedy strategy may be e�ective forselecting control rules which learns every control ruleuntil performance degrades on a separate set of test-ing problems. Of course, this strategy transfers to thetesting set the need for large numbers of problems toestimate the problem distribution. However, the mainadvantage of this approach is the empirical identi�ca-tion of a typically small number of training problemsneeded to inject utile control rules into the problemsolver. After empirically identifying the minimum ofthe learning-cost curve, the next step is to develop atheory for predicting the number of training examplescorresponding to the minimum based on characteris-tics of the domain.The next section discusses the general utility problemof degrading performance due to increasing amountsof learned knowledge. This problem is not isolated tospeedup learning, but a�ects other learning paradigmsas well. Section 3 describes other approaches to solv-ing the utility problem in speedup learning. Section 4illustrates the trend in the learning-cost curve for sev-eral domains, and Section 5 discusses the implicationsof these results. Section 6 presents our conclusions.
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Figure 1: The relationship between cost and knowl-edge exhibited by a learning method su�ering fromthe general utility problem.2 GENERAL UTILITY PROBLEMBoth inductive and speedup learning methods su�erfrom the general utility problem: the eventual degra-dation of performance due to increasing amounts oflow utility learned knowledge. In inductive methodsthe performance degradation is due to over�t. Over�toccurs when the learning method identi�es errant pat-terns in the training data. Inductive learning meth-ods typically use a set of training examples to gen-erate knowledge for reducing classi�cation error onunseen examples. Errant patterns may arise due tonoise in the training data or inadequate stopping cri-teria of the method. As inductive methods generatemore knowledge, they may increase the complexityof the learned hypothesis. For example, some induc-tive learning methods adapt a parameterized modelto training data. As the number of parameters inthe model becomes a sizable fraction of the data, themethod �ts the parameters according to trends in thetraining data that may not occur in unseen examples.Thus, a typical cost (classi�cation error) curve as afunction of the amount of learned knowledge will besimilar to that in Figure 1.The utility problem has been veri�ed in severalspeedup learning systems [Minton, 1988b; Tambe andRosenbloom, 1989; Mooney, 1989; Markovitch andScott, 1989]; however, the underlying cause is less ob-vious than in inductive learning. From a high-levelperspective, the utility problem is also caused by over-�t. The learned knowledge applies to the solution ofthe training examples, but not necessarily to unseenexamples. At a more detailed level, several factors con-tribute to the performance of a speedup learning sys-

tem. First, the speedup learning system must searchthe learned knowledge for pieces applicable to solvingthe problem. As the amount of learned knowledge in-creases, so does this cost. Second, application of thisknowledge may either increase cost by searching futilepaths in the search space or decrease cost by prefer-ring more applicable paths in the search space. Theexact interaction of these factors is di�cult to predict.However, the overall trend also follows the behavior inFigure 1, where cost is typically problem-solving time.The general utility problem in machine learning refersto the degradation of performance due to increas-ing amounts of learned knowledge [Holder, 1990].This term derives from the utility problem usedby Minton [1988a] to describe this phenomenon inspeedup learning, but generalizes to other machinelearning paradigms. Other researchers have observedthe ubiquity of the utility problem in machine learningparadigms and compare the utility problem in speeduplearning to the problems of noise and over�t in induc-tive learning [Yoo and Fisher, 1991]. This work sug-gests that individual methods for avoiding the generalutility problem may derive from a general model ofthe relationship between learned knowledge and per-formance that applies to several learning paradigms.Empirical instances of this model also indicate thatminimizing the utility problem in speedup learningmay involve fewer training examples than predictedby other approaches to avoiding the utility problem.3 RELATED WORKMost approaches to avoiding the utility problem relyon training examples to empirically evaluate the utilityof learned knowledge. The Prodigy system [Minton,1988a] evaluates the utility of problem-solving con-trol knowledge by estimating the application cost, fre-quency and savings