
Application of Machine Learning to the Maintenanceof Knowledge Base PerformanceLawrence B. HolderUniversity of IllinoisDepartment of Computer Science405 North Mathews, Urbana, IL 61801(To Appear in the Proceedings of IEA/AIE-90)AbstractIntegration of machine learning meth-ods into knowledge-based systems requiresgreater control over the application of thelearning methods. Recent research in ma-chine learning has shown that isolated andunconstrained application of learning meth-ods can eventually degrade performance.This paper presents an approach calledperformance-driven knowledge transforma-tion for controlling the application of learn-ing methods. The primary guidance forthe control is performance of the knowl-edge base. The approach is implemented inthe Peak system. Two experiments withPeak illustrate how the knowledge base istransformed using di�erent learning meth-ods to maintain performance goals. Resultsdemonstrate the ability of performance-driven knowledge transformation to controlthe application of learning methods andmaintain knowledge base performance.1 IntroductionCurrent construction of expert systems begins withthe knowledge engineer entering knowledge acquiredfrom a human expert. The knowledge engineer teststhe system on a set of test cases and modi�es theknowledge until the system achieves a desired level ofperformance. Machine learning methods have beendeveloped to automate the knowledge acquisition pro-cess by reducing the dependence on the quality of theinitial knowledge and using information from the testcases to improve the performance of the knowledgebase. However, current machine learning methodswork in isolation and do not consider the need formultiple learning methods or the possibility of perfor-

mance degradation after repeated applications of theisolated method.As expert systems acquire the ability to service re-quests from multiple problem domains, varying ma-chine learning methods will be necessary to main-tain performance in each domain. For instance, ifthe knowledge in one domain takes the form of ex-amples and the goal is improved accuracy, then thesystem may choose to invoke an empirical learningmethod that constructs generalized rules describingthe examples. If the knowledge in another domaintakes the form of higher-level rules and the goal isimproved response time, then the system may choosean analytical learning method to construct a macrofrom the rule inference chain used to solve the currentproblem.Knowledge-based systems must be able to selectlearning methods appropriate for the desired per-formance improvement. In addition, application ofthe learning method must preserve the performancegoals of other knowledge used for other tasks. Thispaper presents a methodology called performance-driven knowledge transformation for integrating mul-tiple machine learning methods in an expert systemframework in order to achieve and maintain perfor-mance on multiple tasks. This approach controls theapplication of learning methods based on their abilityto achieve desired performance goals.The next section surveys recent results from ma-chine learning research that indicate the need formore selective application of the particular learningparadigm. Section 3 presents the performance-drivenknowledge transformation approach, implemented inthe Peak system. Section 4 demonstrates the use ofPeak for transforming knowledge from a classi�ca-tion task domain and a planning task domain.2 Related WorkResearch in both empirical and analytical learning hasuncovered de�ciencies in the employed methodologies.

The major de�ciencies stem from the naive view thatthe methodology in question is always applicable tothe learning task and therefore should always be ap-plied to the data. In a performance-driven system,one methodology is rarely su�cient to handle the va-riety of learning tasks.2.1 Empirical LearningDuring experimentation with the AQ system (specif-ically, AQ15 [Michalski86]), Michalski found thatrepetitive application of AQ may yield less accu-rate concepts than a more conservative applicationstrategy combined with a simple inference mechanism[Michalski87]. The AQ methodology �nds a conjunc-tive description that covers as many positive examplesas possible without covering any negative examples.Positive examples not covered by the �rst descrip-tion are used as input for another execution of AQ.This procedure continues until a concept in disjunc-tive normal form is produced covering all the positiveexamples and none of the negative examples. Michal-ski compared the accuracy of the DNF concept withthat of the concept consisting of only the single dis-junct covering the most positive examples. Using asimple matching procedure, the truncated conceptsout-performed the original concepts in both accuracyand speed. This observation illustrates the need forsystems to be more selective in their own behaviorwhen such selectivity is su�cient to achieve the per-formance goals.Similar results have been obtained with the deci-sion trees generated by Quinlan's ID3 program [Quin-lan86]. Quinlan found that pruning the rules ex-tracted from a decision tree can improve the accu-racy of the rules on unseen examples [Quinlan87]. ID3builds decision trees by selecting an attribute from thetraining examples providing the best split (accordingto an information theoretic criterion) between posi-tive and negative examples. The program continuesby descending each branch and recursively applyingitself to the examples satisfying the attribute valuefor that branch. ID3 halts when all the nodes at thefrontier of the tree contain all positive or all nega-tive examples. The pruning stage removes rules fromthe decision tree until accuracy on the test examplesbegins to decrease. Compared to the original rules,the pruned rules performed better on the set of un-seen test examples. Although the success of pruningis due mainly to the decreased number of examplesavailable at higher depths in the tree, this stage mighthave been unnecessary if the desired accuracy hadbeen taken into account during the initial generationof the decision rules.

