Application of Machine Learning to the Maintenance
of Knowledge Base Performance

Lawrence B. Holder
University of Illinois
Department of Computer Science
405 North Mathews, Urbana, IL 61801

(To Appear in the Proceedings of IEA /ATE-90)

Abstract

Integration of machine learning meth-
ods into knowledge-based systems requires
greater control over the application of the
learning methods. Recent research in ma-
chine learning has shown that isolated and
unconstrained application of learning meth-
ods can eventually degrade performance.
This paper presents an approach called
performance-driven knowledge transforma-
tion for controlling the application of learn-
ing methods. The primary guidance for
the control is performance of the knowl-
edge base. The approach is implemented in
the PEAK system. Two experiments with
PEAK illustrate how the knowledge base is
transformed using different learning meth-
ods to maintain performance goals. Results
demonstrate the ability of performance-
driven knowledge transformation to control
the application of learning methods and
maintain knowledge base performance.

1 Introduction

Current construction of expert systems begins with
the knowledge engineer entering knowledge acquired
from a human expert. The knowledge engineer tests
the system on a set of test cases and modifies the
knowledge until the system achieves a desired level of
performance. Machine learning methods have been
developed to automate the knowledge acquisition pro-
cess by reducing the dependence on the quality of the
initial knowledge and using information from the test
cases to improve the performance of the knowledge
base. However, current machine learning methods
work in isolation and do not consider the need for
multiple learning methods or the possibility of perfor-

mance degradation after repeated applications of the
isolated method.

As expert systems acquire the ability to service re-
quests from multiple problem domains, varying ma-
chine learning methods will be necessary to main-
tain performance in each domain. For instance, if
the knowledge in one domain takes the form of ex-
amples and the goal is improved accuracy, then the
system may choose to invoke an empirical learning
method that constructs generalized rules describing
the examples. If the knowledge in another domain
takes the form of higher-level rules and the goal is
improved response time, then the system may choose
an analytical learning method to construct a macro
from the rule inference chain used to solve the current
problem.

Knowledge-based systems must be able to select
learning methods appropriate for the desired per-
formance improvement. In addition, application of
the learning method must preserve the performance
goals of other knowledge used for other tasks. This
paper presents a methodology called performance-
driven knowledge transformation for integrating mul-
tiple machine learning methods in an expert system
framework in order to achieve and maintain perfor-
mance on multiple tasks. This approach controls the
application of learning methods based on their ability
to achieve desired performance goals.

The next section surveys recent results from ma-
chine learning research that indicate the need for
more selective application of the particular learning
paradigm. Section 3 presents the performance-driven
knowledge transformation approach, implemented in
the PEAK system. Section 4 demonstrates the use of
PEAK for transforming knowledge from a classifica-
tion task domain and a planning task domain.

2 Related Work

Research in both empirical and analytical learning has
uncovered deficiencies in the employed methodologies.

The major deficiencies stem from the naive view that
the methodology in question is always applicable to
the learning task and therefore should always be ap-
plied to the data. In a performance-driven system,
one methodology is rarely sufficient to handle the va-
riety of learning tasks.

2.1 Empirical Learning

During experimentation with the AQ system (specif-
ically, AQ15 [Michalski86]), Michalski found that
repetitive application of AQ may yield less accu-
rate concepts than a more conservative application
strategy combined with a simple inference mechanism
[Michalski87]. The AQ methodology finds a conjunc-
tive description that covers as many positive examples
as possible without covering any negative examples.
Positive examples not covered by the first descrip-
tion are used as input for another execution of AQ.
This procedure continues until a concept in disjunc-
tive normal form is produced covering all the positive
examples and none of the negative examples. Michal-
ski compared the accuracy of the DNF concept with
that of the concept consisting of only the single dis-
junct covering the most positive examples. Using a
simple matching procedure, the truncated concepts
out-performed the original concepts in both accuracy
and speed. This observation illustrates the need for
systems to be more selective in their own behavior
when such selectivity is sufficient to achieve the per-
formance goals.

