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MAINTAINING THE UTILITY OF LEARNED KNOWLEDGEUSING MODEL-BASED ADAPTIVE CONTROLLawrence Bruce Holder, Jr., Ph.D.Department of Computer ScienceUniversity of Illinois at Urbana-Champaign, 1993Larry A. Rendell, AdvisorThe over�t problem in empirical learning and the utility problem in analytical learning bothdescribe a common behavior of machine learning methods: the eventual degradation of per-formance due to increasing amounts of learned knowledge. Plotting the performance of thechanging knowledge during execution of a machine learning method (the performance response)reveals similar curves for several methods. The performance response generally indicates a sin-gle peak performance greater than that attained by popular pruning techniques. The similarityin performance responses suggests a parameterized model relating performance to the amountof learned knowledge. Given this model, a model-based adaptive control (MBAC) approachcan be used to update the model based on feedback from the performance element and makecontrol decisions regarding the amount of knowledge to be learned or unlearned.In view of the large number of alternative learning methods, a more general utility problemexists in determining not only the correct amount of learned knowledge, but also the correctmethod for learning this knowledge. Relying too heavily on one particular learning method mayresult in less than optimal performance achievement. Overcoming this general utility problemrequires a new control mechanism for determining the correct learning method and amountof learned knowledge in order to achieve the performance objectives of the task. Maintainingmodels for several learning methods allows the MBAC approach to decide the appropriate typeof learning, in addition to the amount.Experimentation analyzes the ability of the MBAC approach to converge upon the peak ofthe performance response and avoid generation of low utility knowledge. Results indicate thata quadratic model is su�cient to �t the peak of the performance response and that MBACusing the quadratic model performs well at selecting the best learning method for a givenlearning task. More formal analysis of the performance response supports the quadratic modelfor controlling how much knowledge to learn as opposed to which knowledge.iii
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Chapter 1Introduction1.1 ProblemOne of the main goals of machine learning research is the development of methods for generatingknowledge that improves performance on some task. For example, empirical learning methodstypically use a set of training examples to generate knowledge for improving classi�cationaccuracy on unseen examples. Analytical (explanation-based) learning methods use a singleexample to generate knowledge for improving the problem-solving speed on unseen examples.Machine learning research has developed several empirical and analytical learning methods thatdemonstrate performance improvements due to learned knowledge.Unfortunately, more in-depth experimentation with these methods reveals that the perfor-mance improvement is not monotonic. As the methods generate more and more knowledge,the performance for which they were designed to improve, eventually degrades. In empiricallearning, this phenomenon relates to over�t. As empirical methods generate more knowledge,they may increase the complexity of the hypothesis. For example, some empirical learningmethods adapt a parameterized model to the training data. As the number of parameters inthe model becomes a sizable fraction of the number of data, the method �ts the parametersaccording to trends in the training examples that do not occur in unseen examples. In analyti-cal learning, this phenomenon is known as the utility problem. As analytical learning methodsgenerate more knowledge, they increase the amount of time needed to consider the applicationof the knowledge. The method eventually learns low-utility knowledge whose retention costoutweighs the performance bene�ts. In both learning paradigms, the degradation of knowledge1



utility results from generating knowledge that does not contribute to performance improvementfor the given task.In order to avoid the knowledge utility problem, the learning method must determine thecorrect subset of the learnable knowledge that maximizes performance. Of course, trying all pos-sible subsets is computationally infeasible. Therefore, most learning methods generate knowl-edge from speci�c to general or general to speci�c. Given that the learning method acquiresknowledge in order of generality (speci�city), avoiding the utility problem reduces to generatingthe correct amount of learned knowledge. This thesis addresses the problem of controlling alearning method in order to generate the correct amount of learned knowledge that improvesperformance without degradation. The more re�ned problem of determining which knowledgeto retain is beyond the scope of this thesis, although Chapter 6 discusses the issue as a futuredirection for this research.In view of the large number of alternative methods available for improving a given perfor-mance dimension (e.g., classi�cation accuracy or problem-solving speed), a more general utilityproblem exists in determining not only the correct amount of learned knowledge, but also thecorrect method for learning this knowledge. For example, one learning method may achievebetter performance than another method for a particular task, yet the reverse may be truefor a di�erent task. A similar situation exists for di�erent settings of external parameters ofa particular method. Relying too heavily on one particular learning method may result inless than optimal performance achievement. Overcoming this general utility problem requiresa new control mechanism for determining the correct learning method and amount of learnedknowledge in order to achieve the performance objectives of the task.1.2 Proposed SolutionAs Chapter 2 will demonstrate, a common behavior exists among several machine learningparadigms. Figure 1.1 illustrates this behavior, which is a result of the general utility probleminherent in learning methods that attempt to optimize some dimension of performance on unseenexamples of a task. The performance initially increases, but then eventually degrades. Becausethis behavior is common among di�erent learning paradigms, a control mechanism can use amodel of this behavior to determine the amount of learned knowledge necessary to achieve2
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Amount of Learned KnowledgeFigure 1.1: Relationship between performance and amount of learned knowledge for a learningmethod that su�ers from the general utility problem.a desired level of performance. Furthermore, the control mechanism can select appropriatelearning methods according to the shape and certainty of their associated models.This thesis investigates a model-based adaptive control (MBAC) approach to the generalutility problem. Figure 1.2 illustrates the ow of control in the MBAC approach. The controlmechanism utilizes performance feedback information from the performance element to decidethe correct learning method and amount of learning for transforming existing knowledge in orderto achieve the performance objectives of a task. MBAC is adaptive, because the decisions maychange over time as the system acquires more experience in a particular task. The adaptabilityof MBAC comes from the maintenance of multiple models that relate performance to the amountof learned knowledge { one model for each combination of tasks, performance dimensions andlearning methods. Each model is a parameterized curve that �ts the behavior of Figure 1.1.As an example of the MBAC approach, suppose the task is to determine the class (positive ornegative) of an example. The performance objective is to maintain accuracy at 95%. The initialknowledge consists of a set of training instances. The available knowledge transformations area decision tree induction method (ID) that transforms knowledge by extending the decision treeand a neural network method (NN) that transforms knowledge by performing another n cycleson the network. Therefore, MBAC de�nes two models: one for classi�cation accuracy on thistask as a function of decision tree size for ID, and one for classi�cation accuracy on this taskas a function of the number of cycles for NN. 3
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ModelsFigure 1.2: Model-Based Adaptive ControlAt �rst, MBAC selects a transformation at random (e.g., one extension to the decision treeor n cycles of the network), because no data exists for �tting the parameterized model. Aftereach transformation, the performance element uses the resulting knowledge to measure accuracyon a set of testing instances speci�ed by the task. The measured accuracy combined with themost recent transformation provides a data point for �tting the model. Eventually, MBAC hasa model for both ID and NN. Using these models, MBAC selects a transformation method andamount of transformation according to the model's certainty and ability to attain the desiredperformance objective. MBAC continues selecting transformations until either the measuredperformance satis�es the performance objectives or all models recommend no transformations.1.3 Bene�tsThe general utility problem behavior of Figure 1.1 and the MBAC approach based on thisbehavior o�er several bene�ts for individual learning methods and for the integration of severallearning methods into a multi-strategy learning system. The common behavior in the relation-ship between performance and the amount of learned knowledge provides a new mechanism forcontrolling a learning method that su�ers from the general utility problem. This mechanismrecommends a decomposition of the learning method into simpler knowledge transformations4



that enable perception of the relationship between performance and knowledge. Equipped withtransformations making smaller changes in performance, the control mechanism can avoid thegeneration of low utility knowledge by performing transformations (learning and unlearningknowledge) in order to converge upon the peak of the curve in Figure 1.1. The same controlmechanism is applicable to a variety of learning methods.Using one parameterized model to describe the behavior of multiple learning methods sim-pli�es the integration of these methods. Instead of integrating on the basis of a commonknowledge representation, a multi-strategy learning system can integrate on the basis of theperformance/knowledge relationship while maintaining individual knowledge representationsfor each method. Estimating the certainty of the models with respect to the model data pro-vides a means of ordering the methods according to their likelihood of attaining performanceobjectives. Furthermore, by attaching a resource cost function to each transformation, MBACcan trade o� attainable performance with resource expenditure in the case of limited resources.The MBAC approach extracts the performance objectives implicit in the learning methodsand explicitly de�nes them external to the methods. Explicit performance objectives simplifythe decomposition of learning methods. This explicitness also allows multiple performanceobjectives for one task, changing performance objectives, and changing performance elements.Through the use of parameterized models, MBAC adapts the knowledge according to the chang-ing performance environment.1.4 OutlineChapter 2 discusses the general utility problem and demonstrates the existence of the problem inseveral machine learning paradigms. The chapter begins by de�ning the performance response,a tool for analyzing the general utility problem in learning. Figure 1.1 is an example of aperformance response. Next, the chapter considers three empirical learning paradigms: splittingmethods, agglomerative methods and neural network methods. Performance response curvesfor these methods con�rm the existence of the general utility problem. Chapter 2 also considersseveral analytical learning methods whose susceptibility to the general utility problem has beendemonstrated by other researchers. An actual performance response of a particular analyticallearning method further con�rms the commonality of the behavior in Figure 1.1. The chapter5



concludes with a discussion of the trends identi�ed by the aforementioned performance responsesand a more formal analysis of the general utility problem in several of the paradigms.Chapter 3 describes the MBAC approach. First, the chapter de�nes the approach and out-lines the adaptive control algorithm. The remainder of Chapter 3 discusses the issues involvedin each aspect of the algorithm. The four main issues are the integration of the diverse knowl-edge representations used by machine learning methods, the properties of the operations thattransform this knowledge, the expression of the performance objectives that drive the MBACapproach, and the properties of the models that form the foundation of MBAC.Chapter 4 describes an implementation of the MBAC approach and presents experimentalresults. The �rst experiment demonstrates MBAC's ability to converge to the peak of theperformance response and avoid the generation of low utility knowledge using a quadraticmodel of the performance response. The second experiment compares three di�erent estimatesof model certainty and indicates that the standard deviation of the model is superior. The thirdexperiment shows the ability of MBAC to select an appropriate learning method according tothe certainty of the associated models. Experiment 4 demonstrates MBAC's adaptive behaviorwhile re�ning the models and converging to the peak of the performance response. Experiment 5demonstrates the use of previously adapted models to make decisions about new tasks that havelittle or no model information. The chapter concludes with a summary of experimental resultsand overall evaluation of the MBAC method.Chapter 5 describes work related to the MBAC approach. Related work includes researchon approaches to utility control, multiple-method control and adaptive control. Chapter 6describes directions for future work, and Chapter 7 concludes with a summary of the resultsand contributions of the research.
6



Chapter 2General Utility ProblemA primary goal of machine learning research is the development of autonomous methods foracquiring knowledge in order to improve performance on some task. In a perfect world wheretasks are described by �nite numbers of uniformly-distributed, error-free instances, knowledgeacquired by machine learning methods increases performance on the task. In other words, theacquired knowledge has utility with respect to performance on the task. However, the worldis not perfect. Tasks may have an unknown or in�nite number of instances with non-uniformdistributions and noisy descriptions. Knowledge acquired from such instances may have lowerutility with respect to task performance.As machine learning methods acquire increasing amounts of knowledge based on imper-fect instances, the proliferation of low-utility knowledge increases, and performance degrades.The general utility problem in machine learning refers to the degradation of performance dueto increasing amounts of learned knowledge [Holder, 1990]. This term derives from the util-ity problem used by Minton [1988b] to describe this phenomenon in analytical learning, butgeneralizes to other machine learning paradigms.Other researchers have observed the ubiquity of the utility problem in machine learningparadigms. Carlson et al. [1990] compare the utility problem in analytical learning to theproblems of noise and over�t in empirical learning. Etzioni [1988] alludes to the general util-ity problem as he proposes a hypothesis �lter for all learning methods. The �lter approveslearned hypotheses only if they have high utility with respect to user-de�ned performance ob-jectives. As with most current approaches to the utility problem analyzed in this chapter, these7
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Amount of Learned KnowledgeFigure 2.1: Performance response indicative of the general utility problemtwo approaches depend upon a model of the relationship between performance and learnedknowledge. The approaches require detailed knowledge of the performance environment. Theproposed MBAC approach resides at the opposite end of the spectrum over performance envi-ronment knowledge. The performance response trend identi�ed in this chapter provides a moregeneral model of the relationship between performance and learned knowledge, and reducesMBAC's dependence on knowledge of the performance environment.The �rst section of this chapter introduces the performance response, a tool for analyzingthe general utility problem. Section 2.2 describes several empirical learning methods that su�erfrom the general utility problem and recent approaches for alleviating the problem. Section 2.3covers the same areas for analytical learning methods. Section 2.4 analyzes trends uncovered inthe previous sections and describes the role that these trends play in the proposed approach tothe general utility problem. Section 2.5 provides a more formal analysis of the general utilityproblem in these methods.2.1 Performance ResponseA useful tool for analyzing the general utility problem in machine learning is the performanceresponse. The performance response is the performance of the learned knowledge measuredduring the course of learning. Figure 2.1 illustrates the typical performance response of alearning method that su�ers from the general utility problem.8



The horizontal axis of the performance response measures the amount of learned knowledge.The units along this axis represent the change in learned knowledge made by a knowledgetransformation. A knowledge transformation is a decomposition of the learning method intoless complex operations a�ecting the learned knowledge. For example, one decomposition ofa splitting algorithm is a single split, and one decomposition of a neural network learningalgorithm is a cycle. Since a knowledge transformation may not always increase the amount oflearned knowledge in terms of the size of the set of knowledge, an increase along this axis moregenerally represents a re�nement of existing knowledge.This approach does not attempt to formally de�ne the amount of learned knowledge interms of well-de�ned units (e.g., number of bits). Instead, the approach uses a measure thatcorresponds to a natural decomposition of the learning method and that implies the amount ofactual learned knowledge. For example, Section 2.5.1 shows how the number of splits made bya decision tree induction method corresponds to the amount of knowledge represented by thedecision tree. Experimentation in this chapter illustrates how increasing the amount of knowl-edge based on training data reduces the utility of this knowledge on unseen data. The choice ofthe measure of knowledge is arbitrary, but remains �xed in order to compare performance aftereach unit of learned knowledge. This method for selecting the measure of knowledge preventsa comparison between learning methods using di�erent measures. Although the measures areincompatible, the relationship between performance and the measure of the amount of learnedknowledge is similar for di�erent learning methods. This chapter reveals the similarity, whichforms the foundation of the MBAC approach for selecting appropriate learning methods andavoiding low-utility knowledge.The vertical axis of the performance response measures the performance of the learnedknowledge after each transformation. The measure of performance depends upon the learn-ing method. Di�erent methods attempt to improve di�erent dimensions of performance. Forexample, a neural network primarily attempts to improve classi�cation accuracy, while anexplanation-based learning method attempts to improve problem-solving speed. Other per-formance measures on the learned knowledge include the complexity and storage cost of theknowledge. The classi�cation accuracy of empirical learners and the problem-solving speed ofanalytical learners are the focus of this work. 9
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Figure 2.2: Performance responses for three traversals of a decision tree induced from theDNF2 domain.For empirical learning the performance response curve plots the classi�cation accuracy ofthe knowledge after each transformation. The knowledge transformations use a set of trainingdata to transform the knowledge. The classi�cation accuracy for the current knowledge is thequotient of the number of correctly classi�ed instances in a separate testing set over the totalnumber of instances in the testing set.For analytical learning the performance response curve plots the inverse of the CPU timeneeded by the knowledge to solve a set of test problems. The knowledge transformations usea problem from a set of training problems to learn a new rule for improving the speed of theproblem solver. The performance of the new knowledge (set of rules) is the inverse of the CPUtime necessary for the new knowledge to solve the set of test problems.As an example, Figure 2.2 illustrates three performance responses obtained from the ID3empirical learner1 on the DNF2 domain2. ID3 constructs a decision tree from the training data1See Section 2.2.1.1 for an explanation of the ID3 program and additional performance response curves.2See Appendix A for a description of the domains. 10



by splitting the data at a node. Splitting continues until satisfaction of a stopping criterion.Each performance response in Figure 2.2 represents a di�erent traversal (node split order) ofthe decision tree. Performance is classi�cation accuracy, and the amount of learned knowledgeincreases with the number of splits. Each performance response is an average over ten trials.Each trial consists of selecting random training and testing sets, generating the decision treeusing the training set, and measuring accuracy after each split using the testing set. Unlessstated otherwise, all performance responses shown in this thesis represent the average over tentrials.As Figure 2.2 reveals, the order of the knowledge transformations is important for perceivingthe desired performance response trend in Figure 2.1. Section 3.4 discusses this and other issuespertaining to decomposing learning programs into knowledge transformations. Before discussingthe issues in Chapter 3, the remainder of this chapter presents performance response curves forboth empirical and analytical learning paradigms. The results con�rm that the performanceresponse curves of many learning paradigms follow the trend indicative of the general utilityproblem.2.2 Empirical LearningEmpirical learning attempts to induce general knowledge from a set of training data. Theset of training data consists of classi�ed examples (instances) of the desired concept. For thisdiscussion the instances are assumed to be a set of propositional rules of the form:([feature = value] ^ [feature = value] ^ � � �)! classThe induced general knowledge may also be of this form. In the case of splitting algorithms,the general knowledge is often in the form of a decision tree. For neural network learners, thegeneral knowledge is in the form of a network of nodes and weighted links. Typically, theperformance environment uses a separate set of test data to evaluate the general knowledgeproduced by the empirical learner.The general utility problem in empirical learning relates to the over�t problem. Over�toccurs when the learning method identi�es errant patterns in the training data. Errant patternsmay arise due to noise in the training data or inadequate stopping criteria of the method. As11
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feat  : Figure 2.3: ID3 decision tree.demonstrated below, splitting, agglomerative and neural network learning methods su�er fromover�t.2.2.1 Splitting MethodsSplitting methods recursively split the set of training data by choosing an appropriate featureor feature-value pair. The main parameters of the method are the splitting criterion and thestopping criterion. Over�t results from an inappropriate stopping criterion which allows themethod to perform too much splitting. The following sections describe two splitting methods(ID3 and PLS1) and illustrate their tendency to over�t.The knowledge produced by a splitting method can be represented as a decision tree. Anexample of a decision tree produced by the ID3 method (see next section) is shown in Figure 2.3.The learned knowledge changes every time the method makes a split; therefore, one choice forthe x-axis of the performance response is the number of splits. The y-axis (performance)measures the classi�cation accuracy of the knowledge after each split, as measured using aseparate set of test data. The axes of the performance responses for the two splitting methodsdiscussed below (ID3 and PLS1) follow this arrangement. For the empirical learning methodsdiscussed in this chapter, the y-axis will always measure classi�cation accuracy.2.2.1.1 ID3The ID3 (Induction of Decision trees) program developed by Quinlan [1986] induces decisiontrees by recursively splitting the given set of training instances. Although ID3 has manyvariants, this discussion assumes the training instances fall into one of two classes: positive(+) and negative ({). Figure 2.3 shows the type of decision tree built by ID3. At the root of12
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Figure 2.4: Performance response of ID3.the tree, ID3 selects a feature to split the training instances according to the di�erent valuesof the feature. Splitting continues until all nodes at the frontier of the tree are \pure" nodes,i.e., all instances at the node are in the same class. ID3 splits an impure node by selecting afeature, creating child nodes for each value of the feature, and splitting the instances into thechild nodes according to their value for the split feature. The split feature at a node is a featurenot yet used as a split along the path to the node and minimizing the mutual information MI ,MI = � vXi=1 pi + nip+ n � pipi + ni log2 pipi + ni + nipi + ni log2 nipi + ni�where i ranges over the values of the feature, p and n are the number of positive and negativeinstances at the node, and pi and ni are the number of positive and negative instances at thenode having value i for the feature.Although the choice of splitting criterion has little e�ect on the behavior of ID3 [Mingers,1989b], the choice of stopping criterion greatly a�ects the performance of the �nal decision tree[Mingers, 1989a]. The ID3 performance response in Figure 2.4 plots the accuracy of the decisiontree on a separate set of testing instances after each split. Splits are performed in a breadth-�rst order, deferring over�t to the later splits. Figure 2.4 shows the performance response ofID3 on the Flag and DNF2 domains3 using the node-purity stopping criterion above. As the3See Appendix A for descriptions of the domains. 13