2.2 Analytical LearningResearch on analytical (explanation-based) learningtechniques began to focus more attention on per-formance with the appearance of Keller's work onthe de�nition of operationality [Keller88]. Analyticaltechniques learn from a single example by proving theexample is an instance of the concept to be learned.The proof terminates when the leaves of the proof treeare all operational predicates. The proof tree is thengeneralized, yielding an operational description of theconcept. Earlier work on explanation-based learningde�ned an operational concept as one whose descrip-tion is composed from a set of predicates deemed easyto evaluate [DeJong86, Mitchell86]. Keller points outthat operationality is more intimately related to theperformance element and the desired performance im-provement. This view of operationality was used inthe MetaLex system that learns heuristics for solv-ing calculus problems. MetaLex de�nes an opera-tional concept as one that improves the performanceelement's (problem solver's) run-time e�ciency on aset of benchmark calculus problems, while maintain-ing e�ectiveness so that some percentage of the prob-lems are still solved correctly. The increased attentionon performance has led to the reevaluation of severalanalytical learning systems and the observation thatperformance may degrade with repeated application.In experimentation with the Morris analyticallearning system, Minton found that performance de-grades as the number of rules grows large (the utilityproblem) [Minton88]. In order to learn a concept, thesystem acquires several rules whose disjunction formsthe system's understanding of the concept. As thenumber of rules increase, the cost of determining theapplicability of a rule may outweigh the bene�ts of ap-plying, and thus, retaining the rule. Minton attemptsto solve the utility problem in the Prodigy systemfor learning e�ective control knowledge. Minton's so-lution is to maintain empirical estimates of matchcosts, application savings and frequency of applica-tion for each rule. These estimates are used to com-pute a utility value for the rule. If this value becomesnegative, the rule is no longer considered. Mintonfound that maintenance of a rule's utility value andcompression of the rule's conditions result in a sub-stantial performance improvement. These results in-dicate that a system should be sensitive to the costand savings of the learned descriptions.Like empirical learning, analytical learning su�ersfrom degrading performance over time without carefulconsideration of the function the learned knowledgeis to serve. A learning system should be sensitive tothe performance goals of the learning task and shouldconsider only the knowledge that provides progress

towards these goals.The next section presents an approach that appliesmachine learning methods only when necessary to im-prove performance, and then, only when the learningmethod is appropriate for achieving the desired per-formance goals. Subsequent experimentation demon-strates the ability of the approach to overcome thede�ciencies identi�ed with isolated and unconstrainedapplication of machine learning methods.3 Performance-Driven KnowledgeTransformationThe application of machine learning methods is con-trolled by a process called performance-driven knowl-edge transformation. The process invokes learningmethods based on their ability to achieve desired per-formance goals while preserving the performance onother tasks.Each task for the knowledge base de�nes a per-formance space. The dimensions of the performancespace are the performance goals (e.g., completeness,correctness, response time) to be maintained by theknowledge base for that task. The current state ofthe knowledge base is represented by a point in theperformance space for each task. A knowledge trans-formation can be viewed as a move of the currentknowledge base from one point in the performancespace of each task to another. Figure 1 shows theperformance spaces for two tasks. Task A (Figure 1a)consists of three performance goals G1, G2 and G3.Task B (Figure 1b) consists of two performance goalsG4 and G5. The location of two knowledge bases K1and K2 are shown for each task.The desired performance for each task de�nes ahyper-rectangle in that task's performance space.When the knowledge base moves outside the desired-performance hyper-rectangle in some performancespace, performance-driven knowledge transformationselects a learning method to transform the knowledgebase so that the corresponding point in the perfor-mance space for the current task moves inside thedesired-performance hyper-rectangle without movingthe point outside the desired hyper-rectangle in theperformance spaces for other tasks. Referring to Fig-ure 1, knowledge base K1 has satisfactory perfor-mance for task B, but violates the performance goalsof task A. Transforming knowledge base K1 to K2achieves the performance goals of task A and pre-serves the satisfactory performance for task B.This research investigates a means-ends approachto performance-driven knowledge transformation.When a performance goal violation is detected whilesolving a problem from some task, the means-ends ap-proach uses information about the context of the goal