Similar results have been obtained with the deci-
sion trees generated by Quinlan’s ID3 program [Quin-
lan86]. Quinlan found that pruning the rules ex-
tracted from a decision tree can improve the accu-
racy of the rules on unseen examples [Quinlan87]. ID3
builds decision trees by selecting an attribute from the
training examples providing the best split (according
to an information theoretic criterion) between posi-
tive and negative examples. The program continues
by descending each branch and recursively applying
itself to the examples satisfying the attribute value
for that branch. ID3 halts when all the nodes at the
frontier of the tree contain all positive or all nega-
tive examples. The pruning stage removes rules from
the decision tree until accuracy on the test examples
begins to decrease. Compared to the original rules,
the pruned rules performed better on the set of un-
seen test examples. Although the success of pruning
is due mainly to the decreased number of examples
available at higher depths in the tree, this stage might
have been unnecessary if the desired accuracy had
been taken into account during the initial generation
of the decision rules.

2.2 Analytical Learning

Research on analytical (explanation-based) learning
techniques began to focus more attention on per-
formance with the appearance of Keller’'s work on
the definition of operationality [Keller88]. Analytical
techniques learn from a single example by proving the
example is an instance of the concept to be learned.
The proof terminates when the leaves of the proof tree
are all operational predicates. The proof tree is then
generalized, yielding an operational description of the
concept. Earlier work on explanation-based learning
defined an operational concept as one whose descrip-
tion is composed from a set of predicates deemed easy
to evaluate [DeJong86, Mitchell86]. Keller points out
that operationality is more intimately related to the
performance element and the desired performance im-
provement. This view of operationality was used in
the METALEX system that learns heuristics for solv-
ing calculus problems. METALEX defines an opera-
tional concept as one that improves the performance
element’s (problem solver’s) run-time efficiency on a
set of benchmark calculus problems, while maintain-
ing effectiveness so that some percentage of the prob-
lems are still solved correctly. The increased attention
on performance has led to the reevaluation of several
analytical learning systems and the observation that
performance may degrade with repeated application.

In experimentation with the MORRIS analytical
learning system, Minton found that performance de-
grades as the number of rules grows large (the utility
problem) [Minton88]. In order to learn a concept, the
system acquires several rules whose disjunction forms
the system’s understanding of the concept. As the
number of rules increase, the cost of determining the
applicability of a rule may outweigh the benefits of ap-
plying, and thus, retaining the rule. Minton attempts
to solve the utility problem in the PRODIGY system
for learning effective control knowledge. Minton’s so-
lution is to maintain empirical estimates of match
costs, application savings and frequency of applica-
tion for each rule. These estimates are used to com-
pute a utility value for the rule. If this value becomes
negative, the rule is no longer considered. Minton
found that maintenance of a rule’s utility value and
compression of the rule’s conditions result in a sub-
stantial performance improvement. These results in-
dicate that a system should be sensitive to the cost
and savings of the learned descriptions.

Like empirical learning, analytical learning suffers
from degrading performance over time without careful
consideration of the function the learned knowledge
is to serve. A learning system should be sensitive to
the performance goals of the learning task and should
consider only the knowledge that provides progress

towards these goals.

The next section presents an approach that applies
machine learning methods only when necessary to im-
prove performance, and then, only when the learning
method is appropriate for achieving the desired per-
formance goals. Subsequent experimentation demon-
strates the ability of the approach to overcome the
deficiencies identified with isolated and unconstrained
application of machine learning methods.

3 Performance-Driven Knowledge
Transformation

The application of machine learning methods is con-
trolled by a process called performance-driven knowl-
edge transformation. The process invokes learning
methods based on their ability to achieve desired per-
formance goals while preserving the performance on
other tasks.

Each task for the knowledge base defines a per-
formance space. The dimensions of the performance
space are the performance goals (e.g., completeness,
correctuess, response time) to be maintained by the
knowledge base for that task. The current state of
the knowledge base is represented by a point in the
performance space for each task. A knowledge trans-
formation can be viewed as a move of the current
knowledge base from one point in the performance
space of each task to another. Figure 1 shows the
performance spaces for two tasks. Task A (Figure 1a)
consists of three performance goals G, G5 and Gj3.
Task B (Figure 1b) consists of two performance goals
G4 and G5. The location of two knowledge bases K;
and K> are shown for each task.

The desired performance for each task defines a
hyper-rectangle in that task’s performance space.
When the knowledge base moves outside the desired-
performance hyper-rectangle in some performance
space, performance-driven knowledge transformation
selects a learning method to transform the knowledge
base so that the corresponding point in the perfor-
mance space for the current task moves inside the
desired-performance hyper-rectangle without moving
the point outside the desired hyper-rectangle in the
performance spaces for other tasks. Referring to Fig-
ure 1, knowledge base K; has satisfactory perfor-
mance for task B, but violates the performance goals
of task A. Transforming knowledge base K; to Ks
achieves the performance goals of task A and pre-
serves the satisfactory performance for task B.