a�orded by the control knowledgebased on the training problems.Eskey and Zweben [1990] describe a plausible approachto speedup learning when several examples are neededto support an instance of the target concept. They em-ploy a decision function that evaluates control knowl-edge based on the explanation's probability of correct-ness, expected cost to match search control rule, andexpected degradation in solution quality. Several ex-amples are needed to support an explanation with highcon�dence and adopt the corresponding control rules.The Composer system [Gratch and DeJong, 1992] em-bodies a probabilistic solution to the utility problem.Composer de�nes the utility of a planner as the sum ofthe utility of each problem in the distribution weighted



by its probability of occurrence. A candidate controlrule is evaluated in the context of the existing plan-ner. If there is high con�dence that a rule will bene-�t the planner, then the rule is added to the plannercontrol knowledge. Other candidate rules are then re-evaluated in the context of the new planner. Composerincrementally adds control rules to its control strategy.The utility of the rule depends on the current controlstrategy. A rule is added only after demonstratingbene�t to a pre-speci�ed con�dence level. Higher con-�dence levels require larger numbers of examples.The PALO (Probably Approximately Locally Opti-mal) [Greiner and Jurisica, 1992] approach adopts ahill-climbing technique that evaluates transformationsto the performance element (as e�ected by controlknowledge) using a statistical method. Learning ter-minates when PALO has identi�ed (with high prob-ability) a near-local maximum in the transformationspace. PALO provides stronger guarantees than Com-poser (and Prodigy/EBL) at the cost of more exam-ples. Harmful rules are not discarded in PALO asquickly as they are in Composer. This results in alarger candidate (control rule) set in PALO which in-creases the cost to solve each training example. On theother hand, while Composer uses utility analysis whenclimbing to performance elements with superior per-formance, the analysis does not guarantee to produceoptimal performance elements.The above systems depend on the training examplesfor the distribution of problems in the domain. Typ-ically, a large number of training examples are neces-sary to accurately estimate the problem distributionand the utility of control knowledge. Moreover, thetask of �nding the optimal set of control knowledge,even knowing the distribution, is intractable most ofthe time [Greiner and Jurisica, 1992]. On the otherend of the spectrum, simply limiting the amount ofthe learned knowledge (while ignoring utility) may beadvantageous in terms of learning time saved. PALOtries to estimate the unknown distribution, but thelearning time is extremely high. Hence, concentrat-ing on the amount of learned knowledge rather thanthe utility of the learned knowledge might be feasible.Excessive knowledge degrades performance. Limit-ing learned knowledge, without utility evaluation, maysave learning time and eliminate degradation.4 EXPERIMENTATIONThis section presents empirical results on learning con-trol knowledge in several domains. The results indi-cate that an e�cient set of control rules (relative tothe cost of the original domain theory) can be learned

using a simple selection strategy and a small numberof training examples.4.1 MethodologyThe experiments use a backward-chaining Prolog-likedeductive retriever with proof tree and control rulegeneration capabilities. A depth bound of 20 was usedduring proof tree generation. Explanation-based gen-eralization [Mitchell et al., 1986] is used to generalizethe proofs. The generalized proof is used to generatethe search control knowledge (control rules) for guid-ing the retrieval process.The number of matches (uni�cations) serves as a per-formance criteria for monitoring performance changeswith increase in the amount of learned knowledge, i.e.,control rules. The database rules are Horn clauses,and control rules are of the form:if goalthen database ruleThe control rules are preference rules which choose aparticular rule for solving the current goal. If the an-tecedent of the control rule matches (uni�es with) thecurrent goal then the consequent of the control ruleis preferred over other rules to solve the current goal.The antecedent of the control rule points to a rule inthe database. A weight is associated with each controlrule. The weight represents the total number of timesthe control rule has been successfully used for solv-ing problems (i.e., proving goals and subgoals). Theweight is incremented by one, each time the controlrule is used. If more than one control rule can help insolving the current goal then the rule with the maxi-mum