violation (e.g., the di�erence between desired and ac-tual performance) to select a transformation operatorfor reducing this di�erence while maintaining otherperformance levels. Application of the operator yieldsa new knowledge base. If the new knowledge baseachieves the violated performance goals and preservesother performance goals, then the current knowledgebase is replaced by the new knowledge base. Other-wise, another transformation operator is selected forapplication.In the following discussion, certain assumptionshave been made about the knowledge in the knowl-edge base and the performance element using thisknowledge. The knowledge base is a set of Horn clauserules. The performance element is a deductive re-triever similar to Prolog. Performance is measuredwhile the performance element attempts to solve aquery posed by the user. Attached to the query arethe performance goals to be maintained during so-lution. Performance goal violations occur when themeasured performance exceeds the desired thresholds.3.1 Performance PerspectiveUsing performance goals as a means of guiding themaintenance and repair of a knowledge base requiresa precise de�nition of performance. The de�nitionof performance depends on the perspective. Fourperspectives are applicable for describing the perfor-mance of a knowledge base:� External performance is the performance mea-sured from outside the knowledge base, regard-less of any internal knowledge transformations.� Current performance is the performance thesystem currently maintains for the previouslyseen queries.� Expected performance is the performance thesystem expects to demonstrate on future queries.Expected performance is usually the same as cur-rent performance.� Absolute performance is the performance thatthe current state of the knowledge would supportif given every possible query.When the user speci�es a threshold for some perfor-mance measure, the proper perspective must be usedto evaluate the performance of the knowledge base.Absolute performance is rarely available due to a lackof knowledge about the instance space. Absolute per-formance is inappropriate, because the distributionover the entire instance space may not give equalprobability to each instance. External performanceprovides information about the rate of convergence

G

G1

G
3

2

G

K1

K2
G

5

4

K1
K2

i(K = knowledge base)

(G = performance goal)i

(a) Task A (b) Task BFigure 1: Performance Spaces for Two Knowledge Base Taskstowards absolute performance. Changes in externalperformance indicate the need for an increase or de-crease in the extent of the knowledge transformations.Current performance evaluates the knowledge only onpreviously seen queries. Expected performance is thebest measure of the current state of the knowledgebase, because the objective of the knowledge base isto maintain its expected ability to perform the taskwithin desired thresholds on possibly unseen queries.Performance-driven knowledgetransformation should measure both expected and ex-ternal performance. Knowledge transformations aretriggered only when expected performance falls belowdesired levels. External performance should then beused in the selection of an appropriate transformationoperator. The greater the di�erence between externaland expected performance, the more drastic a trans-formation operator should be recommended by thesystem.3.2 Information on Goal ViolationsOnce a goal violation has been detected, several piecesof information are available for selecting an appropri-ate knowledge transformation operator. First, as de-scribed in the previous section, the di�erence betweenexpected and external performance indicates the ex-tent of the necessary transformation.Second, after the performance element attempts tosolve a query, the violated and preserved goals areknown. Each goal contains information about theperformance measure that this goal constrains, thedesired threshold on the measure, the observed valueof the measure on previously seen queries (includ-ing the query just processed), and the di�erence be-tween the observed and desired performance (the er-ror). The performance measure constrained by a vi-

olated goal is useful for selecting transformation op-erators capable of improving this performance mea-sure. The magnitude of the error indicates the ex-tent of the transformation. The performance measureconstrained by a satis�ed goal is useful for selectingtransformation operators capable of preserving thisperformance measure. The magnitude of the error in-dicates the extent to which the selected operator maydegrade performance on the satis�ed goals in order toachieve performance on the violated goals.A third source of information that will be avail-able upon detection of a performance goal violationis the task history. Each task known to the knowl-edge base maintains a task history of previously seenqueries from the task. The task history serves twopurposes. First, the task history represents an em-pirical estimate of the distribution over the possiblequeries of the task. This distribution can be usedto verify the achievement of violated performancegoals in transformed knowledge. Second, an entryin the task history contains information about thequery-solving episode. One useful piece of informa-tion about a query-solving episode is the trace of theknowledge accessed during the solution.The knowledge trace is an and/or tree that recordsthe knowledge accessed during the solution of thequery and indicates which rules (if any) support theresponse to the query. Information about the shape ofa task's knowledge traces constrains the selection ofknowledge transformations. For example, wide, shal-low knowledge traces indicate that the knowledge con-sists of speci�c instances of the task; whereas narrow,deep knowledge traces indicate a more general set ofrules for proving queries from the corresponding task.Finally, past success of the transformation opera-