This research investigates a means-ends approach
to performance-driven knowledge transformation.
When a performance goal violation is detected while
solving a problem from some task, the means-ends ap-
proach uses information about the context of the goal

violation (e.g., the difference between desired and ac-
tual performance) to select a transformation operator
for reducing this difference while maintaining other
performance levels. Application of the operator yields
a new knowledge base. If the new knowledge base
achieves the violated performance goals and preserves
other performance goals, then the current knowledge
base is replaced by the new knowledge base. Other-
wise, another transformation operator is selected for
application.

In the following discussion, certain assumptions
have been made about the knowledge in the knowl-
edge base and the performance element using this
knowledge. The knowledge base is a set of Horn clause
rules. The performance element is a deductive re-
triever similar to Prolog. Performance is measured
while the performance element attempts to solve a
query posed by the user. Attached to the query are
the performance goals to be maintained during so-
lution. Performance goal violations occur when the
measured performance exceeds the desired thresholds.

3.1 Performance Perspective

Using performance goals as a means of guiding the
maintenance and repair of a knowledge base requires
a precise definition of performance. The definition
of performance depends on the perspective. Four
perspectives are applicable for describing the perfor-
mance of a knowledge base:

e External performance is the performance mea-
sured from outside the knowledge base, regard-
less of any internal knowledge transformations.

e Current performance is the performance the
system currently maintains for the previously
seen queries.

e Expected performance is the performance the
system expects to demonstrate on future queries.
Expected performance is usually the same as cur-
rent performance.

e Absolute performance is the performance that
the current state of the knowledge would support
if given every possible query.

When the user specifies a threshold for some perfor-
mance measure, the proper perspective must be used
to evaluate the performance of the knowledge base.
Absolute performance is rarely available due to a lack
of knowledge about the instance space. Absolute per-
formance is inappropriate, because the distribution
over the entire instance space may not give equal
probability to each instance. Ezternal performance
provides information about the rate of convergence

63 Gy
A A
L] Kl
M K2 ¢ K
1 . KZ
L G2 L G4
(G, = performance goal)
(K; = knowledge base)
G,
(a) Task A (b) Task B

Figure 1: Performance Spaces for Two Knowledge Base Tasks

towards absolute performance. Changes in external
performance indicate the need for an increase or de-
crease in the extent of the knowledge transformations.
Current performance evaluates the knowledge only on
previously seen queries. Ezpected performance is the
best measure of the current state of the knowledge
base, because the objective of the knowledge base is
to maintain its expected ability to perform the task
within desired thresholds on possibly unseen queries.

Performance-driven knowledge
transformation should measure both expected and ez-
ternal performance. Knowledge transformations are
triggered only when ezpected performance falls below
desired levels. FExternal performance should then be
used in the selection of an appropriate transformation
operator. The greater the difference between external
and ezpected performance, the more drastic a trans-
formation operator should be recommended by the
system.

3.2 Information on Goal Violations

Once a goal violation has been detected, several pieces
of information are available for selecting an appropri-
ate knowledge transformation operator. First, as de-
scribed in the previous section, the difference between
expected and external performance indicates the ex-
tent of the necessary transformation.

Second, after the performance element attempts to
solve a query, the violated and preserved goals are
known. Each goal contains information about the
performance measure that this goal constrains, the
desired threshold on the measure, the observed value
of the measure on previously seen queries (includ-
ing the query just processed), and the difference be-
tween the observed and desired performance (the er-
ror). The performance measure constrained by a vi-

olated goal is useful for selecting transformation op-
erators capable of improving this performance mea-
sure. The magnitude of the error indicates the ex-
tent of the transformation. The performance measure
constrained by a satisfied goal is useful for selecting
transformation operators capable of preserving this
performance measure. The magnitude of the error in-
dicates the extent to which the selected operator may
degrade performance on the satisfied goals in order to
achieve performance on the violated goals.

A third source of information that will be avail-
able upon detection of a performance goal violation
is the task history. Each task known to the knowl-
edge base maintains a task history of previously seen
queries from the task. The task history serves two
purposes. First, the task history represents an em-
pirical estimate of the distribution over the possible
queries of the task. This distribution can be used
to verify the achievement of violated performance
goals in transformed knowledge. Second, an entry
in the task history contains information about the
query-solving episode. One useful piece of informa-
tion about a query-solving episode is the trace of the
knowledge accessed during the solution.