�gure illustrates, this stopping criterion causes over�t, and the performance responses followthe trend of Figure 2.1.Two tree-pruning techniques have been developed to combat over�t: pre-pruning and post-pruning. Pre-pruning constrains the stopping criterion to prevent splitting of impure nodeswhen no feature provides a signi�cant increase in information resulting from a split. Post-pruning uses the pure-nodes stopping criterion to generate the decision tree, but then removessubtrees of the resulting tree to improve performance.Quinlan [1986] developed a pre-pruning technique for ID3 based on the chi-square statistic:�2 = vXi=1 (pi � p0i)2p0i + (ni � n0i)2n0iwhere p0i = p � pi + nip+ n and n0i = n � pi + nip+ nThe p0i and n0i represent estimates of the number of positive and negative instances havingvalue i for the feature if the feature is irrelevant to the class value, where i ranges from oneto the number of values v of the feature. The chi-square statistic allows consideration of thehypothesis that the feature value is independent of the class. The value of �2 and the numberof degrees of freedom (v�1) are used to estimate the probability with which one can reject thishypothesis [Freund, 1988]. If the hypothesis cannot be rejected with very high con�dence, say99%, then the feature will not be considered for splitting.Figure 2.5 shows the performance response of ID3 with chi-square pre-pruning on the Flagand DNF2 domains. Responses are plotted for con�dence values of 99% and 99.9%. Althoughchi-square pre-pruning reduces the number of splits, over�t behavior is still evident. Increasingthe con�dence value may further reduce the number of splits, but does not eliminate over�t.Breiman et al. [1984] state that most pre-pruning techniques are unsatisfactory due to theirdependence on a user-supplied parameter (e.g., the 99% used for chi-square pre-pruning). Asan alternative, they propose a post-pruning technique that splits the decision tree to pure nodesand then prunes back. Mingers [1989a] compares several post-pruning techniques and concludesthat Quinlan's [1987] reduced-error post-pruning is among the best. With reduced-error post-pruning, subtrees are removed from the original decision tree until accuracy decreases on aseparate set of pruning instances. 14
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Figure 2.5: Performance response of ID3 with chi-square pre-pruning.Figure 2.6 shows the performance response of ID3 with reduced-error pruning on the samedomains. The dotted vertical line marks the point at which the full tree has been generated,and pruning begins. The reduced-error pruning alleviates most of the over�t, but on averagethe accuracy of the resulting tree is less than the peak accuracy of the performance response(see Table 2.1 in Section 2.4).2.2.1.2 PLS1The PLS1 program (Probabilistic Learning System) developed by Rendell [1983] is similar toID3 in that the initial hypothesis is the most general, and the method specializes the hypothesisaccording to the training data. PLS1 specializes the hypothesis by recursively dividing theinstance space into hyper-rectangular regions. This is equivalent to performing a binary spliton a particular feature-value pair. Figure 2.7 shows a sample hyper-rectangle and the equivalentdecision tree. Instances with values less than or equal to the split value for the feature followone branch, and the remaining instances follow the other branch. A node in the resultingdecision tree represents a region of instance space constrained by the path leading to the node.PLS1 splits a region by selecting a hyperplane that divides one dimension (feature) of theinstance space within the region. PLS1 chooses the hyperplane that maximizes a probabilisticdissimilarity measure d: 15
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Figure 2.6: Performance response of ID3 with reduced-error post-pruning.
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d =j log2u1 � log2u2 j �t� � log2(e1e2)where u1 = p1p1 + n1 ; u2 = p2p2 + n2 ; e1 = 1 + 1pp1 + n1 ; e2 = 1 + 1pp2 + n2 :The p1, n1, p2 and n2 are the number of positive and negative instances in the two regionsresulting from the split by the hyperplane under evaluation. The t� constant represents thenumber of standard deviations, i.e., the desired degree of con�dence. Typical values for t� arebetween 1 and 2.Since PLS1 chooses to split only if the maximum dissimilarity is positive, the t constantcan be used to restrict the amount of splitting. Thus, t� in PLS1 plays a role analogousto the con�dence level in the chi-square pre-pruning technique for ID3. Figure 2.8 shows theperformance responses of PLS1 on the same domains used for ID3. Each plot displays a responsecurve for three di�erent values of t�: 1.0, 1.5 and 2.0. As with the chi-square pruning of ID3,increasing t reduces the number of splits made by PLS1, but the tendency to over�t is stillevident.2.2.2 Agglomerative MethodsAn agglomerative (or set-covering) method for empirical learning constructs a hypothesis whichdescribes a subset of the training instances, and then applies the same method on the remainingtraining instances. Alternative hypotheses are evaluated by user-supplied criteria or statisticalmeasures. An agglomerative method di�ers from a splitting method in that the splitting methoduses a divide-and-conquer approach; whereas, the agglomerative method uses a separate-and-conquer approach. Another di�erence between the two methods is that splitting methodsspecialize from a hypothesis covering all examples; whereas, agglomerative methods generalizefrom a hypothesis covering no examples.Since agglomerative methods typically learn disjunctive normal form (DNF) expressionsfor the hypotheses, the amount of learned knowledge varies over two dimensions: the numberof literals per disjunct and the number of disjuncts. As the number of literals per disjunctincreases, the disjunct describes a smaller region of the instance space, and more disjuncts are17
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 PLS1 Response on DNF2 with tα = 2.0Figure 2.8: PLS1 performance response.18



necessary to describe the portion of the instance space represented by the training instances.Eventually, each disjunct will have a large number of literals and will describe a small numberof instances. In this extreme, over�t occurs due to noise in the training instances and a strongbias preferring overly speci�c hypotheses. Since an increase in one dimension of the amount oflearned knowledge (number of literals) implies an increase in the other dimension (number ofdisjuncts), only one dimension need be monitored for the performance response.The following sections discuss experiments performed by other researchers on agglomerativemethods. The experiments indicate the presence of the general utility problem in these methods.The dimension used to measure the amount of learned knowledge is the number of disjuncts inthe induced hypothesis.2.2.2.1 AQDuring experimentation with the AQ system (speci�cally, AQ15 [Michalski et al., 1986]),Michalski found that repetitive application of AQ can yield less accurate hypotheses than amore conservative application strategy combined with a more exible inference mechanismthan exact matching [Michalski, 1989]. The AQ method �nds a conjunctive description thatcovers as many positive examples as possible without covering any negative examples. Positiveexamples not covered by previously-generated descriptions are used as input for another execu-tion of AQ. This procedure continues until the descriptions (disjuncts) generated by AQ forma hypothesis in disjunctive normal form (DNF) that covers all the positive examples and noneof the negative examples.Michalski compared the accuracy of the complete DNF hypothesis produced by AQ totruncated versions of the same hypothesis. The �rst truncated version of the hypothesis consistsof the single disjunct covering the most examples (best disjunct). The second truncated versionof the hypothesis consists of only those disjuncts covering more than one unique example (unique> 1). The truncated hypotheses use a simple matching procedure for classifying uncovered andmultiply-covered examples (see [Michalski, 1989] for details).Although based on only four points, Figure 2.9 approximates the performance response ofAQ in three medical domains (Lymphography, Breast Cancer and Primary Tumor) averagedover four trials. The DNF hypotheses are of the form19
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Figure 2.9: Performance response of AQ in three medical domains.
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(disjunct1 _ � � � _ disjunctn)! classThe number of disjuncts in the DNF hypothesis increases along the increasing x-axis. Therandom point represents zero disjuncts on the left of the rule, and a randomly-selected classon the right. The accuracies for the random points are 0.5, 0.25 and 0.05 for Breast Cancer,Lymphography and Primary Tumor (respectively), because the respective number of classesare 2, 4, and 20. The best disjunct point represents the one best disjunct covering the mostpositive training instances. The unique > 1 point represents more than one disjunct, but lessthan the number of disjuncts in the complete DNF hypothesis. Figure 2.9 demonstrates thatAQ also su�ers from the general utility problem with increasing numbers of disjuncts, and theresponse curves indicate the same trend as in Figure 2.1.2.2.2.2 CN2 and Small DisjunctsThe CN2 induction program developed by Clark and Niblett [1989] is another agglomerativeempirical learning method. Instead of a disjunctive normal form hypothesis, CN2 produces adecision list: an ordered list of rules in the form complex ! class. A complex is a conjunctionof selectors of the form [feature = value]. CN2 proceeds by �nding the best complex fordistinguishing classes in the set of training instances according to two information-theoreticmeasures. CN2 adds the best complex to the end of the decision list, removes from the trainingdata those instances covered by the complex, and begins another search for the best complexusing the remaining training instances. The class implied by each complex is the majority classof the training instances covered by the complex.Analyzing the hypotheses produced by CN2, Holte et al. [1989] reveal that the accuracyof the hypothesis degrades with the addition of small disjuncts. Small disjuncts are complexescovering a small number of examples. Because they are motivated from a small number ofexamples, small disjuncts are typically more error prone than large disjuncts. Therefore, CN2su�ers from the general utility problem due to the increasing amounts of low utility (smalldisjunct) knowledge.Holte et al. consider three approaches to the problem. One approach eliminates all smalldisjuncts. However, this approach may eliminate signi�cant small disjuncts that cover unusual21



Output Layer
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Input LayerFigure 2.10: Three layer networkexamples. Also, the error of the resulting hypothesis may be worse due to misclassi�cationof these examples by other disjuncts or default rules. A second approach eliminates onlyundesirable disjuncts. Signi�cance testing and error estimation o�er measures of the desirabilityof a disjunct. The third approach uses a di�erent bias for small and large disjuncts. Largedisjuncts use a maximum generality bias, whereas small disjuncts use a selective speci�city biasthat specializes the disjunct so that it covers only 25% of the examples from other classes. Holteet al. present empirical evidence indicating the superiority of the di�erent-bias approach usedwithin the CN2 program.2.2.3 Neural Network MethodsA neural network consists of two or more layers of interconnected units. Weights reside oneach connection, and a unit produces a signal that is a function of the weighted input signalsto the unit. Networks contain an input layer whose signals are derived from the feature val-ues of examples, and an output layer that produces a prediction of the class of the example.Neural networks learn from training data by presenting the feature values of an instance to theinput layer, comparing the output layer's prediction to the instance's class, and updating theconnection weights according to the di�erence.Network layers other than the input and output layers are called hidden layers. Figure 2.10shows a network with one hidden layer containing four hidden units. One method for updatingthe weights in such a network is error back-propagation [Rumelhart et al., 1986]. This method�rst computes the error between the output signal generated by an instance and the knownclass of the instance. Then, the error propagates back through the network, modifying theweights so as to alleviate the error. The change in the weight on the connection from unit i tounit j can be expressed as 22
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Figure 2.11: BackProp performance response.�pwji = ��pjopi;where p represents the particular training instance pattern at the input units, opi is the outputsignal of unit i for pattern p, �pj is the error signal from unit j for pattern p, and � is thelearning rate. Each error back-propagation pass through the set of training instances is calleda cycle.As the number of cycles increases, the network more accurately classi�es the training in-stances. However, over�t eventually occurs as the network learns the training instances tooprecisely, degrading accuracy on a separate set of testing data. To analyze the over�t of theback-propagation neural network, the performance response measures accuracy of the networkafter every �ve cycles.Figure 2.11 shows the performance response of the error back-propagation neural network(BackProp) on the Flag and DNF2 domains. For these experiments, the learning rate � was setat 0.5, and the network contained one hidden layer with four units. The choice of learning ratewas arbitrary, because with a high enough learning rate, the number of hidden units determinesthe complexity of the function learnable by the network and, therefore, the extent of possibleover�t [Karnin, 1990]. The output layer has two units, one for each of the two classes. The input23



layer has one unit for each feature-value pair in the domain. The network correctly classi�esan instance if the output signals are within 0.1 of their desired values.The BackProp response on the Flag and DNF2 domains follows the general utility problemtrend as in Figure 2.1. Table 2.1 in Section 2.4 reveals that on average the network at the initialpeak performs better than the �nal network.2.3 Analytical LearningResearch on analytical (explanation-based) learning techniques began to focus more attentionon performance with the appearance of Keller's work on the de�nition of operationality [Keller,1988]. Analytical techniques learn from a single example by proving the example is an instanceof the concept to be learned. The proof terminates when the leaves of the proof tree are alloperational predicates. The proof tree is then generalized, yielding an operational descriptionof the concept. Earlier work on explanation-based learning de�ned an operational concept asone whose description is composed from a set of predicates deemed easy to evaluate [Mitchell etal., 1986; DeJong and Mooney, 1986]. Keller points out that operationality is more intimatelyrelated to the performance element and the desired performance improvement. The increasedattention on performance has led to the reevaluation of several analytical learning systems andthe observation that performance may degrade with repeated application. Because explanation-based learning methods acquire correct knowledge, increased performance corresponds to fasterproblem solving.The following sections describe three analytical learning systems, their susceptibility tothe utility problem, and approaches to alleviating the problem. Section 2.3.4 illustrates theperformance response of a simple analytical learner in two planning domains.2.3.1 PRODIGYIn experimentation with the Morris analytical learning system, Minton found that perfor-mance eventually degrades with increasing numbers of learned macro-operators [Minton, 1985].After solving a problem, the system creates a new operator capable of e�ecting the solutionpath in one step. However, as the number of macro-operators increases, the cost of determiningthe applicability of an operator may outweigh the bene�ts of applying, and thus, retaining the24



operator. This phenomenon eventually degrades the problem-solving speed performance thatMorris was designed to improve.Minton called this phenomenon the utility problem and o�ered the Prodigy system as asolution [Minton, 1988a]. Prodigy learns control rules to improve problem-solving performancebased on explanations of success and failure in actual problem-solving solution traces. Thesystem maintains empirical estimates of match costs, application savings and frequency ofapplication for each rule. These estimates are used to compute a utility value for the rule:Utility = (AvrSavings x ApplicFreq) - AvrMatchCostwhereAvrMatchCost = average time cost of matching ruleAvrSavings = average time savings when rule is applicableApplicFreq = probability that rule is applicable when testedIf a rule's utility value becomes negative, PRODIGY discards the rule. Minton found thatmaintenance of a rule's utility value and compression of the rule's conditions result in a sub-stantial performance improvement. Performance response data was unavailable for Prodigy,but Section 2.3.4 shows performance responses for a simple forward-chaining problem solverwhile learning macro-operators.2.3.2 SOARExperimentation on the Soar system has uncovered similar results [Tambe and Newell, 1988].Soar compiles problem-solving episodes into chunks similar to the generalized rules learnedby explanation-based learning systems. Tambe and Newell found that increasing numbers of\expensive" chunks increase total match time and eventually degrade performance. Chunksbecome expensive due to an increased number of conditional elements, an increased number ofobjects that can match these elements, and suboptimally ordered conditional elements.Instead of monitoring the cost and bene�ts of rules, Tambe and Rosenbloom [1989] suggestrestricting the expressiveness of the learned rules so that the complexity of the match is keptlinear in the number of matching conditions. Results of using this technique within Soarindicate that a greater number of less expressive rules are needed to attain the generality ofthe more expressive rules, but the match cost is no longer exponential. However, the resultsare unclear on whether an exponential number of simpler rules will be needed to achieve the25



generality of the more expressive rules. Also, the trend toward generating more speci�c instancesof the general rules seems contradictory to the purported bene�ts of analytical learning.2.3.3 EGGSDespite the aforementioned evidence for degrading performance, other analytical learning sys-tems demonstrate improved performance without concern for the number or form of the learnedrules. Looking at systems by O'Rorke [1987] and Shavlik [1988], Mooney [1989] uncovers thereasons for these contradictory results. The performance element for Mooney's experiments isthe Eggs system [Mooney and Bennett, 1986], which includes a Horn-clause theorem proverand standard explanation-based learning techniques [Mitchell et al., 1986; DeJong and Mooney,1986] for generalizing proofs.Mooney's experiments with Eggs reveal that limited use of the learned rules provide betterproblem-solving speed than full use. Because Shavlik constrains the proofs to be no longer thana speci�ed depth bound, his system makes only limited use of the learned rules (i.e., only thoserules that require limited chaining).Mooney also demonstrates that using a breadth-�rst search for theorem proving, instead ofdepth-�rst, forces limited use of learned rules. Learned rules that require deep sub-goaling toreach a solution are circumvented by the simultaneous consideration of proofs from the originaldomain theory. The use of breadth-�rst search in O'Rorke's system accounts for much of thefavorable performance. Mooney concludes that limited use of learned rules is advisable untilthe system has learned the rules necessary to solve the more common problems.2.3.4 Analytical Performance ResponseAlthough experimentation with the above analytical learning systems con�rms the existenceof the utility problem, the experiments typically do not show the performance response ofthe system.4 This section plots the performance response of a simple analytical learner inFigure 2.12. The analytical learner consists of a forward-chaining planner and a STRIPS-likeplan generalizer [Fikes et al., 1972]. Two domains are used in the experimentation: blocks androbot. The blocks domain consists of four operators for stacking and unstacking blocks. The4Cohen [1990] plots analytical learning response curves for several planning domains; however, the curvesreect the performance of learning problem-solver control rules, not macro-operators.26
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Figure 2.12: Planner performance response.robot domain consists of eight operators allowing the robot to move boxes within a layout ofconnected rooms. See Appendix A for a more detailed description of these domains.The experiments proceed by solving a training problem in the domain, generalizing theresulting plan, adding the generalized plan to the set of available operators, and then measuringthe amount of CPU time needed to solve a separate set of test problems using the augmentedset of operators. A generalized plan is called a macro-operator, or macrop. Adding a macropplan to the set of operators increases the planner's control knowledge about how to search thespace of possible plans. Therefore, the x-axis of the performance response is the number oflearned macrops. The y-axis measures the inverse CPU time needed to solve the set of testproblems. Inverse CPU time allows an increase along the y-axis to reect an increase in plannerperformance.Figure 2.12 plots the performance response of the planner while learning macrops in theblocks and robot domains. Although erratic in the blocks domain, both response curves followthe trend of the general utility problem as shown in Figure 2.1.
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finalFigure 2.13: Response curve peak and �nal performance.2.4 TrendsThe previous sections of this chapter verify the existence of the general utility problem in severalmachine learning methods. Furthermore, the performance responses of these methods followthe general trend illustrated in Figure 2.1. Adopting this trend as a model of the performanceresponse permits the control of the general utility problem by constraining the amount of learnedknowledge to reside at the point corresponding to the peak performance.Tables 2.1 and 2.2 quantify the possible performance gains by using this model-based controlof the amount of learned knowledge. Each entry in the tables is the percentage �nal performanceof peak performance averaged over ten performance response curves (see Figure 2.13):�nalpeak � 100Table 2.1 lists entries for several of the previously described empirical learning methods on�ve di�erent domains. Table 2.2 lists entries for the Planner analytical learner from Section 2.3.4on two domains. Note that the entries in Table 2.2 can be arbitrarily deated by allowingthe analytical learner to acquire more macrops. Accompanying each entry is the statisticalsigni�cance of the di�erence between the peak and �nal performance, i.e., the probability thatthe di�erence is due to chance uctuations in the data.As shown in Tables 2.1 and 2.2, the �nal performance is less than the peak performancefor all but one case. A majority of the di�erences are statistically signi�cant, and in the caseswhere the signi�cance is low (table value is high), the peak of the performance response isno worse than the �nal performance. Thus, the ability to constrain the amount of learned28