tors provides information upon performance goal vi-olation. As the knowledge base transforms to meetperformance goals, a record is kept of the old and newknowledge bases along with the operator responsiblefor the transformation. If the new knowledge baseachieves a violated goal while preserving non-violatedgoals, then the system increases the operators appli-cability for achieving and preserving the appropriategoals. Over time, collection of this information willallow the system to make a more informed operatorselection based on past experience.3.3 Veri�cation of Knowledge BaseBecause no operator application is guaranteed toachieve the desired results, the system must verifythat the knowledge base resulting from an operatorapplication achieves the desired performance. Veri�-cation can be accomplished by re-solving the queriesin the task history. The size of the task history can bechanged to tradeo� performance convergence rates fortransformation speed. As the system learns operatorapplicability, there is less chance of multiple veri�ca-tion being necessary to repair one goal violation; thus,the task history size can be increased over time.4 ExperimentationThis section illustrates the application of Peak ontwo tasks from diverse domains. The �rst experi-ment involves learning to improve response time, com-pleteness and correctness while determining whetherto land the space shuttle manually or automaticallydepending on environmental conditions. The sec-ond experiment involves learning to improve responsetime while constructing plans to build towers in theblocks-world domain. Together, the two experimentsdemonstrate the ability of performance-drive knowl-edge transformation to selectively apply appropri-ate learning methods to achieve desired performancegoals.4.1 Experiment with Shuttle DomainThis experiment executes the Peak system the shut-tle landing control database available from the ma-chine learning databases maintained by University ofCalifornia at Irvine. The problem is to determinewhether to land the shuttle manually or automati-cally based on environmental attributes. The corre-sponding task is labeled the landing task, and thequeries are of the form landing(ENV,?x). The ENVin the query represents the environmental situation tobe evaluated. The performance element attempts to�ll in the ?x with the recommended landing control:auto or noauto.

Prior to query answering, the user inputs the per-formance thresholds to be maintained by the knowl-edge base while answering landing queries using theperformance element (a backward-chaining deductivetheorem prover for Horn clauses). For this experi-ment, three performance goals are speci�ed: correct-ness, completeness and response time. The correct-ness goal speci�es that the answers to queries mustbe correct 90% of the time. The completeness goalspeci�es that the query must be answered 95% of thetime. That is, the answer should be either auto ornoauto and not \I don't know". The response timegoal speci�es that the performance element must re-spond within 10 seconds.Two knowledge transformation operators are avail-able: rote learning and empirical learning. Applica-tion of the rote learning operator asks the user forthe correct answer to the query. A new rule is addedto the knowledge base having the instantiated queryas the consequent, and the facts de�ned before queryexecution as the antecedent. The empirical learningoperator utilizes the ID3 program to build a decisiontree from examples in the knowledge base. The ex-amples are rules such as those learned by the roteoperator. Each path in the resulting decision tree isconverted to a rule. The examples are replaced by thenew rules in the transformed knowledge base.Starting with an empty knowledge base, Peak at-tempts to solve landing queries, while maintaining theperformance goals. Figure 2 plots the three perfor-mance goals for 200 randomly chosen queries fromthe shuttle landing control domain.Figure 2a illustrates how Peak maintains responsetime performance below 10 seconds. For the �rst 30queries, response time increases as the number of rote-learned rules increases. Eventually, the large numberof rules in the knowledge base cannot be traversedwithin the response time threshold.While processing the 30th query, Peak was unableto solve the query, generating a completeness failure.Peak �rst trys to transform the knowledge base byrote-learning a new rule. However, veri�cation of thenew knowledge base uncovers a response time failure.Because the rote learning operator was ine�ective,Peak chose to apply the ID3 operator. ID3 gener-alized the 29 learned instances into 8 general rules.As Figure 2a indicates, the resulting transformationdrastically improves response time performance.The plot of completeness performance in Figure 2billustrates how Peak quickly learns the initial queryknowledge. After the ID3 transformation, complete-ness remained above the 95% threshold for the re-mainder of the 200 queries.The correctness plot in Figure 2c shows how per-