The knowledge trace is an and/or tree that records
the knowledge accessed during the solution of the
query and indicates which rules (if any) support the
response to the query. Information about the shape of
a task’s knowledge traces constrains the selection of
knowledge transformations. For example, wide, shal-
low knowledge traces indicate that the knowledge con-
sists of specific instances of the task; whereas narrow,
deep knowledge traces indicate a more general set of
rules for proving queries from the corresponding task.

Finally, past success of the transformation opera-

tors provides information upon performance goal vi-
olation. As the knowledge base transforms to meet
performance goals, a record is kept of the old and new
knowledge bases along with the operator responsible
for the transformation. If the new knowledge base
achieves a violated goal while preserving non-violated
goals, then the system increases the operators appli-
cability for achieving and preserving the appropriate
goals. Over time, collection of this information will
allow the system to make a more informed operator
selection based on past experience.

3.3 Verification of Knowledge Base

Because no operator application is guaranteed to
achieve the desired results, the system must verify
that the knowledge base resulting from an operator
application achieves the desired performance. Verifi-
cation can be accomplished by re-solving the queries
in the task history. The size of the task history can be
changed to tradeoff performance convergence rates for
transformation speed. As the system learns operator
applicability, there is less chance of multiple verifica-
tion being necessary to repair one goal violation; thus,
the task history size can be increased over time.

4 Experimentation

This section illustrates the application of PEAK on
two tasks from diverse domains. The first experi-
ment involves learning to improve response time, com-
pleteness and correctness while determining whether
to land the space shuttle manually or automatically
depending on environmental conditions. The sec-
ond experiment involves learning to improve response
time while constructing plans to build towers in the
blocks-world domain. Together, the two experiments
demonstrate the ability of performance-drive knowl-
edge transformation to selectively apply appropri-
ate learning methods to achieve desired performance
goals.

4.1 Experiment with Shuttle Domain

This experiment executes the PEAK system the shut-
tle landing control database available from the ma-
chine learning databases maintained by University of
California at Irvine. The problem is to determine
whether to land the shuttle manually or automati-
cally based on environmental attributes. The corre-
sponding task is labeled the landing task, and the
queries are of the form landing(ENV,?x). The ENV
in the query represents the environmental situation to
be evaluated. The performance element attempts to
fill in the 7x with the recommended landing control:
auto or noauto.

Prior to query answering, the user inputs the per-
formance thresholds to be maintained by the knowl-
edge base while answering landing queries using the
performance element (a backward-chaining deductive
theorem prover for Horn clauses). For this experi-
ment, three performance goals are specified: correct-
ness, completeness and response time. The correct-
ness goal specifies that the answers to queries must
be correct 90% of the time. The completeness goal
specifies that the query must be answered 95% of the
time. That is, the answer should be either auto or
noauto and not “I don’t know”. The response time
goal specifies that the performance element must re-
spond within 10 seconds.

Two knowledge transformation operators are avail-
able: rote learning and empirical learning. Applica-
tion of the rote learning operator asks the user for
the correct answer to the query. A new rule is added
to the knowledge base having the instantiated query
as the consequent, and the facts defined before query
execution as the antecedent. The empirical learning
operator utilizes the ID3 program to build a decision
tree from examples in the knowledge base. The ex-
amples are rules such as those learned by the rote
operator. Each path in the resulting decision tree is
converted to a rule. The examples are replaced by the
new rules in the transformed knowledge base.

Starting with an empty knowledge base, PEAK at-
tempts to solve landing queries, while maintaining the
performance goals. Figure 2 plots the three perfor-
mance goals for 200 randomly chosen queries from
the shuttle landing control domain.

Figure 2a illustrates how PEAK maintains response
time performance below 10 seconds. For the first 30
queries, response time increases as the number of rote-
learned rules increases. Eventually, the large number
of rules in the knowledge base cannot be traversed
within the response time threshold.

While processing the 30th query, PEAK was unable
to solve the query, generating a completeness failure.
PEAK first trys to transform the knowledge base by
rote-learning a new rule. However, verification of the
new knowledge base uncovers a response time failure.
Because the rote learning operator was ineffective,
PEAK chose to apply the ID3 operator. ID3 gener-
alized the 29 learned instances into 8 general rules.
As Figure 2a indicates, the resulting transformation
drastically improves response time performance.

The plot of completeness performance in Figure 2b
illustrates how PEAK quickly learns the initial query
knowledge. After the ID3 transformation, complete-
ness remained above the 95% threshold for the re-
mainder of the 200 queries.