Table 2.1: Percentage �nal performance of peak performance for empirical learners on �vedomains. Statistical signi�cance of di�erence (peak - �nal) shown in parentheses.DomainMethod Breast Cancer Flag Flare Voting DNF2ID3 91.2(0.001) 88.2(0.001) 95.0(0.000) 97.6(0.011) 93.6(0.000)ID3 Chi 99.0 89.0(0.001) 88.5(0.002) 94.4(0.000) 98.1(0.021) 94.4(0.000)ID3 Chi 99.9 90.8(0.001) 89.9(0.001) 96.1(0.001) 97.0(0.000) 97.2(0.064)ID3 Reduced-Error 98.6(0.571) 95.4(0.172) 98.7(0.281) 99.7(0.686) 100.3(0.748)PLS1 t� = 0.0 87.5(0.000) 84.4(0.000) 95.8(0.000) 98.3(0.038) 91.5(0.000)PLS1 t� = 1.0 87.9(0.000) 96.3(0.232) 97.7(0.000) 98.1(0.050) 92.8(0.000)PLS1 t� = 1.5 92.4(0.021) 97.6(0.469) 98.5(0.186) 98.9(0.046) 92.8(0.000)PLS1 t� = 2.0 94.6(0.033) 98.4(0.647) 98.5(0.218) 99.3(0.078) 95.6(0.000)BP4 82.8(0.287) 89.8(0.004) 88.2(0.711) 92.6(0.450) 91.1(0.141)
Table 2.2: Percentage �nal performance of peak performance for Planner on two domains.Statistical signi�cance of di�erence (peak - �nal) shown in parentheses.DomainMethod Blocks RobotPlanner 67.4(0.026) 76.1(0.165)
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knowledge to the point corresponding to peak performance will improve the performance ofthe learner. Although individual methods exist for alleviating the general utility problem ineach particular learning method, the performance response model o�ers a general method foravoiding the general utility problem in many machine learning methods. Chapter 3 uses theperformance response model as the basis of an adaptive control approach for maintaining theutility of learned knowledge.2.5 AnalysisThe previous sections of this chapter empirically demonstrate the existence of the general utilityproblem trend in several learning methods. This section provides a more formal understandingof the mechanisms that cause this trend in the performance response. Section 2.5.1 analyzesempirical learning methods, and Section 2.5.2 analyzes analytical methods. In both cases,the performance response trend results from two contributing forces and depends on a precisede�nition of the amount of learned knowledge in terms of the generality of this knowledge.2.5.1 Empirical LearningThe following two sections analyze the performance response and the amount of learned knowl-edge as they relate to the general utility problem trend in empirical learning. Analysis showsthat if the amount of learned knowledge corresponds to the complexity (speci�city) of the in-duced hypothesis, then the performance response trend results from two components a�ectingaccuracy: accuracy on the training data and accuracy on the testing data.2.5.1.1 Performance ResponseThe CART program (Classi�cation and Regression Trees) developed by Breiman et al. [1984]is another splitting method for inducing decision trees similar to ID3 and PLS1. The emphasisof this treatment of CART is not the details of the method, but a statistical analysis of theperformance response (see appendix to Chapter 3 in [Breiman et al., 1984]). Breiman et al.show that the shape of the performance (accuracy) response is the result of a tradeo� betweenbias and variance. Bias expresses the degree of �t of the decision tree to the classi�cation surface(training instances). A low bias (many small hyper-rectangles) is preferred to a high bias (few30



large hyper-rectangles), because low bias allows a more precise �t to the data. However, a lowbias increases the likelihood that hyper-rectangles produce classi�cation errors due to a majorityof the wrong class. Breiman et al. refer to this source of classi�cation error as variance. This isnot variance in the statistical sense of the expected value of the squared error, but an estimateof the discrepancy of the classi�cation error from the Bayes error.The analysis expresses the bias and variance in terms of the number of leaves L in thedecision tree. Assuming binary splits at each node of the tree, the number of splits is L � 1.Therefore, the behavior of the bias and variance as the number of splits increase will be similarto the behavior as L increases. The expression for the classi�cation error R(L) in terms of thebias B(L) and the variance V (L) isR(L) = B(L) + V (L) +R� (2:1)where R� is the Bayes optimal classi�cation error. Breiman et al. derive the following con-straints on the bias B(L) and the variance V (L):B(L) � CL2=M ; V (L) � s LN ; V (L ' N) � R�where C is a constant, M is the dimension of the instance space (i.e., number of features usedto describe the training instances), and N is the number of training instances. Note that theseexpressions are for the classi�cation error. As predicted, the bias decreases rapidly for small Land more slowly as L increases. The variance increases slowly as L increases. When L ' Nand each hyper-rectangle contains one training instance, the variance is bounded by the Bayeserror R�.Equation 2.1 is an expression of the classi�cation error response curve. Figure 2.14a plotsthe bias B(L), variance V (L), Bayes error R�, and estimated classi�cation error R(L) fromEquation 2.1, where C = 0:35, M = 20, N = 1000 and R� = 0:15.5 The plot extends fromL = 0 to L = N = 1000; however, the stopping criteria of actual decision tree induction pro-grams would discontinue splitting at a point much less than N . For comparison to previousresponse curves, the error response curve is subtracted from one to yield the accuracy responsecurve in Figure 2.14b. The similarity of this performance response to that of Figure 2.1 supports5For binary decision trees, L � 2M . 31
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Figure 2.14: Performance response curve derived by Breiman et al. [1984] for a decision treeinduction algorithm.the existence of a single peak and the inevitability of over�t in splitting algorithms without ap-propriate stopping criteria or post-pruning techniques. Maximizing performance while avoidingover�t requires the determination of the number of splits L corresponding to the peak of theperformance response.A similar analysis applies to agglomerative methods. Each time a splitting method makesa split in the decision tree, the resulting DNF expression of the hypothesis replaces a singledisjunct with two, more speci�c disjuncts (assuming binary splits). Therefore, adding a disjunctto the DNF hypothesis in an agglomerative method is analogous to making a split in a splittingmethod. The above de�nitions of bias and variance apply directly to the agglomerative case.Decreasing the bias increases the number of disjuncts until each disjunct describes a singletraining instance. Variance, the error due to incorrect classi�cations made by the disjuncts onunseen testing instances, increases with decreasing bias (see the discussion of small disjunctsin Section 2.2.2.2). The corresponding expressions for bias and variance as a function of thenumber of disjuncts have a similar behavior as those depending on the number of splits, andthe agglomerative performance response follows the behavior in Figure 2.14.The performance response trend in neural networks is also the sum of the performance ontraining data and the performance on testing data. Before relating performance to the number32
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Figure 2.15: Performance response curve derived by Barron [1984] for a network as a functionof the number of coe�cients k in the network model.of cycles, this analysis �rst considers the number of coe�cients in the model represented bythe network. Network models with increasing complexity (e.g., number of hidden units) havehigher numbers of coe�cients. If the complexity of the network is higher than the complexityof the problem, the complex network will use the overabundance of coe�cients to over�t thetraining data.Barron [1984] derives an expression for the predicted squared error (PSE) of the networkthat depends on the number of coe�cients. The expression for PSE isPSE = TSE + 2�2knTSE stands for the squared error of the network on the training examples, �2 is a prior estimateof the true error variance, k is the number of coe�cients in the network model, and n is thenumber of training examples. One estimate of the true error variance �2 is the actual variance inthe training data. The second term of PSE serves as an over�t penalty for excessively complexmodels. Assuming TSE has a similar behavior as the bias in Figure 2.14, Figure 2.15a plotsthe two components of PSE and their sum as a function of k for n = 100. Figure 2.15b plotsthe same function subtracted from one to show the same orientation of previous performanceresponses. The resulting curve con�rms the general utility problem trend in networks.33



The above analysis uses the number of coe�cients k as a measure of the amount of learnedknowledge; however, the performance responses for neural networks use the number of cyclesas a measure of the amount of learned knowledge. One possibility for relating the number ofcycles to the number of coe�cients k is to show that the higher numbers of coe�cients in thenetwork model are not used (negligibly small) until later cycles. In other words, earlier cyclesuse fewer coe�cients to learn global patterns in the training data. As the cycles continue, thenetwork attempts to reduce the error on noisy (or anomalous) training data by utilizing morecoe�cients to �t a higher-degree function to the training data.The following argument derives from our observations of the error back-propagation methodduring the course of learning. The observations reveal that the network quickly learns tocorrectly classify a majority of the training data and uses the remaining cycles to learn asmaller subset of the training data. One cycle involves a single pass through the entire set oftraining data, where each incorrect classi�cation initiates the error back-propagation procedureto update the weights toward correcting the error. Initially, a majority of the weight updatesare due to errors on the training data representing the global patterns (the more prevalentdata). After the network learns these global patterns, the majority of weight updates are dueto errors on less prevalent patterns in the training data. One possible interpretation of thisbehavior is that later cycles attempt to �t higher degrees of the function represented by thetraining data. If this interpretation holds6, then as the number of cycles increases, so doesthe degree (complexity) of the hypothesis learned by the network. Therefore, roughly similarbehavior to that of Figure 2.15 will exist if the number of cycles replaces k along the amountof learned knowledge axis.2.5.1.2 Amount of Learned KnowledgeThe previous section shows how number of splits, number of disjuncts and number of cyclesare appropriate de�nitions for the amount of learned knowledge in splitting, agglomerative,and network learning methods, respectively. These de�nitions are appropriate, because eachis an instance of a more general de�nition expressing the amount of learned knowledge as thedegree of complexity (speci�city) of the learned hypothesis. Figure 2.16 shows the hypothesis6Observations by Mozer and Smolensky [1989] support a similar interpretation, but more experimentation isnecessary to con�rm the reason for this behavior. 34
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recommended range (1.0 { 2.0) does not capture the peak of the performance response. Highervalues of t� are necessary to perceive the peak. Therefore, not only must the changes in t� besmall, but the initial value of t� must be large enough to prevent any over�t in order to perceivethe peak.2.5.2 Analytical LearningAn analytical learner is similar to an empirical learner in that both seek a concept that max-imizes performance. The concept sought by an analytical learner is a set of macro-operatorsminimizing the time taken by the problem solver to solve problems from some domain. If theset of problems used to train the learner is irrepresentative of the distribution of problemsin the domain, then the performance obtained for the training examples may degrade perfor-mance on the testing examples for reasons similar to over�t in empirical learners. However, amore detailed look at analytical learners reveals that the factors underlying the performancedegradation are di�erent from the factors a�ecting empirical learners. This section considersthese factors in more detail by analyzing the performance response and the amount of learnedknowledge as they relate to the general utility problem trend in analytical learning.The analysis pertains to analytical learning methods that acquire macro-operators (macros)composed of the individual operators used to solve a problem. As with empirical learning, theanalytical performance response is the result of two contributing factors. However, the factorsa�ecting problem-solving time di�er from those a�ecting classi�cation accuracy. One factoris the decrease in problem-solving time due to solving a problem with a macro instead of theoriginal operators. The second factor is the increase in problem-solving time due to the costof retaining the macro. One constraint from this analysis is an ordering of the amount oflearned knowledge from general to speci�c. General macros apply to more problems and havegreater bene�t than more speci�c macros. Therefore, the analytical learner should acquiremore general macros before more speci�c ones to insure an initial increase in the performanceresponse. In this scenario, the performance response for analytical learning follows the generalutility problem trend illustrated in previous sections.36



2.5.2.1 Performance ResponseThe analytical learner analyzed in this section consists of a list of original operators O, a list ofmacros M , and a problem solver. Given a problem, the problem solver uses M and O to derivea solution to the problem. The analytical learner generalizes the solution to form a new macrom and adds m to the end of the list M . Performance of the problem solver is the time to solvea set of test problems.Minton [1990] identi�es three ways in which macro-learning a�ects the problem-solvingperformance of an analytical learner. First, adding macros to the list of operators changes thetraversal order of the search space. Macros try paths through the search space earlier thannormal in the hopes that the problem can be easily solved with a macro without resorting tothe original operators. Second, the availability of macros reduces the cost of searching somepaths in the search space. In addition to the savings of solving problems directly, macroscan also solve subgoals within the search space. Third, macros introduce redundancy in thesearch space by visiting states that will be visited later in the search space and by testingoperator preconditions that will be tested again later. The �rst two e�ects generally improveproblem-solving performance, and the third e�ect degrades performance.Analyzing these e�ects in more detail yields the behavior shown in Figure 2.17. Each newmacro decreases the time necessary to solve the problem (and similar problems) generating themacro. The time to solve the problem without a macro is approximately rd, where r is thenumber of operators available to the problem solver, and d is the di�culty of the problem interms of the depth of the solution in the search space. Replacing this exponential search witha lookup in the list of macros decreases the amount of problem-solving time by approximatelyrd. In addition, the learned macro may reduce the search space for other problems by solvingsubgoals in one step that previously took more than one step. The extent of the decrease intime depends on whether the learned macro is general or speci�c. If the macro is speci�c, thenthe decrease in time will be small, because the macro will apply to few other problems andto few subgoals in the search space. If the macro is general, then the decrease in time will begreater, because the macro applies to more problems and search-space subgoals. In order forthe performance response behavior to match the previously-observed behavior, the decrease intime due to earlier macros must be greater than the time decrease for later macros. Therefore,37
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Assuming the analytical learner acquires macros in the order from general to speci�c, theperformance response follows the general utility problem trend.2.5.2.2 Amount of Learned KnowledgeThe analysis of the previous section shows that the number of macros is an appropriate measureof the amount of learned knowledge for perceiving the general utility problem trend in analyticallearning methods. The analysis constrains the use of this measure such that the system acquiresmacros in a general-to-speci�c order. However, the analytical performance responses shown inSection 2.3.4 do not constrain the macro-acquisition order in this way. The e�ect of ignoringthe order is the possibility of an initial decrease in the performance response before the moreglobal increase depicted in the previous section. The initial decrease is due to the possibilityof acquiring a few speci�c macros before a general macro. Since example problems generatingmore general macros will be more frequent in the set of training problems, there is a greaterprobability of learning a general macro, and the initial decrease in the performance responsewill be only temporary. Both of the experimental performance responses in Figure 2.12 exhibitthis behavior.Analysis of both analytical and empirical methods verify the commonality of the perfor-mance response trend. The analysis indicates that the trends result from two factors: oneincreasing performance and one decreasing performance. Furthermore, both analyses constrainthe order of increasing the amount of learned knowledge to be from general to speci�c. Theoverall behavior of the performance response is a curve increasing rapidly to a single peak andthen decreasing more slowly after the peak. The next chapter uses a model of this behavior asthe basis for an adaptive control approach for maintaining the utility of the knowledge acquiredby learning methods.
39



Chapter 3Model-Based Adaptive ControlThe model-based adaptive control (MBAC)1 approach uses the trend identi�ed in Chapter 2as a model to control the amount of learned knowledge in order to maintain utility. The modeldescribes the performance response for a particular task domain (e.g., Flag or DNF2), perfor-mance dimension (e.g., accuracy or speed) and knowledge transformation (learning method).MBAC's model of the performance response is a parameterized curve. MBAC �ts the curveaccording to previously observed samples from the actual performance response. Using this in-stantiated model of the performance response curve, MBAC determines the point on the curvehaving the desired level of performance and recommends learning the amount of knowledgecorresponding to this point.The proposed MBAC approach resembles an adaptive control loop as shown in Figure 3.1.First, the performance element uses the knowledge to perform some task. MBAC comparesthe performance on the task to the user-de�ned performance objectives. This performancecomparison serves as feedback to improve the model's estimate of the true performance response.Using the updated model, MBAC decides how to transform the knowledge in order to achieveand maintain the desired performance objectives.For example, Figure 3.2 shows the response of a splitting algorithm on a set of test dataas the algorithm learns using a separate set of training data. Assuming no splits have beenmade, and Model 1 is the current instance of the model, the control decision would be to make1Model-based adaptive control is a new term similar to the term model-reference adaptive control used inadaptive control theory [Sastry and Bodson, 1989]. The modi�cation of the new term serves to distinguish itfrom the more formally de�ned adaptive control counterpart.40
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ten splits to achieve the desired threshold. However, when the resulting performance is stillbeneath the threshold, MBAC uses the new performance data for updating the model to Model2. This model then decides to make �ve more splits to achieve the threshold. Assuming Model2 is the correct model, performance on the task will meet the threshold.The important components of the MBAC approach in Figure 3.1 involve the knowledge,the performance objectives, the model, and the transformations performed on the knowledge assuggested by the model. Section 3.1 de�nes the components, and Section 3.2 outlines the MBACalgorithm. The remaining sections discuss the issues involved in the design of the components.Chapter 4 describes speci�c implementations of these components used for experimentation.3.1 De�nitionsThis section de�nes the MBAC approach. The de�nitions clarify the scope of the approach andprovide a precise context in which to discuss the issues of the approach. The de�nitions andaccompanying examples follow the diagram in Figure 3.1 and the example of Figure 3.2.De�nition 1 A task T consists of a set of problems PT and a set of performance objectivesOT = fo1; : : : ; ong.For example, the task may be the classi�cation of a set of examples with 95% accuracy. PTwould be the set of examples, and OT would contain one element corresponding to the accuracyperformance objective. A subset of the examples in PT comprise the training set serving asthe initial knowledge. The remaining examples in PT comprise the testing set used by theperformance element to evaluate the knowledge.De�nition 2 A performance objective oi is a pair hdi; tii where the performance dimension diis a quantity measured during the execution of the performance element, and the performancethreshold ti is the desired value of the performance dimension.The sample task above has one performance objective whose dimension is accuracy andwhose threshold is 95%. MBAC measures accuracy as the ratio of correctly classi�ed examplesin the test set to the number of examples in the test set. If the performance dimension isCPU time, MBAC would measure this dimension as the amount of CPU time needed by the42



performance element to solve the examples in the test set. If the user desires peak performance,the threshold can be set to 100% (or in�nity when there is no maximum value). Section 3.5discusses performance objectives in more detail.De�nition 3 The knowledge K is a possibly more general expression of the training examplesin PT . The expression is in a form usable by the performance element and modi�able byknowledge transformations.The de�nition of knowledge is unavoidably abstract, because the knowledge may take severalforms depending on the task. For example, the knowledge may be in the form of a decision tree,a network, or a set of problem-solving macro-operators. As described in Section 3.3, MBACuses a hybrid knowledge representation that maintains separate knowledge structures for eachtransformation. The knowledge available to the performance element is the most recentlytransformed knowledge for the task. For example, if the most recent control decision was toperform some number of splits on a decision tree representation, the knowledge available to theperformance element during the next evaluation would be the resulting decision tree.De�nition 4 The performance element PE uses the knowledge K to solve a set of problemsP � PT from task T . PE produces a vector of values representing the measured performancedimensions for the performance objectives OT associated with task T .In our example, P would be the set of test examples from PT . The performance elementwould return a one-dimensional vector consisting of the accuracy of the knowledge in classifyingthe set of test examples. MBAC treats the performance element as a \black box". As long as theinput and output requirements are maintained, the performance elements are interchangeable.De�nition 5 A knowledge transformationKT is a pair of methods hKT�; KT+i for decreasingand increasing the amount of learned knowledge in K. Each method has an associated costfunction c�; c+ representing the resource cost of performing the knowledge transformation.One possible knowledge transformation mentioned above is the splitting method. For thistransformation, KT+ is the execution of a single split in the decision tree, and KT� is theremoval of the most recent split. One expression of the cost functions would be the averagetransformation cost of previous transformations. Section 3.4 discusses the issues involved withknowledge transformations. 43