weight is chosen.In the control rule store, control rules whose conse-quents have the same predicate are clustered together.The predicate of the goal (subgoal) is used to hash intothe control rule store, leading to the control rule clus-ter having the same predicate as the goal (subgoal).Any of these rules (in the cluster) could (potentially)help in proving the goal. Hence the cost of using acontrol rule includes the uni�cation cost of �nding themaximum weighted rule (in this cluster), whose con-sequent uni�es with the goal.The average cost of using a control rule is the averagenumber of uni�cations required to match a goal withthe consequent of the control rules having the samepredicate. The cost also includes the match cost ofusing wrong rules and facts from the database as aresult of choosing a bad control rule. The savings interms of number of matches from using a good control



rule is the savings resulting from not trying uselessrules and facts from the database for proving the goal.Since the cost of uni�cation of facts (with goals) is usu-ally less than that of rules (with the cascading e�ectof proving antecedents of the rule), facts are preferredover rules in our deductive retriever.If the control rule store (for a particular domain) in-cludes rules like1. The consequent is:abcd(X, obj1)The weight is: 4The antecedent is:abcd(X0,Y0) <{read(X0), my(X0, Y0),lips(Y0).2. The consequent is:abcd(obj2, Y)The weight is: 4The antecedent is:abcd(X0,Y0) <{ur(X0), so(X0, Y0),kool(Y0).3. The consequent is:abcd(X, Y)The weight is: 5The antecedent is:abcd(X0,Y0) <{make(X0), my(X0, Y0),day(Y0).4. The consequent is:abcd(obj1, Z)The weight is: 7The antecedent is:abcd(X0,Y0) <{quid(X0), pro(X0, Y0),quo(Y0).then the cost of using a control rule for proving a goalabcd(obj2, obj1) will include the cost of uni�cation ofthe consequents of the rules enumerated above, withabcd(obj2, obj1). Note the consequent of control rule 4does not unify with the goal and hence the correspond-ing antecedent (a database rule) will not be used toprove the goal. However the cost of unifying abcd(obj1,Z) with abcd(obj2, obj1) contributes to the cost of us-ing a control rule. The consequents of control rules 1,2 and 3 unify with the goal (the cost of using a con-trol rule includes this uni�cation cost). However, the

antecedent of rule 3 will be used to solve the goal be-cause it has the highest weight. If this rule successfullysolves the goal then the savings due to this control ruleincludes the savings resulting from not searching (po-tential) futile paths { futile paths resulting from theuse of antecedents of control rules 1, 2 and/or 4 andany other rule in the database whose consequent uni-�es with the goal. If this control rule fails to solvethe goal then the other control rules are tried (usingthe same procedure). The use of the control rule, inthis case, leads to the exploration of futile paths whichcontributes to the cost. If all the control rules (namely1, 2 and 3 for the example shown above) fail, a rulefrom the database (di�erent from the antecedents ofthe control rules 1, 2 and 3 and whose consequent uni-�es with the goal) is chosen randomly to solve the goal.In this situation, contol rules have contributed only tothe cost.The results in the next section are generated accordingto the following learning loop:� Control Rule Store = Nil� Solve a list of testing problems and record perfor-mance;� For each training example in the training set{ Pick a training example and solve it{ Append new control rules to the Con-trol Rule Store{ Solve the list of testing problems and recordperformance4.2 ResultsThree di�erent domains were used in these experi-ments. The sentence domain consisted of 14 rulesimplementing a simple natural language parser. Thearti�cial domain consists of 24 rules for determiningfamily relationships combined with 21 arti�cial rulesincreasing the number of alternative rules applicable tocertain goals. The blocks domain contains 8 rules for asituational calculus implementation consisting of oneoperator for transferring blocks and building towers.Figure 2 shows the cost (averaged over 90 trials) ofsolving 9 testing problems in the sentence domain af-ter learning control rules from each of 18 trainingproblems sampled randomly from a set of 28 prob-lems (queries). After an initial increase due to thecontrol rules learned from the �rst training problem,the match cost decreased to a point below the cost ofthe initial rules, but then increased steadily with moretraining problems. The learning-cost curve follows the
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Training ExamplesFigure 2: Sentence domain with general control rules.Match values averaged over 90 trials consisting of 18training and 9 testing sampled from 28 queries.