The correctness plot in Figure 2c shows how per-

Response Time (seconds)

Completeness

Correctness

=
o

0.5

0.4 1
0.3
0.2 1
0.1
0.0

0

O FRP N WSO N 0 ©

------ Desired Performance
——— Actual Performance

| ! | LVM\W

25 50 75 100 125 150 175 200
(a) Query#

------ Desired Performance
——— Actual Performance

------ Desired Performance
——— Actual Performance

25 50 75 100 125 150 175 200
(C) Query#

Figure 2: Plots of Performance for Shuttle Domain

formance starts at 100% and converges to the desired
90% threshold. The initial values of 100% for correct-
ness are due to the fact that many of the initial queries
could not be answered. Correctness performance only
measures the correctness of answered queries. Imme-
diately following the application of ID3, correctness
falls to 94% due to the next two queries being incor-
rectly answered according to the new knowledge base.
As query answering continues, the over-generalization
in the rules eventually brings correctness down be-
low the 90% threshold. Correctness violations occur
at queries 89, 98, 153 and 163. In each case, PEAK
uses the rote-learning operator to memorize the in-
correctly answered query and restore 90% correctness
performance.

The final knowledge base after completion of the
200 queries consists of the 12 rules shown in Figure 3.
Rules 5-12 are the general rules learned by ID3. Rules
1-4 are the specific instances learned to repair the
over-generalization in ID3’s rules. After 200 queries,
the knowledge base converged to 8 general rules de-
scribing major trends in the shuttle landing domain
and four specific rules for special cases not handled
correctly by the general rules.

One final observation from Figure 2 is the conver-
gence of the performance towards the desired thresh-
olds and not towards the maximum possible per-
formance. This indicates how performance-driven
knowledge transformation utilizes flexibility in one di-
mension of performance to improve performance in
another dimension.

4.2 Experiment with Tower Domain

In the task from the tower domain, the user asks the
performance element to construct a plan for build-
ing a tower of blocks. The queries are of the form
tower(A B C 7state), where A, B and C are blocks,
and 7state is a variable to be instantiated with the
plan for achieving the tower.

Prior to query answering, the user inputs the per-
formance thresholds to be maintained by the knowl-
edge base while answering tower queries. For this ex-
periment, one performance goal is specified: response-
time < 10 seconds. Performance goals for complete-
ness and correctness are inappropriate, because the
domain theory is assumed complete and correct.

In addition to the rote learning and ID3 operators
used with the first experiment, an explanation-based
generalizer, EGGS [Mooney86], is included in the
PEAK system. EGGS applies standard explanation-
based techniques [DeJong86, Mitchell86] to general-
ize the proofs obtained by the performance element.
When Ecas is applied to a proof, the result is a gen-
eral rule that is added to the knowledge base.

50 —

40+) e Desired Perf.
Actual Perf.

30 +—

Response Time (seconds)

0 10 20 30 40 50 60 70 80 90 100
Query#

Figure 4: Plot of Response Time for Tower Domain

Starting with the blocks-world domain theory,
PEAK attempts to solve tower queries, while remain-
ing the response time performance goal. Figure 4
shows the response time obtained by PEAK for 100
semi-randomly chosen tower queries. Semi-random
means that the first ten queries were all towers of
height two, each chosen randomly from among six
possible blocks in the initial state. The second ten
queries were all towers of height three, and so on for
the first 50 queries. The second 50 queries repeat the
above sequence to show the effects on response time
of the rules learned during the first 50 queries.

As shown in Figure 4, the first 20 queries (towers
of height two and three) are solved by the original
domain theory within the response time threshold.
However, the domain theory is unable to maintain
the response time performance goal while processing
the 21st query (tower of height three). At this point,
ID3 cannot be applied due to the lack of examples
in the knowledge base. The Ecas operator is chosen
over rote learning due to the knowledge trace for the
query. The deep, wide proof tree suggests that EGas
is more likely to succeed than ID3.

Application of EGGs yields a general rule that
builds any tower of height three in one step. Thus,
the remainder of the tower queries for height three
are completed within the response time threshold.
Similar rules are learned for the 31st query (tower
of height four) and 41st query (tower of height five).
Figure 4 shows that retrying the towers of heights
two through five (queries 50-100) results in no re-
sponse time performance violations due to the pre-
viously learned rules.