De�nition 6 A model M is a parameterized function relating the value of the performancedimension d for task T to the amount of learned knowledge as varied by knowledge transfor-mation KT . Associated with the model is the certainty �M in the prediction of the value of dfrom the amount of learned knowledge.MBAC uses a parameterized model to �t the expected trend of Figure 2.1. An exampleof a model would be the relationship between accuracy and the splitting transformation for aparticular task. An instance of a model is a particular choice for the parameters of the model. Amodel type is a particular parameterized function relating performance to the amount of learnedknowledge. Unless otherwise noted, further discussion uses the terms model and model instanceinterchangeably. The certainty of the model may depend on the certainty of the parameters orthe deviation between the model and actual performance data. Section 3.6 discusses propertiesof MBAC models.De�nition 7 Model-Based Adaptive Control (MBAC) maintains a model for each htask, knowl-edge transformation, performance dimensioni triple. MBAC updates the parameters of themodels according to the vector of performance dimension values produced by the performanceelement. MBAC uses the updated models to select a knowledge transformation for achievingthe performance objectives of a task. MBAC then transforms the knowledge and re-executesthe performance element on the task.MBAC maintains several models which compete for the opportunity to transform knowledgein order to achieve the performance objectives. Each model is an instance of the same type(parameterized curve). Actual performance measurements provide data for re�ning the modelsand improving the transformation decisions. The next section describes MBAC's adaptivecontrol algorithm in more detail.3.2 Adaptive Control AlgorithmFigure 3.3 outlines the MBAC algorithm underlying the block diagram of Figure 3.1. Givena task, a set of performance objectives for the task, and a set of knowledge, the MBAC ap-proach begins by executing the task using the performance element and the current knowledge.During task execution MBAC measures the performance dimensions associated with the given44



Given: taskperformance objectivesknowledge KRepeatEvaluate performance of K on taskIdentify models for task and performance objectivesUpdate models based on performance feedbackUse models to predict certainty of attaining thresholdsSelect transformation minimizing uncertainty and costApply transformation to KUntil all performance objectives satis�edFigure 3.3: Model-Based Adaptive Control algorithm.performance objectives. After task execution, MBAC collects all model instances pertaining tothe task and each of the performance dimensions. For each performance dimension MBAC mayretrieve multiple model instances, one for each knowledge transformation applicable to the taskand performance dimension.Next, MBAC uses the performance measurements to update the models. The performanceelement uses knowledge associated with the most recently applied transformation; therefore,MBAC updates only those models associated with this transformation. Assuming the currentknowledge does not satisfy one or more of the performance objectives, each model pertainingto a dimension of an unsatis�ed performance objective suggests a transformation for achievingthe objective and estimates the transformation's certainty of success. The success of the trans-formation depends on the ability to achieve unsatis�ed objectives and preserve already satis�edobjectives.MBAC then selects the transformation maximizing the estimated certainty of success andminimizing transformation cost. The estimated certainty of success combines the model's esti-mate of attainable performance with the certainty of the model. MBAC applies the transforma-tion to the associated knowledge, installs this knowledge as the current knowledge for solvingthe task, and re-executes the performance element on the given task. This process continuesuntil the current knowledge satis�es all performance objectives on the task.45



The following sections discuss the issues involved in the MBAC approach. The de�nitionof knowledge in Section 3.1 is imprecise and does not address the representation issue of com-patibility with the performance element and individual knowledge transformations. Section 3.3discusses MBAC constraints on knowledge compatibility and transformation. Section 3.4 con-siders the issues involved in decomposing current learning methods into knowledge transfor-mations. MBAC uses explicit performance objectives to provide performance feedback to thecontrol loop. Section 3.5 discusses tradeo�s among performance objectives, unachievable ob-jectives, and the MBAC algorithm's stopping criterion of performance objective satisfaction.Finally, Section 3.6 considers several model-related issues: validity, MBAC constraints, modeltype, identi�cation and transformation selection. Chapter 4 describes speci�c implementationsof these components of the MBAC approach.3.3 Knowledge RepresentationThe MBAC approach requires the knowledge to be compatible with the performance elementand the knowledge transformations. This section discusses a hyrid knowledge representationthat meets these requirements.3.3.1 CompatibilityThe knowledge acquired by learning systems may take a variety of forms. For example, thelearning systems discussed in Chapter 2 acquire knowledge in the form of decision trees, deci-sion lists, neural nets, and planning operators. These examples represent only a subset of theset of knowledge representations used by learning systems. Despite this variety in knowledgerepresentation, the MBAC approach attempts to unify learning methods by exploiting the sim-ilarity in their performance response curves. However, the independent variable in these curves(the amount of learned knowledge) has di�erent units for each learning method. For example,performance response curves for neural nets have units of number of cycles; whereas, curvesfor splitting methods have units of number of splits. Because the MBAC approach controlsmultiple models recommending di�erent transformations to di�erent forms of knowledge, theapproach must execute these di�ering knowledge transformations, while maintaining the abilityto communicate the di�erent knowledge representations to the performance element.46



Solutions to this issue fall along a spectrum. One end of the spectrum corresponds tousing a single knowledge representation and modifying the knowledge transformations to workon this representation. The main drawback to this approach is the di�culty of modifyingtransformations that are intimately related to the representation of the transformed knowledge.For example, the e�ect of a splitting transformation on a network representation, or even a setof rules not oriented in a decision tree, is unclear. Likewise, the e�ect of n cycles' worth oflearning in a neural net method on a decision tree representation is also unclear. The e�ectof a transformation on the representation for which it is designed is the main motivation forchoosing one transformation over another. Removing the dependence of the transformation onits representation would reduce the transformation's ability to produce changes in performance.The other end of the spectrum corresponds to maintaining di�erent knowledge represen-tations for the di�erent types of knowledge transformations and modifying the performanceelement to work with these multiple representations. Although the MBAC approach is depen-dent upon the performance element for evaluating performance objectives, one of the bene�tsof the approach is the ability to adapt the knowledge to changes in the performance element.Therefore, one drawback to the multiple representation approach is that the performance ele-ment must handle multiple representations, which places a burden on the designer, especiallywhen the need arises to incorporate new representations. Even if the performance element canhandle multiple representations, a second drawback is that the control element must choosewhich representation to use for the current problem.The ideal point along the spectrum falls in the middle. One would like to preserve themultiple representations for the sake of the di�ering transformations, while allowing the perfor-mance element to deal with a single representation. One solution is the use of production ruleswith procedural augmentations for handling the underlying representations. For example, theproduction rule for predicting the class of an object from its features may look likefeature1(OBJECT,?v1) ^ feature2(OBJECT,?v2) ^ � � � �! class(OBJECT,?c).The version of the rule for a decision tree representation would instantiate the class variable ?caccording to the class of the leaf node at the end of the decision-tree path traversed accordingto the feature values ?v1, ?v2, .... The neural net version of the rule would put the featurevalues at the input units of the network and instantiate the class according to the values47



at the output units. Using this procedural rule representation as an intermediate betweenthe performance element and the multiple representations requires the performance elementto handle only one representation, and allows the knowledge transformations to modify theknowledge representation for which they were designed.The intermediate representation allows the possibility of multiple rules applying to a singleproblem. For example, in determining the class of the above object, both the decision tree ruleand the neural net rule can predict (possibly di�erent) conclusions. When multiple representa-tions are applicable, MBAC determines which rule (i.e., representation) to use for solving theproblem according to the most recent knowledge transformation. The next section discussesthe method for deciding among di�erent representations.3.3.2 TransformationThe transformation of knowledge is a two-stage process. First, MBAC selects a knowledge trans-formation to perform on the knowledge associated with that transformation. Second, MBACreplaces the knowledge currently used to solve the task with the transformed knowledge. Forexample, assume the current task is the classi�cation of some object, and the current knowledgerepresentation is a neural network. After the performance element attempts the task using thenetwork, MBAC updates the models for the task and the neural network transformation (cy-cle/uncycle). Assuming some unsatis�ed performance objectives, MBAC may decide that thesplit/unsplit decision tree transformation has a better certainty of achieving the performanceobjectives. MBAC transforms the decision tree for this task according to the model's suggestionand replaces the neural network with the transformed decision tree as the knowledge used forthe object classi�cation task.The most recently transformed knowledge for a task is MBAC's recommendation of the bestknowledge that the performance element can use to solve the task. By swapping the knowledgeunderlying the rule-based representation used by the performance element, MBAC maintainscompatibility with both the performance element and the individual knowledge transformations.
48



3.4 Knowledge TransformationsThe MBAC approach makes four demands on a knowledge transformation. First, the trans-formation must make small changes to the knowledge. Small changes are necessary to avoidoscillation about the performance thresholds and to perceive the performance response trendrevealed in Chapter 2. Second, MBAC must execute the transformations in a speci�c order.The shape of the performance response depends on the application order of transformations.Third, the transformationmust be reversible. MBAC controls the amount of learned knowledge,which implies the need to both increase and decrease this amount. Fourth, the transformationmust have a measurable cost. MBAC selects transformations based not only on the achievableperformance, but also on the expected resource cost of executing the transformation. Thissection discusses the issues involved with satisfying these requirements.3.4.1 GranularityThe granularity of a knowledge transformation refers to the extent of the change in performancemade by applying the transformation. The motivation for decomposing learning methods intosmaller grain-sized transformations is two-fold. First, smaller changes in performance duringthe course of learning allow a more detailed perception of the performance response. Thetransformation grain size should be small enough to perceive the trend described in Chapter 2.Figure 3.4 shows three transformations di�ering in grain size. Transformation T3 has the largestgrain size and totally obscures the shape of the performance response. T3 represents the grainsize of an entire learning method not decomposed into smaller knowledge transformations.Transformation T2 has a smaller grain size and begins to reveal the performance response, butfails to indicate signi�cant properties such as the true peak. Transformation T1 has the smallestgrain size and provides the best perception of the performance response.Given that one wants to drive the learning to the peak of the performance response, thesecond motivation for small grain-sized transformations is controllability. The greater precisionwith which the MBAC approach can control the amount of learned knowledge, the closer theperformance may converge to the peak of the performance response. Only the smallest grain-sizetransformation T1 in Figure 3.4 is able to reach the peak of the performance response.49
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response follows the trend of the general utility problem as in Chapter 2. For empirical learningthe trend results from the tendency to over�t the training data as the knowledge moves fromgeneral to speci�c. Given that over�t will eventually occur, avoiding the move to speci�c knowl-edge will yield the desired trend. For example, the breadth-�rst ordering for splitting methodsavoids (for as long as possible) the speci�c (over�tting) knowledge deeper in the decision tree.The general utility problem trend in analytical learning results from the tendency to learnlow-utility knowledge. An analytical learner learns problem-solver search control knowledge inthe form of a decision list. Initially, the decision list contains the primitive operators, which areapplied in some sequence at each state in the search space. The analytical learner specializesthe control knowledge by adding macro-operators to the decision list. General macro-operatorsresult from similar problems having greater frequency in the set of training problems. As themethod learns an increasing number of macro-operators, the macro-operators will be morespeci�c to unique training problems, and not a result of general trends in the distributionof problems. Therefore, learning more macro-operators eventually over-specializes the controlknowledge and degrades performance (reduces utility) on unseen problems.The application of transformations should follow an order that avoids speci�c, low-utilityknowledge for as long as possible. The peak of the performance response corresponds to the de-sired knowledge, and deviations from this knowledge cause performance to fall o� from the peak.The direction of the decrease depends on whether the knowledge becomes more general or morespeci�c with respect to the learning task. Ordering such transformations to move knowledgefrom most general to most speci�c will yield the desired trend in performance response.3.4.3 ReversibilityTechniques for reversing a knowledge transformation depend on the properties of the transfor-mation. Some transformations imply a speci�c ordering, and therefore are easily reversible inplace. For example, the splitting transformations of Chapter 2 always split the next node in abreadth-�rst traversal of the decision tree. Therefore, reversing a split involves removing thelast split that was made in a breadth-�rst traversal.Other types of transformations are deterministic, but not in-place reversible. A cycle ina neural net method is such a transformation. The cycle is not in-place reversible, becausethe weight update formula may not be invertible. However, since the cycle is a deterministic51



transformation, the transformation can be reversed by restarting from the beginning and per-forming a lesser number of cycles. More e�cient techniques periodically record the state of theknowledge during the course of learning and avoid the need to restart from the beginning.Non-deterministic transformations can be reversed in a similar way by recording the non-deterministic choices made during each transformation. For example, genetic algorithms maketransformations based on stochastic decisions [Goldberg, 1989]. Insuring true reversibility ofsuch transformations requires a complete record of the stochastic choices.3.4.4 CostAssociating a cost with each transformation helps MBAC make e�cient use of the availableresources. Di�erent transformations have di�erent costs. Also, the forward and reverse direc-tions of a transformation may have di�erent costs. Given these costs, MBAC can estimate thetotal cost of using a transformation to achieve the desired performance objectives. Comparingtransformations based on their cost and their ability to achieve desired performance allowsMBAC to choose a transformation most likely to achieve the performance objectives using theleast amount of resources.The use of transformation cost in the MBAC approach is not intended to address the generalissue of measuring the cost of learning. The MBAC approach incorporates transformation costestimates in order to trade o� performance certainty with available resources. One method forestimating transformation cost is to average actual costs of forward and reverse transformationsincurred during previous applications.Chapter 4 describes the implementation of the transformations used in experimentationwith the MBAC system.3.5 Performance ObjectivesThe individual machine learning methods described in Chapter 2 seek to obtain optimal perfor-mance. However, the MBAC approach converges to speci�c (possibly non-optimal) performanceobjectives. Associating multiple explicit performance objectives to each learning task providestwo advantages. First, the performance objectives can change, and MBAC will adapt accord-ingly. Second, MBAC can improve performance along one dimension at the expense of another52



less important dimension. Adaptability to change and performance tradeo�s are not possiblewhen multiple performance objectives are combined implicitly within the learning method.Multiple performance objectives also bring disadvantages arising from the case when not allthe objectives are achievable. MBAC must decide whether to achieve some objectives and vio-late others or reach a performance compromise among all the objectives. This section addressesthe issues related to performance objectives.3.5.1 AdaptabilityOptimal performance is di�cult to achieve for real-world tasks. The general utility problemresults from learning methods that expend too much e�ort towards reaching optimal perfor-mance. One alternative to requiring optimality is to de�ne an acceptable level of performancefor the task. The acceptable level of performance may change over time; therefore, learningmethods seeking acceptable performance levels must adapt their hypotheses to changes in theperformance objectives. MBAC's utilization of explicit performance objectives provides suchadaptability.3.5.2 Performance Tradeo�sA single performance dimension is not always enough to constrain a learning task. For ex-ample, some machine learning methods implicitly de�ne performance objectives for hypothesissimplicity as well as accuracy. The implicitness of the objectives forces the method to over�twhen attempting to optimize all the objectives. De�ning explicit performance objectives fora learning task allows the MBAC approach to improve performance along one dimension bydegrading performance along other dimensions, as long as the performance satis�es the desiredthresholds.For example, consider the application of a transformation to a task with two performanceobjectives. Figure 3.5 shows the performance responses of the two performance dimensions d1and d2 for the task and transformation. The dotted horizontal lines correspond to the two per-formance thresholds t1 and t2. Applying the transformation i times satis�es the performanceobjective on d1 in Figure 3.5a, but not the objective on d2 in Figure 3.5b. Likewise, applyingthe transformation j times satis�es the t2 objective, but not the t1 objective. Instead of set-tling for lower performance on both dimensions, if the performance threshold on dimension d153
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If more than one performance objective is unachievable, the choice of the best number oftransformations becomes more di�cult. Consider the case where Figure 3.6b represents a secondunachievable performance objective for the task. Attempting to maximize either performanceresponse results in a degradation of performance for the non-maximized performance dimension.The problem of determining the best compromise among several performance objectives isknown as multiobjective optimization [Rao, 1984]. Methods for solving multiobjective optimiza-tion problems generally follow one of two approaches. One approach combines the individualobjectives into a global objective, and then minimizes (or maximizes) the global objective. Ifthe objectives are without thresholds, a weighted sum of the individual objectives is a goodcandidate for the global objective. If, as in the case of MBAC, the objectives have desiredthresholds, then a least-squares regression of the objectives from the thresholds can serve asthe global objective to be minimized. The second approach orders the individual objectivesby importance, maximizing less important objectives according to constraints generated whilemaximizing the more important objectives. Assuming the user can order the objectives, thisapproach is analogous to the technique of lowering certain performance thresholds as describedin the previous section.3.5.4 Stopping CriterionThe stopping criterion of the MBAC algorithm in Figure 3.3 requires satisfaction of all perfor-mance objectives for the current task. However, the previous section shows that this criterionmay be impossible. When satisfaction of all objectives is impossible, MBAC will either recom-mend making no transformations or oscillate between one or more transformations.Figure 3.6a illustrates one case in which an objective is unsatis�ed and MBAC suggests notransformation. After suggesting i transformations, the model can move performance no closerto the threshold, and MBAC suggests no transformations. The alternative case occurs when theperformance threshold is below the performance achievable by the model; however, this case isunlikely to occur in practice. One method for handling this violation of the stopping criterionis to simply augment the criterion with \or the suggested transformation is null." However, ifthe behavior of the performance element is dynamic, retaining the original stopping criterionallows the models to continually update and adapt to changes in the performance element.55