 Desired Performance
 Actual Performance

|
0

|
25

|
50

|
75

|
100

|
125

|
150

|
175

|
200

|0

|1

|2

|3

|4

|5

|6

|7

|8

|9

|10

 Query#

 R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

(a)

 Desired Performance
 Actual Performance

|
0

|
25

|
50

|
75

|
100

|
125

|
150

|
175

|
200

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

 Query#

 C
om

pl
et

en
es

s

(b)

 Desired Performance
 Actual Performance

|
0

|
25

|
50

|
75

|
100

|
125

|
150

|
175

|
200

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

 Query#

 C
or

re
ct

ne
ss

(c)Figure 2: Plots of Performance for Shuttle Domain

formance starts at 100% and converges to the desired90% threshold. The initial values of 100% for correct-ness are due to the fact that many of the initial queriescould not be answered. Correctness performance onlymeasures the correctness of answered queries. Imme-diately following the application of ID3, correctnessfalls to 94% due to the next two queries being incor-rectly answered according to the new knowledge base.As query answering continues, the over-generalizationin the rules eventually brings correctness down be-low the 90% threshold. Correctness violations occurat queries 89, 98, 153 and 163. In each case, Peakuses the rote-learning operator to memorize the in-correctly answered query and restore 90% correctnessperformance.The �nal knowledge base after completion of the200 queries consists of the 12 rules shown in Figure 3.Rules 5-12 are the general rules learned by ID3. Rules1-4 are the speci�c instances learned to repair theover-generalization in ID3's rules. After 200 queries,the knowledge base converged to 8 general rules de-scribing major trends in the shuttle landing domainand four speci�c rules for special cases not handledcorrectly by the general rules.One �nal observation from Figure 2 is the conver-gence of the performance towards the desired thresh-olds and not towards the maximum possible per-formance. This indicates how performance-drivenknowledge transformation utilizes
exibility in one di-mension of performance to improve performance inanother dimension.4.2 Experiment with Tower DomainIn the task from the tower domain, the user asks theperformance element to construct a plan for build-ing a tower of blocks. The queries are of the formtower(A B C ?state), where A, B and C are blocks,and ?state is a variable to be instantiated with theplan for achieving the tower.Prior to query answering, the user inputs the per-formance thresholds to be maintained by the knowl-edge base while answering tower queries. For this ex-periment, one performance goal is speci�ed: response-time < 10 seconds. Performance goals for complete-ness and correctness are inappropriate, because thedomain theory is assumed complete and correct.In addition to the rote learning and ID3 operatorsused with the �rst experiment, an explanation-basedgeneralizer, Eggs [Mooney86], is included in thePeak system. Eggs applies standard explanation-based techniques [DeJong86, Mitchell86] to general-ize the proofs obtained by the performance element.When Eggs is applied to a proof, the result is a gen-eral rule that is added to the knowledge base.

 Desired Perf.
 Actual Perf.

|
0

|
10

|
20

|
30

|
40

|
50

|
60

|
70

|
80

|
90

|
100

|0

|10

|20

|30

|40

|50

 Query#

 R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

Figure 4: Plot of Response Time for Tower DomainStarting with the blocks-world domain theory,Peak attempts to solve tower queries, while remain-ing the response time performance goal. Figure 4shows the response time obtained by Peak for 100semi-randomly chosen tower queries. Semi-randommeans that the �rst ten queries were all towers ofheight two, each chosen randomly from among sixpossible blocks in the initial state. The second tenqueries were all towers of height three, and so on forthe �rst 50 queries. The second 50 queries repeat theabove sequence to show the e�ects on response timeof the rules learned during the �rst 50 queries.As shown in Figure 4, the �rst 20 queries (towersof height two and three) are solved by the originaldomain theory within the response time threshold.However, the domain theory is unable to maintainthe response time performance goal while processingthe 21st query (tower of height three). At this point,ID3 cannot be applied due to the lack of examplesin the knowledge base. The Eggs operator is chosenover rote learning due to the knowledge trace for thequery. The deep, wide proof tree suggests that Eggsis more likely to succeed than ID3.Application of Eggs yields a general rule thatbuilds any tower of height three in one step. Thus,the remainder of the tower queries for height threeare completed within the response time threshold.Similar rules are learned for the 31st query (towerof height four) and 41st query (tower of height �ve).Figure 4 shows that retrying the towers of heightstwo through �ve (queries 50-100) results in no re-sponse time performance violations due to the pre-viously learned rules.