1. landing(z,noauto)

+ sign(z,nn) & wind(z,head) & stability(x,xstab) & error(z,MM) &

magnitude(z,Medium) & visibility(x,yes)

2. landing(x,noauto) «+

sign(x,pp) & wind(z,tail) & stability(z,xstab) & error(z,MM) &

magnitude(z,Low) & visibility(z,yes)

3. landing(z,noauto) <

sign(z,nn) & wind(z,head) & stability (z,stab) & error(z,MM) &

magnitude(z,0utOfRange) & visibility(z,yes)

4. landing(z,noauto)

+ sign(z,nn) & wind(z,tail) & stability(z,xstab) & error(z,MM) &

magnitude(z,Low) & visibility(z,yes)

landing(z,auto
landing(z,auto
(
(

N it

landing(z,auto) « visibility(z,no)

® N oo

+ error(z,MM) & visibility(z,yes)
« stability(z,stab) & error(z,SS) & magnitude(z,Strong) & visibility(z,yes)

landing(z,noauto) « error(x,XL) & visibility(z,yes)

9. landing(x,noauto) + error(z,LX) & visibility(z,yes)

10. landing(z,noauto) <« stability(z,xstab) & error(x,SS) & magnitude(z,Strong) & visibility (z,yes)
11. landing(z,noauto) <« error(z,SS) & magnitude(z,0utOfRange) & visibility(z,yes)

12. landing(z,noauto) <« error(z,SS) & magnitude(z,Low) & visibility(z,yes)

Figure 3: Shuttle Domain Knowledge Base After 200 Queries

5 Conclusions

The experiments of the previous section demonstrate
that different machine learning methods are necessary
in different learning contexts. Performance-driven
knowledge transformation uses contextual informa-
tion about the desired performance goals and the
knowledge accessed by the problem-solving episodes
to select an appropriate learning method. This pro-
cess can be used to improve and maintain perfor-
mance for multiple problems in varying domains.

Integrating performance-driven knowledge trans-
formation into knowledge-based systems will reduce
dependence on the quality of the initially entered
knowledge and allow the knowledge base to adapt
to changing performance requirements. Performance-
driven knowledge transformation is also able to learn
the knowledge necessary to control multiple learning
methods, invoking appropriate methods only if nec-
essary to improve performance.

Acknowledgments

I would like to thank Robert Stepp, Diane Cook, Brad
Whitehall and Robert Reinke for their helpful sug-
gestions on this work. The ID3 and EGGS operators
were adapted from versions written by Ray Mooney.
The rules used for the tower domain were adapted
from rules written by Jude Shavlik and Ray Mooney.

References

G. F. DeJong and R. J. Mooney, “Explanation-Based
Learning: An Alternative View,” Machine Learning
1, 2 (April 1986), pp. 145-176.

R. M. Keller, “Defining Operationality for
Explanation-Based Learning,” Artificial Intelligence
35, 2 (June 1988), pp. 227-241.

R. S. Michalski, I. Mozetic, J. Hong and N. Lavrac,
“The Multi-Purpose Incremental Learning System
AQ15 and its Testing Application in Three Medical
Domains,” Proceedings of the National Conference on
Artificial Intelligence, Philadelphia, PA, August 1986,
pp. 1041-1047.

R. S. Michalski, “How to Learn Imprecise Con-
cepts: A Method for Employing a Two-Tiered Knowl-
edge Representation in Learning,” Proceedings of
the 1987 International Machine Learning Workshop,
Irvine, CA, June 1987, pp. 50-58.

S. Minton, “Quantitative Results Concerning the
Utility of Explanation-Based Learning,” Proceedings
of the National Conference on Artificial Intelligence,
St. Paul, MN, August 1988, pp. 564-569.

T. M. Mitchell, R. Keller and S. Kedar-Cabelli,
“Explanation-Based Generalization: =~ A Unifying
View,” Machine Learning 1, 1 (January 1986), pp
47-80.

R. J. Mooney and S. W. Bennett, “A Domain In-
dependent Explanation-Based Generalizer,” Proceed-

ings of the National Conference on Artificial Intelli-
gence, Philadelphia, PA, August 1986, pp. 551-555.

J. R. Quinlan, “Induction of Decision Trees,” Ma-
chine Learning 1, 1 (1986), pp. 81-106.

J. R. Quinlan, “Generating Production Rules from
Decision Trees,” Proceedings of the Tenth Interna-
tional Joint Conference on Artificial Intelligence, Mi-
lan, Italy, August 1987, pp. 304-307.