Figure 3.5 illustrates the case where MBAC may oscillate between transformations. Assum-ing the performance dimensions d1 and d2 have performance thresholds t1 and t2, respectively,performing i transformations achieves the d1 objective, but violates the d2 objective. If MBACsuggests the transformation anyway (i.e., the certainty of achieving the d2 objective is high),then MBAC will then attempt to achieve the unsatis�ed d2 objective by making j transforma-tions. Thus, MBAC oscillates between i and j transformations, never satisfying both objectives.If MBAC employs one of the multi-objective optimization techniques described in the previoussection, then the models will compromise on an intermediate transformation, and the oscillationwill degenerate into the null transformation case above. Without these techniques, MBAC mayeither employ loop detection to identify the oscillation or allow the oscillation to continue inthe hope that performance element dynamics will eventually reveal another transformation forachieving all the objectives.In the tradition of analog adaptive control systems, the simplest solution is to continue thecontrol loop inde�nitely. Enforcing a limit on the number of data points retained by each modelprevents exhaustion of storage resources and ensures that the models and knowledge adapt tothe more recent behavior of the performance element.3.6 ModelOne of the main assumptions of this thesis is the existence of a single model relating perfor-mance to the amount of learned knowledge. The model is applicable regardless of the task,performance dimension or knowledge transformation. Chapter 2 provides both experimentaland formal support for this assumption. This section discusses the validity of the single-modelassumption, the MBAC constraints on the model, alternative model types, model identi�cationand transformation selection.3.6.1 ValidityThe proposed model expresses performance as a function of the amount of learned knowledge.The model's independence from the task and the performance dimension raises questions asto the validity of the model. First, the performance of a knowledge transformation dependson characteristics of the task domain (e.g., number of examples, number of features, size of56
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Amount of Learned KnowledgeFigure 3.7: Performance response with multiple peaks.instance space, etc.). How can a model, whose expression is independent of these characteristics,accurately predict performance? Second, the shape of the performance response depends on themethod used to measure performance. How can a model based on one general shape accuratelydescribe di�erent performance measures?The analysis of empirical learning in Section 2.5.1.1 answers the �rst question. This analysisderives constraints on the performance response based on characteristics of the domain: thenumber of training instances and the size of the instance space. The resulting performanceresponse follows the empirically demonstrated trend of Figure 2.1. Although the values for thedomain characteristics a�ect the shape of the performance response, the overall trend remainsthe same. Using a single parameterized curve as the model allows adaptation to these subtlee�ects and alleviates the need to derive similar constraints for other knowledge transformations.As for the second question, there are some performance dimensions whose response does notmatch the trend. For example, regardless of the number of cycles performed on a neural network,the CPU time expended while using the resulting network to classify a set of test examplesremains the same (assuming the topography of the network remains constant). However, neuralnetworks are designed to improve accuracy, not CPU time. For the performance response tofollow the general trend, the performance measure must depend on the performance a�ectedby the transformation. For example, empirical learning methods generally attempt to improvesolution accuracy; whereas, analytical learning methods attempt to improve solution time.A more di�cult issue underlying the second question is the possibility that the performanceresponse has multiple peaks, as in Figure 3.7. If the knowledge transformation follows the57



general to speci�c order described in Sections 2.5 and 3.4.2, this scenario is unlikely to occur.However, although a second-order model would be unable to precisely �t this fourth-orderbehavior, the second-order model can �t one of the peaks. If the MBAC approach constrains themodel to �t the highest peak, then the resulting curve will ignore the local maxima associatedwith other peaks.3.6.2 ConstraintsThe MBAC approach constrains the model to have four properties. First, the model mustbe adaptive. MBAC maintains several models, one for each combination of task, performancedimension and knowledge transformation. As discussed in the previous section, di�ering charac-teristics of the three components of the model cause the performance response curve to deviateslightly from the speci�c response curve of Figure 2.1. The MBAC approach identi�es thesedeviations through experience by observing actual performance values for di�erent amounts oflearned knowledge. Therefore, the model must adapt to the experience. In addition to handlingdeviations from a speci�c response curve, an adaptive model adjusts to changes in other compo-nents of the MBAC approach. For example, the characteristics of the performance environmentmay change due to other loads on the computer system, installation on a di�erent system, orinstallation of a di�erent version of the performance element. Over time, the MBAC approachadapts the models accordingly, which in turn transforms the knowledge so as to maintain theperformance objectives in the new performance environment.Second, the model must be e�cient to compute. Observation of new data points relatingperformance to amount of learned knowledge requires recomputation of the model. Since theMBAC approach does not incorporate the cost of model computation, the complexity of thecomputation should be no more than polynomial in the number of data points.Third, the model must be accurate. Model accuracy represents a tradeo� between �ttingdeviations of the response curve and maintaining the desired trend of Figure 2.1. Therefore,MBAC requires the model to conform closely to the trend. The parameters of the model permitdeviations without sacri�cing this conformity.Finally, MBAC must be able to measure the certainty of the model. In order for MBACto trade o� alternative knowledge transformations, the model must measure the certainty withwhich the suggested control decision will achieve the desired performance objectives. The cer-58



tainty of the model derives from the deviations between the model and the actual performanceresponse. One expression for the error depends on the standard deviation of the performancevalues at each point along the amount of learned knowledge.3.6.3 Model TypesUsing the MBAC model constraints of the previous section, this section evaluates alternativemodel types. The alternatives vary along the dimensions of precision of �t to the data andconformity to the general utility problem trend of Figure 2.1. The adaptive model types utilizeperformance curves observed over several trials.The most precise model type with no concern for conformity to the trend is the rote model.The rote model retains each data point sampled from the actual performance response curve.When asked how many transformations are necessary to achieve a certain threshold of per-formance, the rote model �nds the point whose performance value is closest to the desiredthreshold and returns the corresponding number of transformations. The rote model is adap-tive and e�cient, but not accurate in conforming to the trend. That is, the rote model over�ts,because points from an anomalous response curve will hide the average response of the knowl-edge transformation. The rote model can estimate the certainty of achieving the performancethreshold by computing the standard deviation of all performance values corresponding to thesame number of transformations.Several alternative model types ease the preciseness of the rote model. Instead of choosing asingle point nearest the performance threshold, a nearest-neighbor model might choose severalnearby points and average the suggested number of transformations. Further imprecision ispossible by using an empirical learner similar to those in Chapter 2 to learn a discretizedversion of the performance response curve. As with the rote model, these model types areadaptive, e�cient and can estimate certainty; however, they still have poor accuracy due totheir neglect of the trend identi�ed in Chapter 2.At the other end of the spectrum lie model types more dependent on the trend, but lesse�cient to compute. One way to model the trend is as a sum of two curves similar to theapproach taken in the formal analysis of Section 2.5. Figure 3.8 shows two curves whosemathematical expressions are 59
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Figure 3.8: Nonlinear model of performance response trend as the sum of two componentcurves y1 and y2. y1 = a� ae�bx ; y2 = be�dxwhere x varies with the amount of learned knowledge and a, b, c and d are model parameters.As Figure 3.8 illustrates, the sum of these curves y1 + y2 conforms to the trend. This modeltype is adaptive, accurate to the trend and conducive to certainty measure. However, since themodel type is nonlinear in the parameters, �tting the model to the data is less computationallye�cient than the previous methods due to the need for iterative minimization methods to �ndthe model parameters [Press et al., 1986].The MBAC approach requires a model type which is a compromise between the two extremesrepresented by the above types of models. The model type must be e�cient to compute andaccurate to the trend. One such model type is the parabolic model shown in Figure 3.9. Theparabolic model assumes that most performance objectives have thresholds near the peak of theperformance response. In this case, modeling the peak is su�cient for controlling the amountof learned knowledge near the peak. The expression of the parabolic model is60
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Figure 3.9: Parabolic model of performance response trend.y = ax2 + bx+ cwhere a, b and c are model parameters. The parabolic model is adaptive due to the variabilityof the parameters. The parabolic model is e�cient to compute, because the expression is linearwith respect to the model parameters. Assuming thresholds are near the peak, the parabolicmodel is accurate to the peak portion of the performance response trend. Press et al. [1986]discuss several methods for measuring the certainty of a linear model.The parabolic model meets the constraints of the MBAC approach. Later discussions onimplementation in Chapter 4 describe the exact methods for computing the parabolic modeland measuring certainty. Experiments in Chapter 4 evaluate the utility of the parabolic modelwithin the MBAC approach.3.6.4 Model Identi�cationAfter the performance element attempts the task using the current knowledge, the MBAC algo-rithm of Figure 3.3 identi�es the models pertaining to the task and the associated performanceobjectives. If the models predict performance on the task with high certainty (i.e., many datapoints support the model), then MBAC can use the techniques of Section 3.5 to make trans-formation decisions. However, some models may depend on few data points. Or, if the task isnew, no data points exist from which to compute a model. This section considers the modelidenti�cation process when the task models are weakly-supported or nonexistent.61



3.6.4.1 Nonexistent ModelsIn the case where no models exist for a performance objective of the task, MBAC may eitherrandomly select the type and amount of knowledge transformation or utilize other models tomake a more informed decision. A random decision acquires a data point for the nonexistentmodel. The random decisions continue until MBAC has enough data points to compute themodel (e.g., three points determine a parabola). Now that the model exists, MBAC makesdecisions using the model to continue the collection of data points and increase model certainty.If other models exist relating transformations to the performance objective, then MBACcan utilize these models to improve upon the random decision. One method for utilizing thesemodels is to compare characteristics of the current task domain to other existing task domains.Example characteristics include the number of examples or the size of the instance space. Thedecisions made by models of similar tasks would be more applicable than a random decision.However, just as the model attempts to avoid using domain characteristics as parameters, theMBAC approach should avoid such characteristics for comparing models. Another method forutilizing other models assumes that a particular knowledge transformation has similar perfor-mance response curves for all tasks. Using this assumption, MBAC can average existing modelsto compute a decision for the current unknown task. Although this assumption is de�nitely nottrue in general, the averaged decision of existing models may be better than a random decision.3.6.4.2 Weakly-Supported ModelsUsing the techniques of the previous section, MBAC gathers enough data points to computethe parameters of the model for the unknown task. However, the weakly-supported model maystill perform poorly due to the lack of data. Although the techniques of the previous sectionstill apply to the problem of collecting more data, the existence of a model permits anotheralternative. Instead of averaging all other models for the performance objective, MBAC mayuse the existing model to select only similar models, where similar means the di�erence betweenthe curve of the new model and other model curves. The decisions of the more similar modelshave higher weight than less similar models in determining the transformation decision.Another technique for utilizing other models along with a weakly-supported model is tocompare the models' certainties. The weakly-supported model will have low certainty until the62



collection of more data points. If a similar model exists with a higher certainty, MBAC can usethe similar model's decision until the certainty of the new model rivals that of other models.These methods for making decisions when tasks have nonexistent or weakly-supported mod-els allow MBAC to make more informed transformation decisions in unknown task domains. Ifthe user does not have time for MBAC to acquire performance models for a new task, then thesemethods are necessary. If the user permits MBAC to experiment with the task and acquirewell-supported models, the resulting knowledge will more likely achieve the desired performanceobjectives.3.6.5 Transformation SelectionAfter identifying appropriate models for the current task, MBAC uses the models to select aknowledge transformation for achieving the performance objectives of the task. The methodfor selecting a transformation depends on the number of performance objectives. If the taskhas only one performance objective, MBAC selects the transformation having low cost and highcertainty of achieving the objective according to the models. Each model suggests some numberof transformations for achieving the objective. MBAC uses the transformation cost to computethe total cost of performing the transformations. The predicted performance upon applyingthe transformation and the certainty of the model determine the certainty of achieving theobjective. If the most certain model predicts achievement of the unsatis�ed objective with zerotransformations, then MBAC may choose the second highest certainty model for suggesting atransformation.When a task has more than one performance objective, MBAC must consider the e�ectof transformations on each performance objective. If a transformation satis�es the unsatis�edperformance objectives without violating the already satis�ed objectives, MBAC selects themost certain of these transformations. As illustrated in Section 3.5.3, MBAC may be unableto satisfy all performance objectives for a task. Section 3.5.3 discussed approaches for select-ing a transformation that minimizes the discrepancies between the objectives and achievableperformance. When not all objectives are achievable, MBAC selects this \best compromise"transformation.The next chapter describes the implementation of MBAC's transformation selection pro-cedure, as well as other components of the MBAC approach. Experimentation using these63



implementations evaluates the ability of the MBAC approach to maintain the utility of learnedknowledge.
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Chapter 4Implementation and EvaluationThis chapter evaluates components of the MBAC approach discussed in Chapter 3. The �rstsection describes the implementation of the knowledge transformations. The remaining sectionsdescribe more speci�c implementation details and present experiments that evaluate the MBACapproach. Experiment 1 (Section 4.2) evaluates MBAC's ability to converge to the peak of theperformance response using di�erent model types. Experiment 2 (Section 4.3) evaluates theestimation of model certainty. Experiment 3 (Section 4.4) evaluates MBAC's ability to selectfrom among several knowledge transformations. Experiment 4 (Section 4.5) illustrates MBAC'sdynamic behavior during initial adaptation of the performance response model. Experiment 5(Section 4.6) evaluates MBAC's ability to transfer knowledge from known tasks to unknowntasks. Section 4.7 summarizes the experimental results.4.1 Knowledge TransformationsSection 3.4 discussed four knowledge transformation issues: granularity, order, reversibilityand cost. Sections 4.1.1 { 4.1.4 describe the implementation of the �rst three issues for theknowledge transformations used to evaluate the MBAC approach. The transformation cost isnot implemented. Table 4.1 summarizes the implementation of the knowledge transformations.4.1.1 ID3Section 2.2.1.1 describes the ID3 empirical learning method (see also [Quinlan, 1986]). MBACmaintains knowledge for the ID3 transformation in the form of an n-ary decision tree. Although65



most implementations of ID3 perform pre-pruning or post-pruning, Section 2.2.1.1 illustratesthat ID3 with pruning still exhibits the utility problem and may decrease the peak of the per-formance response. The MBAC version ID3 transformation performs no implicit pre-pruningor post-pruning in order to increase the possibility of observing the maximum peak of the per-formance response. The granularity of the ID3 transformation is one n-ary split that generatesn children from a node in the tree according to the n values of the split feature for the node.MBAC uses a breadth-�rst traversal of the decision tree for determining where to make thenext split. The performance response curves in Section 2.2.1.1 indicate that the breadth-�rstorder and the n-ary split granularity are su�cient to perceive the performance response trend.The reverse transformation removes the most recent split according to the breadth-�rst order.4.1.2 PLS1Section 2.2.1.2 describes the PLS1 empirical learner (see also [Rendell, 1983]). MBAC main-tains knowledge for the PLS1 transformation in the form of a binary decision tree. The PLS1transformation sets t� = 1:0 in the dissimilarity measure (see Section 2.2.1.2). A lower valuefor t� allows PLS1 to make more splits. Since recommended values range from 1.0 to 2.0, thisvalue for t� is the lowest in the recommended range, and therefore allows the most splitting andthe least chance of not reaching the peak of the performance response. The granularity of thetransformation is one binary split generated by selecting a feature/value pair on which to splitthe region represented by the node of the decision tree. MBAC uses a breadth-�rst traversalof the decision tree for determining where to make the next split. The performance responsecurves in Section 2.2.1.2 indicate that the breadth-�rst order and the binary-split granularityare su�cient to perceive the performance response trend. The reverse transformation removesthe most recent split according to the breadth-�rst order.4.1.3 BackPropSection 2.2.3 describes the error back-propagation (BackProp) neural network empirical learner(see also [Rumelhart et al., 1986]). MBAC maintains knowledge for the BackProp transforma-tion in the form of a network of nodes and weighted links. Although other network topologiesexist, MBAC considers networks containing only three fully-interconnected layers: input layer,hidden layer and output layer. The task determines the number of nodes at the input and66



output layers by assigning one input node to each feature/value pair and one output node toeach class. The experiments in later sections refer to the BackProp method with n hidden unitsas BPn.The granularity of the transformation is �ve cycles, where a cycle consists of one pass throughthe training instances with weight changes following each incorrectly classi�ed instance. MBACexecutes cycles in sequential order beginning with randomly-assigned weights. The performanceresponse curves in Section 2.2.3 indicate that the sequential order and the �ve-cycle granularityare su�cient to perceive the performance response trend. The reverse transformation recordsthe state of the network after every �ve cycles. When the model suggests a reverse transforma-tion that is not a multiple of �ve, MBAC moves to the nearest recorded network.4.1.4 PlannerSection 2.3.4 describes the Planner analytical learner. MBAC maintains knowledge for thePlanner transformation as an ordered set of task-speci�c operators. Initially, this set containsthe original operators for the task. MBAC inserts a learned operator (macro) into the set justbefore the original operators, but after previously-learned macros. This ordering has provedbene�cial in other analytical learning work [Shavlik, 1988]. The granularity of the transforma-tion is the addition of one macro. MBAC acquires this macro by selecting the next planningproblem in an ordered list of randomly-selected problems from the task domain and generatinga macro from the solution to this problem.1The performance response curves in Section 2.3.4 indicate that the order and granularityare su�cient to perceive the performance response trend. The reverse transformation removesthe most recently generated macro and repositions the pointer into the list of training problemsto the example that generated this macro.Table 4.1 summarizes the implementation of the knowledge transformations. Although thePlanner transformation is available to MBAC, experimental results for this transformation arenot included due to the lack of other analytical learners for comparison. The remainder of thischapter uses the empirical learning transformations to evaluate the MBAC approach.1If a previously-learned macro completely solves the problem, MBAC selects the next problem in the orderedlist of planning problems. This process continues until the generation of a new macro.67



Table 4.1: Implementation of knowledge transformations.Transformation Knowledge Granularity Order ReversibilityID3 n-ary tree n-ary split breadth-�rst n-ary unsplitPLS1 binary tree binary split breadth-�rst binary unsplitBackProp network �ve cycles sequential �ve uncyclesPlanner operators learn macro exemplar unlearn macro4.2 Experiment 1: Convergence to PeakThe �rst experiment evaluates MBAC's ability to converge to the peak of the performanceresponse using three di�erent model types: rote, nearest-neighbor, and parabolic. The resultsof the comparison con�rm the recommendation of Section 3.6 for the parabolic model. Thenext section describes the implementation of these model types. Section 4.2.2 discusses themethod and results of the experiment.4.2.1 Model ImplementationsSection 3.6 introduces several candidate model types for the performance response curve.This section describes the implementation of the three model types (rote, nearest-neighbor,parabolic) used in Experiment 1. Given a model type, MBAC maintains a separate instanceof the model type for each combination of task, knowledge transformation, and performancedimension. Given a threshold on the performance dimension of a task, the model estimatesthe number of transformations necessary to achieve (or come closest to) the threshold. Themodel predictions derive from the performance response curves sampled during the executionof MBAC.4.2.1.1 Rote and Nearest-Neighbor ModelsGiven a performance threshold, the rote model estimates the number of transformations forachieving the threshold as the number of transformations corresponding to the sampled datapoint whose performance value is closest to the threshold. In case of ties, the rote model'sestimate is the data point with the greater number of transformations.68