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Training ExamplesFigure 3: Arti�cial domain with general control rules.Match values average over 90 trials consisting of 18training and 9 testing sampled from 28 queries.trend of Figure 1. The minimum cost occurred afterthe fourth training problem.Figure 3 shows the cost (averaged over 90 trials) ofsolving 9 testing problems in the arti�cial domain afterlearning control rules from each of 18 training prob-lems sampled randomly from a set of 28 problems(queries). Again, the learning-cost curve follows thetrend of Figure 1, and the minimum cost occurred af-ter 3 training problems.Figure 4 shows the cost (averaged over 30 trials) ofsolving 5 testing problems in the blocks domain afterlearning control rules from each of 10 training prob-lems sampled randomly from a set of 15 problems(queries). The problems all involved building towers ofheight 2 from 6 blocks initially on the table. Since each
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Training ExamplesFigure 4: Blocks domain with general control rules.Match values average over 30 trials consisting of 10training and 5 testing sampled from 15 queries con-sisting of towers of height 2.query was essentially the same, the necessary controlrules were learned after the �rst training example andremained �xed thereafter.Figure 5 shows the cost (averaged over 30 trials) ofsolving 10 testing problems in the blocks domain afterlearning control rules from each of 20 training prob-lems sampled randomly from a set of 30 problems(queries). The 30 queries consisted of 18 towers ofheight 2, 9 towers of height 3, and 3 towers of height4. Once again, the familiar trend of the general util-ity problem is evident. The control rules preferred bythe harder queries degrade the search for control rulese�ective for the easier queries.5 DISCUSSIONAlthough the experimental results indicate that fewtraining examples are necessary to learn a utile setof control rules, the main issue is how to predict thenumber of training examples corresponding to the min-imum of the learning-cost curve. First, as is evidentfrom Figure 3, there can be local minima in the curve.However, a single global minimum can be argued basedon two factors a�ecting the performance behavior ofthe problem solver during the course of control-rulelearning. One factor is the time spent testing the appli-cability of the control rules and following futile pathsin the search space not explored by the original domaintheory. The second factor is the cost savings due tothe avoidance of futile paths explored by the originaldomain theory.Initially, as the system learns control rules generated
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Training ExamplesFigure 5: Blocks domain with general control rules.Match values average over 30 trials consisting of 20training and 10 testing sampled from 30 queries con-sisting of towers of height 2 (18), height 3 (9) andheight 4 (3).from randomly-sampled training problems, cost in-creases slightly with the inclusion of low-utility controlrules. However, the learning curve quickly turns down-ward (lower cost) as control rules are learned fromtraining problems containing goals that are prevalentin the problem distribution. Eventually, after the utilecontrol rules have appeared, subsequent control rulelearning follows statistically insigni�cant trends in theproblem distribution that drive up the cost of solvingthe testing problems. These factors combine to forma single minimum in the learning-cost curve.Another di�culty in identifying the minimum is thatseveral control rules are learned per training example.Finer control may be possible by limiting the numberof control rules instead of training examples. Sincemore general control rules seem to have higher utility,control rules learned from higher levels in the explana-tion structure may be preferable to those learned fromlower levels.Although empirical results predict a learning-curveminimum at small numbers of training examples, notheory is available to predict this number. Currently,this point is determined empirically based on the sam-ple of the problem distribution contained in the testingset. One direction is to consider the testing set as apruning set and deriving lower bounds on the size ofthe pruning set to ensure proper identi�cation of theminimum. However, this approach would be similarto current statistical approaches and would probablyrequire a similar number of problems in the pruningset.

A second approach to predicting the number oftraining examples corresponding to minimum of thelearning-cost curve is to use characteristics of the do-main to predict the number of training problems neces-sary to ensure control rules are learned for traversingthe search space in an e�cient manner. We are at-tempting to relate domain characteristics (e.g., sizeand shape of the search space, size of the problemspace, recursive versus non-recursive) to the probabil-ity of seeing a majority of training problems that fol-low a certain, highly-e�cient path through the searchspace that is also followed by a large number of otherproblems prevalent in the problem distribution.6 CONCLUSIONThe simple control-rule selection strategy lies at theopposite end of the spectrum from approaches tothe utility problem dependent upon large numbers oftraining problems to estimate the problem distribu-tion. Empirical results indicate that few training prob-lems are needed to learn a utile set of control rulesminimizing the learning-cost curve. The next step isto compare the minimum of the learning-cost curve tothe speedup obtained using other approaches to theutility problem, and compare the number of trainingexamples at the minimum to the number suggested bystatistical approaches. Eventually, a similar statisticalapproach will be developed for accurately predictingthe necessary number of training problems based ondomain characteristics. If the empirical results are in-dicative of behavior in other domains, there should beno need for large numbers of training problems, and autile set of control rules can be learned with less cost.ReferencesEskey, M. and Zweben, M. (1990). Learning searchcontrol for constraint-based scheduling. In Proceed-ings of the Eighth National Conference on Arti�cialIntelligence, 908{915.Etzioni, O. and Minton, S. (1992). Why EBL producesoverly-speci�c knowledge: A critique of the PRODIGYapproaches. In Proceedings of the Ninth InternationalConference on Machine Learning, 137{143.Gratch, J. and DeJong, G. (1992). COMPOSER: Aprobabilistic solution to the utility problem in speed-up learning. In Proceedings of the Tenth National Con-ference on Arti�cial Intelligence, 235{240.Greiner, R. and Jurisica, I. (1992). A statistical ap-proach to solving the EBL utility problem. In Pro-
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