1. landing(x,noauto) sign(x,nn) & wind(x,head) & stability(x,xstab) & error(x,MM) &magnitude(x,Medium) & visibility(x,yes)2. landing(x,noauto) sign(x,pp) & wind(x,tail) & stability(x,xstab) & error(x,MM) &magnitude(x,Low) & visibility(x,yes)3. landing(x,noauto) sign(x,nn) & wind(x,head) & stability(x,stab) & error(x,MM) &magnitude(x,OutOfRange) & visibility(x,yes)4. landing(x,noauto) sign(x,nn) & wind(x,tail) & stability(x,xstab) & error(x,MM) &magnitude(x,Low) & visibility(x,yes)5. landing(x,auto) error(x,MM) & visibility(x,yes)6. landing(x,auto) stability(x,stab) & error(x,SS) & magnitude(x,Strong) & visibility(x,yes)7. landing(x,auto) visibility(x,no)8. landing(x,noauto) error(x,XL) & visibility(x,yes)9. landing(x,noauto) error(x,LX) & visibility(x,yes)10. landing(x,noauto) stability(x,xstab) & error(x,SS) & magnitude(x,Strong) & visibility(x,yes)11. landing(x,noauto) error(x,SS) & magnitude(x,OutOfRange) & visibility(x,yes)12. landing(x,noauto) error(x,SS) & magnitude(x,Low) & visibility(x,yes)Figure 3: Shuttle Domain Knowledge Base After 200 Queries5 ConclusionsThe experiments of the previous section demonstratethat di�erent machine learning methods are necessaryin di�erent learning contexts. Performance-drivenknowledge transformation uses contextual informa-tion about the desired performance goals and theknowledge accessed by the problem-solving episodesto select an appropriate learning method. This pro-cess can be used to improve and maintain perfor-mance for multiple problems in varying domains.Integrating performance-driven knowledge trans-formation into knowledge-based systems will reducedependence on the quality of the initially enteredknowledge and allow the knowledge base to adaptto changing performance requirements. Performance-driven knowledge transformation is also able to learnthe knowledge necessary to control multiple learningmethods, invoking appropriate methods only if nec-essary to improve performance.AcknowledgmentsI would like to thank Robert Stepp, Diane Cook, BradWhitehall and Robert Reinke for their helpful sug-gestions on this work. The ID3 and EGGS operatorswere adapted from versions written by Ray Mooney.The rules used for the tower domain were adaptedfrom rules written by Jude Shavlik and Ray Mooney.ReferencesG. F. DeJong and R. J. Mooney, \Explanation-BasedLearning: An Alternative View," Machine Learning1, 2 (April 1986), pp. 145-176.

R. M. Keller, \De�ning Operationality forExplanation-Based Learning," Arti�cial Intelligence35, 2 (June 1988), pp. 227-241.R. S. Michalski, I. Mozetic, J. Hong and N. Lavrac,\The Multi-Purpose Incremental Learning SystemAQ15 and its Testing Application in Three MedicalDomains," Proceedings of the National Conference onArti�cial Intelligence, Philadelphia, PA, August 1986,pp. 1041-1047.R. S. Michalski, \How to Learn Imprecise Con-cepts: A Method for Employing a Two-Tiered Knowl-edge Representation in Learning," Proceedings ofthe 1987 International Machine Learning Workshop,Irvine, CA, June 1987, pp. 50-58.S. Minton, \Quantitative Results Concerning theUtility of Explanation-Based Learning," Proceedingsof the National Conference on Arti�cial Intelligence,St. Paul, MN, August 1988, pp. 564-569.T. M. Mitchell, R. Keller and S. Kedar-Cabelli,\Explanation-Based Generalization: A UnifyingView," Machine Learning 1, 1 (January 1986), pp.47-80.R. J. Mooney and S. W. Bennett, \A Domain In-dependent Explanation-Based Generalizer," Proceed-ings of the National Conference on Arti�cial Intelli-gence, Philadelphia, PA, August 1986, pp. 551-555.J. R. Quinlan, \Induction of Decision Trees," Ma-chine Learning 1, 1 (1986), pp. 81-106.J. R. Quinlan, \Generating Production Rules fromDecision Trees," Proceedings of the Tenth Interna-tional Joint Conference on Arti�cial Intelligence, Mi-lan, Italy, August 1987, pp. 304-307.