The nearest-neighbor model is a generalization of the rote model. Instead of the closest datapoint to the threshold, the nearest-neighbor model estimates the number of transformations forachieving the threshold as the average number of transformations corresponding to the k closestdata points to the threshold.. Experiment 1 arbitrarily sets k = 5.4.2.1.2 Parabolic ModelMBAC computes the parabolic model by �tting a parabola to the data points sampled from theperformance response curve. The performance response sample points in Step 1 of Figure 4.1illustrate a possible initial state of the parabolic model. Due to previous experience, MBAC hasacquired several data points measuring performance at di�erent numbers of knowledge trans-formations. Since the points at higher numbers of transformations deviate from the parabolicmodel, MBAC must ignore these points when computing the model parameters. Several sta-tistical methods exist for dealing with such outlier points [Press et al., 1986]. MBAC uses asimple method (described below) for ignoring outlier points. Assuming performance thresholdsnear the peak of the performance response, the MBAC adaptive algorithm (see Section 4.5)rarely investigates points far beyond the observed peak.Computation of the model parameters proceeds in three steps as shown in Figure 4.1. The�rst step �nds the transformation number n corresponding to the data points having the highestaverage performance (the arrow in Step 1 of Figure 4.1). Step 2 removes the data points whosenumber of transformations is greater than n + 1. There are two reasons for choosing n + 1 asthe cuto�. First, if there are no data points beyond n, MBAC may predict the peak to be at ahigher number of transformations than n. Second, if there are points beyond n, the n+1 pointidenti�es the turning point of the parabola; whereas the n + i (i > 1) points do not lie on theportion of the performance response estimated by the parabolic model. Step 3 �ts a paraboliccurve to the resulting set of data points. Given the instantiated parabolic model, MBAC cananalytically determine the number of transformations necessary to reach a point (performancethreshold) on the curve, or the peak of the curve when the threshold is unachievable.MBAC employs the chi-squared curve-�tting method [Press et al., 1986] for computing theparameters of the parabolic model. Given a set of N data points (xi; yi; �i) (�i is the standarddeviation in the ith data point) and a parameterized model ŷ(xi), the chi-squared �tting methodcomputes values for the model parameters minimizing the chi-square measure:69
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Step 3Figure 4.1: MBAC's three step process for parabolic curve �tting.
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�2 = NXi=1 �yi � ŷ(xi)�i �2MBAC obtains the �i's by computing the standard deviation in yi (performance) for pointshaving the same value for xi (number of knowledge transformations). For the parabolic model,ŷ(xi) = ax2i + bxi + c, where a, b and c are the model parameters. The values for a, b andc minimizing �2 occur at the point where the partial derivatives of �2 with respect to theparameters equal zero: @�2@a = @�2@b = @�2@c = 0Computing the derivatives leads to the following system of equations:266664 Sx2 Sx SSx3 Sx2 SxSx4 Sx3 Sx2 377775266664 abc 377775 = 266664 SySxySx2y 377775where Sxjyk = NXi=1 xjiyki�2i :Solving the system of equations using standard matrix techniques (e.g., Cramer's rule) yieldsthe parameters for the parabola which most closely �t the data according to the �2 measure.Figure 4.2 details the Estimate-Parabola procedure. First, the procedure collects all theunique x values in the given set of points. Estimate-Parabola then computes the mean andstandard deviation of the set of y values at each x value. The procedure determines the x valuex-max corresponding to the maximum average y value and builds a new set of points, whereeach point now contains the standard deviation �i. From x-max, the procedure determines thenext greater value for x (which may not be x-max + 1) and �lters out all points whose x valueis beyond this value. Finally, the procedure estimates the parabola using the chi-squared curve�tting technique described above on the �ltered points and returns the parabola. The parabolaconsists of the values for the three parameters a, b and c. However, if the chi-squared methodcannot compute a parabola (e.g., less than three unique x values in the set of �ltered points),then Estimate-Parabola returns nil. 71



procedure Estimate-Parabola (points)beginx-max = 0y-max = 0new-points = fgx-values = unique-x-values(points)foreach x in x-values doy-values = collect-points-with-x-value(x, points)y-avg = mean(y-values)y-sigma = standard-deviation(y-values)if y-sigma = 0 then y-sigma = 1if y-avg > y-max then x-max = x, y-max = y-avgforeach y in y-values donew-points = new-points + f(x, y, y-sigma)gx-max-plus-1 = next-greater-x-value(x-max, x-values)new-points = test(new-points, x � x-max-plus-1)parabola = chi-squared-�t(new-points)return(parabola)end Figure 4.2: Procedure for estimating a parabola from a set of points.
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4.2.2 Method and ResultsAvoidance of the general utility problem requires that the amount of learned knowledge cor-respond to the peak of the performance response. Experiment 1 evaluates MBAC's ability toconverge to this peak. The experiment follows the same method for each knowledge transforma-tion. Figure 4.3 graphically illustrates the experimental method. First, the method generatesten performance response curves. Each response curve is the result of learning on a randomly-selected set of training examples and testing on a randomly-selected set of test examples. Giventhe data points from the ten curves, MBAC computes the rote, nearest-neighbor and parabolicmodels and determines the number of transformations needed to reach the peak of the instan-tiated models. The dotted curve in Figure 4.3 shows this result for the parabolic model.Next, the experimental method generates ten testing response curves using the same tech-nique described above on another ten randomly-selected training and testing sets. The method�nds the actual peak PA of the average of the ten response curves. For each model type,the method measures the performance PM along the testing response curve corresponding tothe number of transformations suggested by the model. For the parabolic model example inFigure 4.3, PM is the performance along the testing response corresponding to the peak ofthe instantiated parabola. Table 4.2 lists the average percentage of PM=PA for the empiricallearning transformations2. Values are tabulated for the rote, nearest neighbor, and parabolicmodels over several task domains. The bottom row of Table 4.2 shows the average percentageover all transformations for each task domain.The average percentage of the three model types over all task domains and all transfor-mations in Table 4.2 is 94.2 for rote, 95.3 for nearest-neighbor, and 97.2 for parabolic. Thus,the parabolic model performs best of the three models at converging to the peak of the actualperformance response. The nearest-neighbor model performs best on the Flag and Voting tasks,because the underlying concepts are less complex than the other tasks in terms of the numberof transformations in the complete response curves. The fewer number of transformations al-lows the nearest-neighbor parameter setting (k = 5) to capture the average peak; whereas, thefewer number of transformations increases the di�culty of �nding the correct parabolic model.Other values of k may not perform as well, and a method for choosing a proper k value is2BPn in the table stands for BackProp with n hidden units73



Table 4.2: Percentage measured peak performance of actual peak performance for empiricallearners. Prediction from model type (rote, nearest-neighbor or parabolic) determines numberof transformations at which to measure the peak.Breast Cancer Flag Flare Votingrote near para rote near para rote near para rote near paraID3 92.6 94.1 100 100 100 99.6 99.8 99.8 99.5 98.2 99.1 98.1PLS1 100 99.1 98.4 99.8 99.8 99.8 99.9 99.0 99.6 100 99.6 99.7BP2 91.3 90.9 94.7 89.8 96.0 87.0 79.1 77.2 99.6 99.7 99.5 99.1BP4 94.8 96.5 95.9 96.1 95.5 93.9 89.7 89.7 95.8 99.5 99.8 99.5BP8 97.5 97.9 99.4 94.1 94.3 92.4 93.1 92.4 93.3 99.9 99.9 99.9BP16 80.3 82.6 96.2 96.4 96.4 99.0 70.4 88.4 94.1 99.5 99.5 99.5Avg 92.7 93.5 97.4 96.0 97.0 95.3 88.7 91.1 97.0 99.5 99.6 99.3unclear. Furthermore, the anomaly described below provides another explanation for why thenearest-neighbor model performs best on the Flag task. As noted in Section 3.6, the downfallof the rote and nearest-neighbor models is their tendency to over�t the performance responsecurve without the guidance of the known performance response trend.One anomaly occurs in Table 4.2 for BP2 on the Flag domain. The values for this entryindicate that the nearest-neighbor model performs unusually better than the rote and parabolicmodels. Figure 4.4 elucidates the reason for this anomaly. The �gure shows the average of theten responses used to compute the models (jagged solid line), the computed parabolic model(smooth solid line), and the average of the ten testing responses (dotted line). Also shown arethe number of transformations recommended by the rote, nearest-neighbor and parabolic modeltypes (vertical solid lines). Due to the low number of hidden units and the initially randomset of weights in the network, the back-propagation algorithm may exhibit erratic behavioras evidenced by the discrepancy between the average of the training and testing responses inFigure 4.4. In this speci�c instance, none of the models predict the true peak, and the predictionof the nearest-neighbor model happens to fall at a point much higher than the predictions ofthe other model types. This situation indicates the need for more training to average out thee�ects of such anomalies.The existence of this anomalous behavior indicates the importance of data sampling issuesfor this and future experiments. Normally, a learning method generates knowledge based ona set of training examples and then evaluates the knowledge using a separate set of testing74
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examples drawn from the same distribution as the training examples. The evaluation is testingthe hypothesis that the learning method generalizes appropriately. However, the MBAC exper-iments are testing the hypothesis that a model type can capture the trend in the performanceresponse of the learning method. Training and testing data sets draw from the set of possibleperformance responses. One performance response from this set is the result of measuring theperformance of a learning method, while learning on a set of training examples, on a set oftesting examples. Therefore, the data set from which these experiments are sampling has anelement for each combination of training and testing sets drawn from the original set of ex-amples available with the task domain. The MBAC experiments randomly select training andtesting response curves from this set of performance responses. The data sampling technique ofusing ten training and ten testing responses is a small sample of the set of possible responses,but each response is the result of running an entire learning method. This process is computa-tionally expensive, especially for the back-propagation learning method. One future directionfor the improvement of the experimental evaluation is the use of a cross-validation techniqueto improve the validity of the experimental results for the small number of samples.Another perspective on the data from Table 4.2 is the di�erence between the actual peakperformance PA and the performance achieved using the model's prediction PM . Comparisonof this di�erence with the standard deviation of the parabolic model indicates whether the errorin PA�PM is within the error (one standard deviation) of the model. The standard deviation ofthe parabolic model is the average absolute di�erence between each point used to �t the model(Step 3 of Figure 4.1) and the estimated parabola. At this point, we adopt the parabola as themodel for the MBAC approach. Table 4.3 lists the average di�erence PA�PM for the empiricallearning transformations and indicates the standard deviation of the model in parentheses.Table 4.3 indicates that the di�erence between actual peak performance and MBAC peakperformance is within one standard deviation of the model. Thus, the parabolic model's pre-dicted peak in the performance response is correct within the error of the model. These resultsfurther indicate the applicability of the standard deviation as a model certainty estimate. Thenext experiment evaluates the standard deviation and other measures as estimates of modelcertainty. 76



Table 4.3: Actual peak performance minus MBAC peak performance for empirical learners us-ing the parabolic model. The standard deviation of the parabolic model appears in parentheses.The values are in units of classi�cation accuracy.Breast Cancer Flag Flare VotingID3 0.000(0.042) 0.003(0.063) 0.004(0.017) 0.019(0.076)PLS1 0.012(0.037) 0.002(0.041) 0.003(0.017) 0.003(0.058)BP2 0.015(0.117) 0.071(0.107) 0.002(0.257) 0.008(0.032)BP4 0.020(0.138) 0.031(0.085) 0.028(0.189) 0.004(0.028)BP8 0.003(0.077) 0.043(0.096) 0.027(0.163) 0.001(0.035)BP16 0.018(0.112) 0.006(0.093) 0.028(0.148) 0.004(0.020)4.3 Experiment 2: Model Certainty EstimationThe certainty of a model indicates the likelihood that the transformations suggested by themodel will actually achieve their predicted performance. MBAC estimates the certainty of theparabolic model in order to select a promising transformation from among those suggested bydi�erent models. The next section describes three certainty estimators available to MBAC. Ex-periment 2 compares the di�erent estimators for their ability to identify the best transformation.Section 4.3.2 discusses the method and results of Experiment 2.4.3.1 Certainty EstimatorsExperiment 2 evaluates three certainty estimators: standard deviation, normalized standarddeviation, and model probability. This section describes the implementation of these certaintyestimators.The �rst certainty estimation method utilizes the standard deviation of the model's datapoints from the computed parabolic model. The standard deviation of the parabolic model isthe average absolute di�erence between each point used to �t the parabola and the instanti-ated parabola. Figure 4.5 shows the parabolas at one standard deviation from the parabolicmodel of Figure 4.1. The standard deviation certainty measure is the same standard deviationmeasurement used in Experiment 1 (see Table 4.3). The lower the standard deviation (SD) inthe model, the more certainty MBAC places in the model.One problem with the standard deviation certainty estimator is the dependency on thescale of the performance response. The standard deviation of a response varying over a small77
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Figure 4.5: Bounding parabolas at one standard deviation.range of performance values may appear tighter than the deviation for a response over a largerrange of performance values, even though the latter model may be a better �t. The secondcertainty estimator attempts to overcome this problem by normalizing the standard deviation.Normalization expands the performance response so that the minimum value is at zero, and themaximum value is at one. Multiplying the standard deviation by the scale factor necessary toaccomplish the normalization yields the normalized deviation. If the minimum and maximumvalues of the performance response are p0 and p1 respectively, then the normalized standarddeviation (SDN) is SDN = SDp1 � p0where SD is the standard deviation as described above. The lower the normalized standarddeviation, the more certainty MBAC places in the model.The third certainty estimator uses the value of the �2 measure from Section 4.2.1.2 tocompute the probability Q that discrepancies from the model are due to chance, i.e., the modelis a good �t to the data. Press et al. [1986] describe the method for computing Q from thevalue of �2 and the number of degrees of freedom N�M , where N is the number of data pointsand M is the number of model parameters (M = 3 for the parabolic model). The higher theprobability Q, the more certainty MBAC places in the model.4.3.2 Method and ResultsBefore choosing an appropriate transformation, MBAC must be reasonably certain that theparabolic model's predicted performance achievement will actually occur on unseen examples.78



Table 4.4: Parabolic model certainty estimators, standard deviation SD, normalized standarddeviation SDN, and model probability Q, for empirical learning methods over several taskdomains. The BEST column orders the transformations according to the performance achievedusing the recommended number of transformations (1 = highest performance).Breast Cancer FlagBEST SD SDN Q BEST SD SDN QID3 2 0.042 0.198 0.359 2 0.063 0.254 0.314PLS1 1 0.037 0.251 0.305 1 0.041 0.168 0.266BP2 6 0.117 0.213 0.036 6 0.107 0.144 0.165BP4 4 0.138 0.233 0.193 5 0.085 0.131 0.014BP8 3 0.077 0.132 9.04e-7 4 0.096 0.136 0.060BP16 5 0.112 0.183 0.417 3 0.093 0.151 0.055Flare VotingBEST SD SDN Q BEST SD SDN QID3 1 0.017 0.192 0.316 2 0.076 0.180 5.50e-132PLS1 2 0.017 0.244 0.345 1 0.058 0.135 7.02e-67BP2 4 0.257 0.394 0.470 6 0.032 0.090 0.027BP4 5 0.189 0.290 0.331 4 0.028 0.113 0.021BP8 6 0.163 0.247 0.448 3 0.035 0.138 0.156BP16 3 0.148 0.235 0.362 5 0.020 0.110 0.039Experiment 2 compares three di�erent certainty estimators: standard deviation (SD), nor-malized standard deviation (SDN), and model probability (Q). The experiment proceeds bygenerating ten response curves for several task/transformation combinations. These curvesserve as data for �tting the parabolic model, as in Experiment 1, and computing the three cer-tainty estimators. Table 4.4 shows the three certainty estimates for the models of the empiricallearning methods over several task domains.Next, the experiment orders the transformations according to the performance achievedby executing the number of transformations recommended by the models. MBAC performsthe transformations on a separate response curve that is an average over ten response curvesgenerated from randomly-selected training and testing example sets for each task domain andtransformation. Table 4.4 contains the ordering information in the BEST column.One way to evaluate a certainty estimator is to observe the correlation between the esti-mator and the BEST ordering on the transformations in Table 4.4. The model probabilitycertainty estimator Q should decrease as the order increases (i.e., better models have higherQ's). However, the Q values do not correlate well with the BEST ordering. For example, in79



all but the Voting task domain, Q increases from the �rst to the second transformation in theordering. Also, in all but the Flag domain, the highest Q value accompanies a transformationordered three or higher. One reason for the poor correlation of Q values to the quality of themodel is that the computation of Q assumes the data measurement errors �i have a normaldistribution. The distribution of the measurement errors is unknown, and discrepancies fromthe normal distribution degrade the correlation of Q with the best transformation order.For the normalized standard deviation certainty estimator (SDN), the values should increaseas the transformation order increases (i.e., better models have lower deviations). However, theSDN values also do not correlate well with the BEST ordering. For example, in all but theFlare task domain, the lowest SDN value accompanies a transformation ordered three or higher.One reason for the poor correlation of the SDN values is the uctuation at the minimum p0of the performance response. The minimum value of the performance response is usually thepoint at zero transformations and depends more on the variance within the training data thanthe standard deviation of the performance response. These uctuations bias the normalizationprocess away from the desired normalized standard deviation.Of the three certainty estimators, the standard deviation (SD) has the best correlationwith the transformation ordering. The SD values do not decrease from the �rst to the secondtransformation in the ordering, and in all but the Voting task domain, the lowest SD for eachtask domain accompanies the �rst transformation in the ordering. Furthermore, Table 4.3 ofExperiment 1 shows that the di�erence between the actual and predicted peak of the perfor-mance response curve is within the standard deviation of the model, indicating that the SDvalues are not too low. Due to the superiority of the standard deviation certainty estimator,MBAC adopts SD as the model certainty estimator. Model certainty aids MBAC when decidingbetween transformations with similar predicted performance achievement.4.4 Experiment 3: Transformation SelectionMBAC selects transformations according to the corresponding model's ability to achieve theperformance threshold. Experiment 3 compares the parabolic model's predicted performance tothe actual performance obtained by performing the recommended number of transformations.The next section describes the transformation selection procedure, and Section 4.4.2 presents80



structure Modelbegintask ;task domaindimension ;performance dimensiontransformation ;method for increasing/decreasing amount of learned knowledgeknowledge ;pointer to transformed knowledgeindex ;current amount of learned knowledgedata ;sampled points from performance responsecertainty ;model certainty estimateerror ;current value of (threshold { model's predicted performance)move ;recommended number of transformations from index to reach thresholdend Figure 4.6: Structure de�nition for the parabolic model.the experimental method and results. The results indicate that the selected transformationachieves predicted performance and out-performs the unselected transformations.4.4.1 Transformation SelectionIn order to describe the transformation selection process, this section �rst describes thestructure used for the parabolic model. Figure 4.6 shows the model structure de�nition. MBACde�nes a model for each combination of task, performance dimension, and transformation. The�rst three �elds of the model structure record this information. MBAC maintains a separateknowledge structure (e.g., decision tree or neural network) for each combination of task andtransformation. The knowledge �eld points to this knowledge structure. The index is thenumber of transformations (from zero) made on the knowledge. The model data contains theset of performance response samples observed over time. The certainty �eld contains the valueof the model's certainty estimate. The error �eld is a placeholder for the distance between themodel's current predicted performance and a given performance threshold. The move �eld is aplaceholder for the recommended number of transformations from index for achieving a giventhreshold.The transformation selection procedure implemented for Experiment 3 handles only oneperformance objective. Figure 4.7 describes the Select-Transformation procedure, which takesa performance threshold and a set of models pertaining to the performance dimension of thethreshold. The procedure returns the best model corresponding to the best transformation81



procedure Select-Transformation (models, threshold)beginforeach model in models dodecision = Parabolic-Decision(model, threshold)model-move(model) = decision-move(decision)model-error(model) = jthreshold { decision-performance(decision)jmodels = sort(models, model-error, <, model-certainty, >)best-model = pop(models)return(best-model)endprocedure Parabolic-Decision (model, threshold)beginindex = model-index(model)p = Estimate-Parabola(model-data(model)) ;see Figure 4.2if exists(p) and concave-down(p)then model-certainty(model) = estimate-certainty(model)x1, x2 = solve(p, threshold)if complex(x1, x2)then x = (x1 + x2) / 2else x = lowest-positive(x1, x2)return(x { index, p(x))else return(nil)end Figure 4.7: Transformation selection procedure.
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for achieving the threshold. The move �eld of the returned model contains the recommendedmove according to the parabolic model. First, Select-Transformation computes the decisionmade by a parabolic estimate of the model data for each model (see discussion of the Parabolic-Decision procedure below). A decision consists of a move (number of transformations) along theamount of learned knowledge axis and the predicted performance after performing the move.The model error is the absolute value of the di�erence between the threshold and the predictedperformance. Next, Select-Transformation sorts the selected models in ascending order of modelerror. Models with the same error are further sorted in descending order of model certainty(see Section 4.3.1 for a discussion of model certainty estimation methods). The best model isthe �rst model in the set of sorted models.The Parabolic-Decision procedure (also shown in Figure 4.7) returns a decision for movingthe given model to the given threshold. First, Parabolic-Decision estimates a parabola from themodel data (see Estimate-Parabola procedure in Figure 4.2). If the parabola does not exist or isnot concave down, the Parabolic-Decision returns nil. Otherwise, the procedure estimates themodel certainty according to the method outlined in Section 4.3.1. Then, Parabolic-Decisionsolves for the x values x1 and x2 (number of transformations) whose y values along the parabolaequal the threshold. If x1 and x2 are complex numbers, then the threshold is above the peakof the parabola, and Parabolic-Decision sets x to the average of x1 and x2, which is the x valueat the parabola's vertex (peak). If x1 and x2 are real numbers, then Parabolic-Decision setsx to the lower positive value between x1 and x2. The procedure computes the recommendedmove as the di�erence between x and the model's current index. Parabolic-Decision returnsthe move and the performance at x predicted by the parabola.4.4.2 Method and ResultsExperiment 3 evaluates how well the transformation selection procedure in Figure 4.7 ordersmodels according to their ability to achieve a desired performance objective. The experimentalmethod proceeds similarly to previous experiments. First, the learning methods use randomly-selected training and testing sets to produce ten response curves for each combination of taskdomain and transformation. These curves provide the data points for �tting the parabolicmodels. Next, the same process generates ten more response curves to be used for testingthe recommendations of the models. The performance threshold is set at a point higher than83
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Figure 4.8: Experimental method for Experiment 3. PP is the predicted peak according tothe parabolic model. PA is the actual performance along the response curve corresponding tothe peak of the parabolic model.that achievable by any learning method; therefore, the models predict their achievable peakperformance. Figure 4.8 illustrates the experimental method. The model's predicted perfor-mance value is PP , and the actual performance is PA. Table 4.5 shows the model's predictedperformance PP , standard deviation, and the actual performance PA achieved by performingthe recommended number of transformations on the average of the ten testing response curves.The results from Experiment 3 indicate that the model predictions are accurate. Since thetransformation selection procedure in Figure 4.7 sorts the models based on their predictions,the procedure will perform well at choosing the best transformation. The results show thatthe actual performance achieved by the transformations is within one standard deviation ofthe predicted performance for all but BP2 and BP4 on the Flag task domain. Therefore, themodel predictions are accurate to within one standard deviation. The results also show thatthe highest predicted performance correlates with the highest actual performance in all butthe Flare domain (where the di�erence between the �rst and second best actual performanceis small). Therefore, the transformation selection procedure, which picks the highest predictedperformance, consistently chooses the best (or near best) transformation.Along with previous experiments, Experiment 3 uses ten response curves for training and tenfor testing. Another method for evaluating MBAC experimentally is cross-validation [Breiman84



Table 4.5: Parabolic model's predicted performance and actual performance on empiricallearning methods over four domains. The standard deviation of the model is shown in paren-theses. Values are in units of classi�cation accuracy.Breast Cancer FlagPredicted Actual Predicted ActualID3 0.705(0.042) 0.697 0.762(0.063) 0.771PLS1 0.712(0.037) 0.706 0.776(0.041) 0.795BP2 0.353(0.117) 0.262 0.590(0.107) 0.472BP4 0.403(0.138) 0.466 0.593(0.085) 0.477BP8 0.501(0.077) 0.503 0.612(0.096) 0.526BP16 0.450(0.112) 0.447 0.549(0.093) 0.591Flare VotingPredicted Actual Predicted ActualID3 0.814(0.017) 0.815 0.959(0.076) 0.947PLS1 0.825(0.017) 0.813 1.003(0.058) 0.960BP2 0.393(0.257) 0.441 0.912(0.032) 0.903BP4 0.407(0.189) 0.415 0.917(0.028) 0.911BP8 0.404(0.163) 0.379 0.928(0.035) 0.927BP16 0.412(0.148) 0.447 0.927(0.020) 0.908et al., 1984]. The cross-validation method would start with, say, ten response curves. Then,leaving a di�erent one of the ten out each time, the method uses the nine response curves fortraining, and the one for testing. The average of the results from ten such trials would be theentry in the experimental table. In this way, cross-validation improves the ability to evaluatea system with sparse data. The data for evaluating the MBAC approach is the set of possibleresponse curves. Although the experimental method can generate an arbitrary number ofresponse curves, each curve corresponds to executing an entire learning method, which may becomputationally expensive. Cross-validation may o�er an alternative to the computationallyexpensive generation of more response curves by making better use of a smaller number ofcurves.At a lower level of detail, cross-validation may improve the performance of the individuallearning methods. Instead of using two-thirds of the task domain data for training and one-third for testing (as described in Appendix A), one may split the data into n sets. Leaving adi�erent set out each time, the method trains using n � 1 of the sets, and tests the resultinghypothesis on the remaining set. The �nal hypothesis would be the one performing best over85



the n trials, or an \average" of the best hypotheses. The use of cross-validation at this levelconstitutes another method that MBAC may select, but not a change to the MBAC controlstructure. MBAC may learn to select methods using cross-validation for task domains havingfew examples.4.5 Experiment 4: MBAC Initial DynamicsThe previous three experiments show MBAC's behavior after considerable sampling of theperformance response curve. Experiment 4 illustrates the initial dynamics of MBAC startingwith no samples from the performance response. Results show that MBAC quickly acquires anaccurate model of the performance response. The next section presents the MBAC adaptivecontrol algorithm. Section 4.5.2 describes the method and results of the experiment.4.5.1 Adaptive Control AlgorithmFigure 4.9 shows MBAC's adaptive control algorithm. This implementation handles only oneperformance objective (see Section 3.5 for a discussion of methods for handling multiple objec-tives). The MBAC procedure takes a task, a performance objective (consisting of a performancedimension and a threshold), and a set of available transformations. For each transformation,MBAC builds a model (see discussion of the Build-Model procedure below). Then, MBACenters the main control loop which selects a model and performs the move recommended by themodel. The actual number of transformations made by the Perform-Transformation proceduremay be less than the recommended number. The loop continues until performance satis�es theobjective or the actual number of moves made is zero.The Build-Model procedure (also shown in Figure 4.9) returns a model structure containingthe nine �elds de�ned in Figure 4.6: task, dimension, transformation, knowledge, index, data,error, certainty and move. The task, dimension and transformation �elds come directly fromthe inputs to the MBAC procedure. For example, a model might relate the accuracy dimensionto the number of ID3 splits transformation for the Flag task. In this case, the knowledgeis the decision tree. The initial model knowledge corresponds to the initial hypothesis of thetransformation. For example, the initial hypothesis of ID3 is the majority class of the trainingexamples of the task. The index �eld is the number of transformations (amount of learned86



procedure MBAC (task, objective, transformations)begindimension = objective-dimension(objective)threshold = objective-threshold(objective)models = fgforeach transformation in transformations domodels = models + Build-Model(task, dimension, transformation)repeatmodel = Select-Transformation(models, threshold) ;see Figure 4.10performance = Perform-Transformation(model) ;see Figure 4.11until (performance = threshold) or (model-move(model) = 0)return(model)endprocedure Build-Model (task, dimension, transformation)beginm = make-model() ;see Figure 4.6model-task(m) = taskmodel-dimension(m) = dimensionmodel-transformation(m) = transformationmodel-knowledge(m) = initial-hypothesis(task, transformation)model-index(m) = 0performance = evaluate(task, dimension, model-knowledge(m))model-data(m) = f(0, performance)gmodel-error(m) = nilmodel-certainty(m) = nilmodel-move(m) = nilreturn(m)endFigure 4.9: Model-based adaptive control procedure for one performance objective.
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procedure Select-Transformation (models, threshold)beginforeach model in models dodecision = Parabolic-Decision(model, threshold) ;see Figure 4.7model-move(model) = decision-move(decision)model-error(model) = jthreshold { decision-performance(decision)jbest-models = test(models, jmodel-movej > 0)if best-models = nil then best-models = test(models, model-move=nil)if best-models = nil then best-models = modelsbest-models = sort(best-models, model-error, <, model-certainty, >)best-model = pop(best-models)if model-move(best-model) = nil then model-move(best-model) = 1return(best-model)end Figure 4.10: Transformation selection procedure for adaptive MBAC.knowledge) from zero currently represented by the knowledge for the transformation. Forexample, the index for the ID3 transformation reects the number of splits in the currentdecision-tree representation of ID3's hypothesis for the task. The hypothesis at index=0 is theinitial hypothesis. The data �eld contains the set of sampled points from the actual performanceresponse. Initially, the data contains only one point: the performance of the knowledge atindex=0. The performance value is measured by evaluating the task on the knowledge atindex=0. Finally, Build-Model initializes the error, certainty and move to nil and returns themodel.The Select-Transformation procedure (see Figure 4.10) returns the model corresponding tothe best transformation of those given to the MBAC procedure. This procedure is the sameas the one described in Figure 4.7, but contains more detail not utilized in Experiment 3.The Select-Transformation procedure embodies MBAC's de�nition of the best transformation.First, Select-Transformation computes the decision made by a parabolic estimate of the modeldata for each model (see discussion of Parabola-Decision in Section 4.4.1). A decision consistsof a move (number of transformations) along the amount of learned knowledge axis and thepredicted performance after performing the move. The model error is the absolute value of thedi�erence between the threshold and the predicted performance.88



procedure Perform-Transformation (model)beginactual-move = transform(model-knowledge(model), model-move(model))model-index(model) = model-index(model) + actual-movemodel-move(model) = actual-moveperformance = evaluate(model-task(model), model-dimension(model),model-knowledge(model))model-data(model) = model-data(model) + f(model-index(model), performance)greturn(performance)end Figure 4.11: Procedure for performing a transformation.Next, Select-Transformation �lters the models according to several tests. The �rst testselects models recommending non-nil, non-zero moves. If none exist, the second test selectsmodels recommending nil moves. A nil move indicates that a parabolic model does not yetexist due to a lack of data points, and that more sampling is necessary. If no nil movesexist, then the procedure selects models recommending zero moves (the remaining models).Select-Transformation sorts the selected models in ascending order of model error and thenin descending order of model certainty (see Section 4.3.1 for a discussion of model certaintyestimation methods). The best model is the �rst model in the set of sorted models. If the bestmodel's move is nil, the move is set to one to promote further sampling of the performanceresponse.After selecting the best transformation, MBAC performs the transformation by makingmove transformations on the corresponding model knowledge. The Perform-Transformationprocedure shown in Figure 4.11 takes a model and performs the number of transformationsstored in the move �eld of the model. The procedure begins by transforming the knowledgeaccording to the move. The actual number of transformations made on the knowledge may beless than move. The procedure sets actual-move to the actual number of performed transforma-tions. For example, the ID3 transformation transforms the knowledge by adding or removingsplits according to a positive or negative move. If the current knowledge corresponds to 90out of a possible 100 splits, and the move recommends 20 splits, then the actual move willbe only 10 splits. After updating the model index, the procedure evaluates the new knowl-edge on the task using the performance element while monitoring the performance dimension.89



Perform-Transformation updates the model data with the new performance point and returnsthe performance value.4.5.2 Method and ResultsExperiment 4 demonstrates the adaptive control algorithm of the previous section with threedi�erent transformations (ID3, PLS1 and BP16) on the Flag task. These transformationscorrespond to the three best transformations identi�ed in Table 4.4. The experiment uses theFlag task, because the behavior is representative of the other tasks and simple enough to explainin detail. The experimental method de�nes the task by randomly selecting training and testingsets from the Flag examples as described in Appendix A. Next, the method calls the MBACprocedure with the task, the performance objective of classi�cation accuracy=1.0, and one ofthe three transformations. The method retains the performance of the initial hypothesis andthe performance after each iteration of the adaptive control loop. The experiment repeats thismethod nine times for each transformation.Figure 4.12 shows an example to help explain the subsequent experimental results. Thetop graph plots the classi�cation accuracy of the ID3 decision tree on the Flag task aftereach control iteration made by MBAC. The dashed line marks the peak performance of theperformance response. This plot is hereafter referred to as a control response. A control responseplots performance versus number of control iterations; whereas, the performance response plotsperformance versus number of transformations. The plots in Figure 4.12 correspond to the top-center control response in Figure 4.13. The bottom graph in Figure 4.12 plots the cumulativenumber of transformations (splits) made to the ID3 decision tree after each control iteration.The dashed line in this plot marks the number of transformations corresponding to the peakof the performance response. The vertical dotted line in both plots marks the control iterationat which the MBAC adaptive control procedure terminates.At the beginning of the control response in Figure 4.12, before any control iterations, theaccuracy is 0.72 with zero transformations (splits). Since the model has only one sample point(0, 0.72), the Parabolic-Decision procedure returns nil, and the Select-Transformation procedurereturns a move of one transformation. During the �rst control iteration, MBAC performs thistransformation (one split), and accuracy improves to 0.80. With only two points, Parabolic-90
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Figure 4.12: Explanation of experimental results for Experiment 4. The top graph plotsaccuracy versus control iterations for one instance of ID3 on the Flag task domain. The bottomgraph plots transformations versus control iterations. The dashed lines mark the point of peakperformance. The vertical dotted lines mark the last control iteration.91



Decision again returns nil, and MBAC performs another single forward transformation (split).Accuracy remains at 0.8 after this second control iteration.At this point, the model contains three data points, the minimum number needed to �t aparabola. However, MBAC has not yet observed a degradation in performance, and thereforedoes not know the location of the peak. When the last two points of the performance responseare equal, the Estimate-Parabola procedure does not �t a parabola to the data in order topromote further investigation of the performance response. This situation did not arise inExperiment 1; therefore, the Estimate-Parabola procedure in Figure 4.2 does not describe thisfacet of the procedure. Thus, the Parabolic-Decision procedure again returns nil, and MBACperforms a third transformation (split). After this third control iteration, accuracy drops to0.75.With the degradation in performance, the Parabolic-Decision procedure is now able toidentify the parameters of the parabolic model and suggests a single negative transformation(unsplit). MBAC performs the transformation during the fourth control iteration, and accuracyreturns to 0.80. Since two transformations (splits) corresponds to the peak of the parabola, theSelect-Transformation procedure recommends zero transformations (splits) for the �fth controliteration. Because the move is zero transformations, MBAC's adaptive control loop terminatesafter �ve iterations. Although each iteration in this example suggests either 0, +1, or {1transformations, any number of transformations is possible.Figures 4.13, 4.14 and 4.15 plot the control responses for the ID3, PLS1 and BP16 transfor-mations, respectively, on the Flag task. The results for ID3 and PLS1 follow a similar pattern.Until enough points are available for estimating a parabola, the Select-Transformation proce-dure recommends a move of one positive transformation. This phase corresponds to the initialrise in the control response. Eventually, adding additional knowledge degrades performanceand allows estimation of a parabola for the peak region of the performance response. Thisphase corresponds to the �rst decline in the control response. Then, the parabola recommendsa negative transformation back to the identi�ed peak, which corresponds to the next rise in thecontrol response. After arriving at the peak, the parabola recommends zero transformations,triggering termination of the control loop. The PLS1 plots in Figure 4.14 missing the troughin the control response indicate that the performance response has little or no degradation inperformance. 92
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Figure 4.13: MBAC adaptation of ID3 on Flag. The y-axis of the plots measures the classi�-cation accuracy, and the dashed line represents the maximum achievable accuracy. The x-axisindicates the number of control iterations of the MBAC adaptive control loop. Each iterationrepresents one or more transformations (ID3 splits/unsplits). The vertical dotted line marksthe terminating control iteration. 93
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Figure 4.14: MBAC adaptation of PLS1 on Flag. The y-axis of the plots measures theclassi�cation accuracy, and the dashed line represents the maximum achievable accuracy. Thex-axis indicates the number of control iterations of the MBAC adaptive control loop. Eachiteration represents one or more transformations (PLS1 splits/unsplits). The vertical dottedline marks the terminating control iteration. 94
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Figure 4.15: MBAC adaptation of BP16 on Flag. The y-axis of the plots measures theclassi�cation accuracy, and the dashed line represents the maximum achievable accuracy. Thex-axis indicates the number of control iterations of the MBAC adaptive control loop. Eachiteration represents one or more transformations (multiples of �ve BackProp cycles/uncycles).The vertical dotted line marks the terminating control iteration.95



The plots for BP16 in Figure 4.15 reveal less successful behavior of the adaptive controlprocedure. Three of the plots follow the trend of the ID3 and PLS1 plots (upper-left, center-right and lower-left). Although the remaining control responses also reect this trend, theystablize at a point beneath the peak of the performance response. The reason for this behavioris the existence of a local peak at the beginning of the performance response before the optimalpeak. The parabola estimator �ts the local peak, and the control response stabilizes at thispeak. This behavior is mainly due to the locally erratic performance responses obtained fromthe back-propagation method.If all three transformations were given to the MBAC procedure, the control responses wouldbe the same. MBAC would select a transformation at random and execute the control loopuntil the model recommends zero transformations. Then, the next transformation takes control.When all transformations recommend zero transformations, MBAC selects the transformationwith the least error and most certainty. MBAC uses the knowledge corresponding to thistransformation.The results of Experiment 4 indicate that in most cases MBAC's adaptive control algorithmachieves an accurate model of the performance response during the initial dynamics of theMBAC approach. The model allows MBAC to control the amount of learned knowledge toreside at the peak of the performance response and avoid the generation of low utility knowledge.The main de�ciency in the initial dynamics of the MBAC approach is the sensitivity of theparabola estimation procedure to variations in the data sampled from the performance response.Several solutions exist for this problem. As discussed in Section 3.5.4, one solution is to changethe stopping criterion of the adaptive control loop by removing the test for zero transformations.This change forces MBAC to continue acquisition of samples from the performance responseand improves the chance that MBAC will see beyond the local peak.A second solution involves a less precise method for identifying the initial degradation bymaintaining a window of performance response sample points for computing the gradient of theresponse. Only after the gradient begins to decline does the parabola estimator �t a parabolato the sampled points. The addition of windowing to the MBAC parabola estimation procedurehas only a small e�ect. Figure 4.16 shows the upper-middle control response from Figure 4.15(BP16 on the Flag task) using a window size of three. In this case, the windowing improvesMBAC's performance by allowing the control algorithm to converge on the global peak of the96
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Figure 4.16: The e�ect of windowing on the upper-middle control response of BP16 on theFlag task. Window size is three.performance response at the expense of more iterations. However, the window of size threedoes not change the remaining control responses from Figure 4.15. Attempts to increase thewindow size also did not help. Larger window sizes eventually cause divergence in the controlresponse, because the window becomes too large to discern the peak.A third solution to the sensitivity of the parabola estimator is the use of more robustcurve-�tting techniques. Press et al. [1986] describe statistical techniques for improving therobustness of the curve �tter. However, these techniques increase the cost of computing themodels. The fourth solution to the problem utilizes other models from known tasks to suggesta possible peak location in the new task model. The next section investigates this solution.4.6 Experiment 5: Task TransferThe previous experiment illustrates how MBAC adapts the models from no prior knowledgeof the task domains. However, after acquiring models for several task domains, MBAC cantransfer the recommendations of these known models to the unknown models of new tasks.Experiment 5 illustrates how task transfer improves the initial adaptation of models for newtasks and, in some instances, improves the model's �nal performance. The next section de-97



scribes the implementation of MBAC's task transfer procedure, and Section 4.6.2 presents theexperimental method and the results of applying task transfer to the scenario of Experiment 4.4.6.1 Task TransferGiven a new task, an associated objective, and a set of transformations for achieving the newtask objective, MBAC creates a new model instance for each transformation. The new modelinstances for the new task express the relationship between the performance dimension of theobjective and the transformations. Experiment 4 shows how MBAC can acquire initial data forthis new model, but also illustrates some shortcomings of the approach. One solution to theseproblems is to perform some initial experimentation in the new task domain; that is, primethe new models with samples from the unknown performance responses of the new task. Thedi�culty with this approach is determining the amount of experimentation.Task transfer addresses this di�culty by using the models of known tasks to recommend thenumber of transformations to make in the new task. For example, suppose MBAC has mod-els for the ID3, PLS1 and BP16 transformations in the Breast-Cancer, Flare and Voting taskdomains. Now, MBAC receives the new Flag task along with the objective for accuracy andcreates three new models, one for each transformation. When using task transfer to help builda new model for, say, ID3 in the new task domain, MBAC �rst determines the recommendationfor the number of ID3 transformations needed to achieve the new objective in the three knowntask domains. MBAC uses the average of these recommendations as an initial recommendationfor the new model. Then, MBAC performs the recommended number of transformations oneby one, recording performance after each transformation and storing these samples of the per-formance response in the set of data for the new model. The task transfer procedure repeatsthis process for each new model. The result is a set of new models with enough performanceresponse samples to make better initial control decisions than a model with fewer samples.The task transfer procedure di�ers only slightly from making a random number of initialtransformations to prime the models. However, this di�erence is signi�cant, because withouta reasonable estimate of how many transformations are needed to accurately represent theperformance response curve, there is no guarantee that a random number of transformationswould su�ce. The average recommendation from similar models provides a better estimate98



procedure Task-Transfer (task, objective, models)beginforeach model in models dodecision = Task-Transfer-Decision(task, objective, model)for i = 1 to decision-move(decision) domodel-move(model) = 1Perform-Transformation(model) ;see Figure 4.11endprocedure Task-Transfer-Decision (task, objective, model)begindimension = objective-dimension(objective)threshold = objective-threshold(objective)decisions = fgforeach m in *mbac-models* doif model-task(m) 6= task andmodel-dimension(m) = dimension andmodel-transformation(m) = model-transformation(model)then decisions = decisions + Parabolic-Decision(m, threshold) ;see Figure 4.7return(mean(decisions))end Figure 4.17: Task transfer procedure.than random recommendations. Therefore, the task transfer procedure utilizes the models forknown tasks to bene�t the initial adaptation of models for new tasks.When using task transfer, the MBAC procedure in Figure 4.9 calls the Task-Transfer proce-dure after building the initial models, but before entering the control loop. Figure 4.17 outlinesthe Task-Transfer procedure. For each of the transformations' models, Task-Transfer calls Task-Transfer-Decision (described below) for the average number of transformations recommendedby the same transformation for other tasks. The procedure then performs the recommendednumber of transformations one at a time by calling the Perform-Transformation procedure inFigure 4.11. The model data now has a greater number of points sampling the performanceresponse, and the model index already resides at the number of transformations estimated toachieve the desired objective.The Task-Transfer-Decision procedure (also in Figure 4.17) returns the average decision formodels from other tasks with the same transformation as the given model. For each of themodels in the set of models known to MBAC (*mbac-models*), the procedure determines if99



the model corresponds to a task other than the given task and has the same dimension andtransformation as the given model. If the model satis�es these constraints, Task-Transfer-Decision calls the Parabolic-Decision procedure in Figure 4.7 to obtain the model's controldecision for achieving the objective. The Task-Transfer-Decision procedure retains each decisionand returns the average.4.6.2 Method and ResultsExperiment 5 follows a similar method to Experiment 4. First, the method initializes the set ofknown models (*mbac-models*) to the models used in experiments 1 { 3 for the Breast-Cancer,Flag and Flare task domains and the ID3, PLS1 and BP16 transformations. Then, the methodcalls the MBAC procedure (augmented with the call to Task-Transfer) with the Flag task, theperformance objective of classi�cation accuracy = 1.0, and one of the three transformations.The method retains the performance of the initial hypothesis, the performance after the initialtask-transfer control decision, and the performance after each iteration of the adaptive controlloop. The experimental method repeats the MBAC call nine times with the same nine randomlyselected training and testing sets used in Experiment 4.Figures 4.18, 4.19 and 4.20 plot the control responses for the ID3, PLS1 and BP16 trans-formations, respectively, on the Flag task. See Figure 4.12 for an explanation of the controlresponse. Comparison of these control responses to those of Experiment 4 reveal the desired ef-fect of task transfer. The ID3 control responses in Figure 4.18 show that the model, primed withtask transfer, achieves the best possible performance in one iteration of the MBAC adaptivecontrol loop.Similarly, the PLS1 control responses in Figure 4.19 show that task transfer reduces thenumber of control-loop iterations. However, the upper-left control response in Figure 4.19indicates that the performance response samples provided by task transfer are still insu�cient toaccurately model the peak, because more iterations are necessary to �nd the point of degradingperformance that identi�es the peak. In this case, the recommendation from task transferunderestimates the number of samples necessary to identify the performance response. Thesame argument holds for the other control responses in Figure 4.19 that require more than twocontrol iterations to reach maximum performance.100
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Figure 4.18: MBAC adaptation of ID3 on Flag with task transfer. The y-axis of the plotsmeasures the classi�cation accuracy, and the dashed line represents the maximum achievableaccuracy. The x-axis indicates the number of control iterations of the MBAC adaptive controlloop. Each iteration represents one or more transformations (ID3 splits/unsplits). The verticaldotted line marks the terminating control iteration.101
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Figure 4.19: MBAC adaptation of PLS1 on Flag with task transfer. The y-axis of the plotsmeasures the classi�cation accuracy, and the dashed line represents the maximum achievableaccuracy. The x-axis indicates the number of control iterations of the MBAC adaptive controlloop. Each iteration represents one or more transformations (PLS1 splits/unsplits). The verticaldotted line marks the terminating control iteration.102
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Figure 4.20: MBAC adaptation of BP16 on Flag using task transfer. The y-axis of the plotsmeasures the classi�cation accuracy, and the dashed line represents the maximum achievableaccuracy. The x-axis indicates the number of control iterations of the MBAC adaptive con-trol loop. Each iteration represents one or more transformations (multiples of �ve BackPropcycles/uncycles). The vertical dotted line marks the terminating control iteration.103
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Figure 4.21: Anomalous behavior of one individual performance response for the BP16 trans-formation on the Flag task. The two peaks at 220 and 245 cycles have the same performancevalue as the initial peak at 20 cycles.The BP16 control responses in Figure 4.20 show the most improvement provided by tasktransfer, but also reveal a possible disadvantage. Compared to the BP16 control responseswithout task transfer in Figure 4.15 of Experiment 4, the inclusion of task transfer reduces thenumber of control-loop iterations necessary to achieve the performance levels in Figure 4.15.Furthermore, the �nal performance levels in three of the task-transfer control responses exceedthe corresponding �nal performance levels obtained in Experiment 4. This improvement isdue to the additional performance response samples added by task transfer, which allow theparabola estimator to ignore local peaks and identify the global behavior of the performanceresponse. This result also suggests that MBAC should take more samples when task transferis unavailable.The right-center control response in Figure 4.20 reveals a possible disadvantage of using tasktransfer. In this case, the number of transformations recommended by the task transfer pro-cedure overestimates the number necessary to perceive the global behavior of the performance104



Table 4.6: Comparison of MBAC approach without task transfer (mbac) and with task transfer(transfer) to the best possible performance (peak). The entries measure classi�cation accuracy.Breast Cancer Flagpeak mbac transfer peak mbac transferID3 0.699 0.641 0.641 0.793 0.793 0.793PLS1 0.741 0.700 0.700 0.808 0.808 0.808BP16 0.486 0.340 0.458 0.643 0.565 0.628Flare Votingpeak mbac transfer peak mbac transferID3 0.823 0.812 0.812 0.971 0.967 0.967PLS1 0.821 0.815 0.815 0.967 0.964 0.964BP16 0.520 0.399 0.469 0.918 0.901 0.913response. Normally, the addition of samples from further down the performance response hasno e�ect on the parabola estimation procedure, because the procedure discards the samples be-yond the observed peak. However, the situation is complicated by the anomalous performanceresponse shown in Figure 4.21. The anomaly resides in the occurrence of three peaks havingidentical performance at 20, 220 and 245 cycles. The same control response in Experiment 4(Figure 4.15) converges to the �rst peak, because MBAC without task transfer never observesthe later peaks. However, since the task transfer recommendation for BP16 is 390 cycles, theresulting model includes the two later peaks. Using these samples, the parabola estimator isunable to �nd a concave-down parabola to �t the data. Therefore, the Parabolic-Decision pro-cedure returns nil, and the Select-Transformation procedure continues to recommend a singleforward transformation. The control response follows the performance response in Figure 4.21beyond the 390 initial cycles and terminates after reaching the end of the performance response.Although this behavior is the result of an anomalous performance response, the occurrence ofthis situation indicates that task transfer may have detrimental e�ects and that the parabolaestimation procedure may bene�t from a more intelligent sample �lter placing greater weighton the initial peak in the presence of multiple equivalent peaks.Experiment 5 shows how MBAC with task transfer reduces the number of control iterationsand, in some cases, improves the �nal performance achieved by the transformed knowledge.Table 4.6 compares the performance of the MBAC approach with and without task transfer tothe best possible (peak) performance. Each entry represents the average over ten performance105



Table 4.7: Cost comparison between MBAC without task transfer (mbac) and MBAC withtask transfer (transfer). The entries measure the number of forward transformations.Breast Cancer Flag Flare Votingmbac transfer mbac transfer mbac transfer mbac transferID3 30 33 7 7 68 68 5 5PLS1 12 12 3 3 11 11 5 5BP16 13 80 5 78 74 130 7 57responses. Entries in a task's transfer column result from using the other three tasks forperforming task transfer. For the ID3 and PLS1 transformations, the performance of MBACwithout task transfer and MBAC with task transfer is identical. The identical performanceindicates that MBAC without task transfer is still a useful method for these transformations.MBAC without task transfer has less success for the BP16 transformation, because the BP16performance responses have a greater number of local peaks that can confuse the parabolaestimator. Adding task transfer improves the performance by forcing the control procedure tocollect more samples from the performance response. Even with task transfer, MBAC convergedto a performance level beneath the peak in all but two cases (ID3 and PLS1 on the Flag task).This discrepancy reiterates the need for more robust curve-�tting techniques (see Section 4.5.2).Although task transfer improves the performance of MBAC, the improvement incurs a cost.One measure of MBAC's cost is the number of transformations made during the execution ofthe adaptive control algorithm. Because the cost of a forward transformation for ID3, PLS1and BP is much higher than the cost of a reverse transformation, the cost measure is thenumber of forward transformations. Although task transfer reduces the number of controliterations, this measure may not reect the true cost, because each iteration can involve multipletransformations. Table 4.7 shows the number of forward transformations made by the MBACadaptive control algorithm with and without task transfer. For ID3 and PLS1, task transferincurs no extra cost (except for ID3 on the Breast Cancer task), but provides no performanceimprovement. The performance improvement provided by task transfer for BP16 does incur acost; however, a similar increase in cost would be necessary for any more robust technique dueto the need for further sampling to avoid �tting local peaks.106



4.7 SummaryThe two components of the general utility problem addressed by this thesis are the generationof low-utility knowledge and the application of inappropriate learning methods. The MBACapproach avoids low-utility knowledge by controlling individual learning methods, and avoidsinappropriate learning method application by selecting the methods most likely to achievedesired performance in the task domain. The experimental results of this chapter indicate thatMBAC is a valid approach to the general utility problem.Experiment 1 shows that the parabolic model is superior to the rote or nearest-neighbormodel. The parabolic model �ts the peak of the performance response more closely than the roteor nearest-neighbor over several di�erent knowledge transformations and tasks. Furthermore,the distance between the actual peak performance and the performance attained using theparabolic model is within the standard deviation of the model. Based on this evidence, MBACadopts the parabolic model.MBAC also requires the ability to estimate the certainty of the model. Experiment 2compares three di�erent certainty estimators: standard deviation, normalized standard devi-ation, and model probability. Results show that the standard deviation certainty estimateout-performs the other two in terms of correlation to model accuracy and best transformationordering. Therefore, MBAC adopts the standard deviation as the estimate of model certainty.Equipped with a model for the performance response and a certainty estimate for the model,MBAC must now select an appropriate transformation and amount of learned knowledge ac-cording to the performance objectives and task domain. Experiment 3 shows that the trans-formation selection mechanism described in Section 4.4.1 performs well at choosing the besttransformation.The �rst three experiments show MBAC's behavior after considerable sampling of the per-formance response curve. Experiment 4 illustrates the initial dynamics of MBAC starting withno samples from the performance response. Results show that MBAC quickly acquires a modelof the performance response, but the model may be overly sensitive to local peaks in the per-formance response. Experiment 5 investigates a solution to this problem that improves theinitial dynamics of Experiment 4 by transferring recommendations from known tasks to im-prove the initial decisions made in new task domains. Task transfer reduces the number of107



control iterations and, in some cases, improves the �nal performance of the MBAC adaptivecontrol procedure.The experiments of this chapter all use a performance threshold higher than that achievableby the available transformations. The use of this threshold does not detract from the robustnessof the MBAC approach, because most performance objectives for learning methods concentratenear the peak of the performance response. Therefore, the experiments con�rm the abilityof MBAC to adaptively and accurately model the peak of the response and use this model tocontrol the application of multiple transformations and the generation of low utility knowledge.
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Chapter 5Related WorkMany of the early learning systems attempted to adapt a model of the performance elementin order to control the learning. Buchanan et al. [1978] provide a survey of such systems andmodel the systems as an instance of the adaptive control loop in Figure 1.2. The emphasisof the survey distinguishes the systems based on their expression of the relationship betweenperformance and learned knowledge. The systems use this expression to critique the knowledgelearned by the system. Dietterich and Buchanan [1983] provide an analysis of the controllingelement (the critic) in many of these systems. As with other methods analyzed in this work,these early systems depend on knowledge of the performance environment; whereas, the MBACapproach attempts to reduce this dependence.After much work on these domain knowledge-sparse approaches, machine learning researchthen moved towards more domain knowledge-intensive methods [Dietterich et al., 1982]. How-ever, as Chapter 2 demonstrates, both knowledge-sparse and knowledge-intensive systems needthe ability to control themselves in the presence of the general utility problem. The relatedresearch discussed in this chapter falls into three categories: control of the utility of learnedknowledge, control of multiple learning methods, and adaptive control theory. Since the relatedwork deals with controlling some element of the learning process, this chapter casts the systemsin terms of their control method and compares the method with the MBAC approach.109



5.1 Utility ControlChapter 2 describes two methods for controlling the utility of learned knowledge in analyticallearning. Section 2.3.1 describes the Prodigy system [Minton, 1988a], which retains learnedknowledge having high utility with respect to the task. Utility is the di�erence between thesavings provided by the knowledge and the cost of retaining the knowledge. If empirical es-timation of utility yields a negative value for some piece of knowledge, Prodigy discards thisknowledge. Prodigy di�ers from MBAC in that Prodigy determines which knowledge to learn;whereas, MBAC determines how much knowledge to learn. Prodigy's ability to determine whichknowledge to learn derives from a theory of the e�ects that knowledge has on the performanceelement. MBAC lacks such an analytical theory, relying instead on an empirical model.Section 2.3.2 describes the Soar system, which limits the expressiveness of learned knowl-edge to avoid generation of low utility knowledge [Tambe and Rosenbloom, 1989]. Soar limitsexpressiveness by constraining each chunk of knowledge to have linear match cost. This ap-proach does not control the utility, because the higher number of less-expressive chunks willalso eventually degrade performance.The following sections describe other systems that control the utility of learned knowledge.The approaches span both analytical and empirical learning paradigms.5.1.1 MetaLEXThe MetaLEX system [Keller, 1987a; Keller, 1987b] adapts a set of problem solver controlknowledge in order to achieve given performance objectives. The search control knowledgerepresents the concept of a useful move for the problem solver; however, the initial expressionof this concept is not operational. Keller de�nes an operational useful-move concept as onethat allows the problem solver to satisfy the desired performance objectives. The performanceobjectives determine the operationality of the concept, just as they determine the utility ofknowledge in the MBAC approach. Therefore, MetaLEX is adaptively controlling the utility ofthe problem solver control knowledge.Figure 5.1 depicts MetaLEX as an adaptive control loop. The search control knowledge actsas a pruning �lter on the set of operators available to the problem solver. Guided by the searchcontrol knowledge, the problem solver performs a breadth-�rst search for the solution to each110
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USEFUL(move) ,(LET ((succ (EXECUTE move)))(OR (SOLVED succ)(SOLVABLE succ ({ *maxdepth* (MOVEDEPTH move)))))whereSOLVED(state) , (NOTMATCH state 'R )andSOLVABLE(state depth) ,(AND (> depth 0)(OR (FOR binding IN (BINDINGS 'OP1 state)(LET ((succ (APPLY 'OP1 binding)))(OR (SOLVED succ)(SOLVABLE succ ({ depth 1)))))(FOR binding IN (BINDINGS 'OP2 state)(LET ((succ (APPLY 'OP2 binding)))(OR (SOLVED succ)(SOLVABLE succ ({ depth 1)))))...))Figure 5.2: Non-operational search control knowledge for the useful-move concept.the move reaches the goal state (SOLVED) or if the move is along the path to the goal state(SOLVABLE).5.1.1.2 TransformationsMetaLEX transforms the knowledge of Figure 5.2 using the TRUIFY and FALSIFY trans-formations. These transformations replace predicate-valued subexpressions of the useful-moveconcept with the constant TRUE or FALSE. MetaLEX also uses the reverse of these transfor-mations: UNTRUIFY and UNFALSIFY. In practice, MetaLEX transforms only the disjunctsof SOLVABLE in one of three ways: falsifying the entire disjunct (operator rarely useful), fal-sifying the internal SOLVED subexpression (operator rarely reachs a goal state), or truifyingthe internal LET subexpression (operator almost always useful). The TRUIFY transformationgeneralizes the useful-move concept by recommending more operators; whereas, the FALSIFYtransformation specializes the useful-move concept by recommending fewer operators.112



5.1.1.3 Performance ObjectivesThe performance objectives in MetaLEX constrain the performance measures of e�ciency ande�ectiveness. MetaLEX measures e�ciency as the time (in CPU seconds) needed by the prob-lem solver in attempting to solve the set of benchmark problems. E�ectiveness is the percentageof the benchmark problems actually solved by the problem solver. MetaLEX de�nes the per-formance objectives as E�ciency < tE�ectiveness � p.where t and p are user-supplied thresholds on the performance measures.5.1.1.4 ModelMetaLEX models the relationship between performance and knowledge transformations withqualitative heuristic trends. Figure 5.3 depicts these trends as performance response curves.Point a on the horizontal axis of the curves represents the point at which the useful-moveconcept is completely trui�ed or falsi�ed. Point c on the e�ciency axis represents the e�ciency(CPU time) of the problem solver using the initial non-operational useful-move concept. Notethat the curves are only approximations of the heuristic trends identi�ed in MetaLEX [Keller,1987b].For the e�ciency versus TRUIFY response curve, truifying subexpressions of the useful-move concept generally improves e�ciency (lowers CPU time) until the model begins to rec-ommend non-useful moves. At this point the curve moves upward until the entire useful-moveconcept is trui�ed at point a. Point a represents the problem solver's e�ciency without theuse of search control knowledge. Note that the inverse of this response curve resembles thegeneral utility problem trend of Figure 2.1. For the e�ciency versus FALSIFY response curve,falsifying subexpressions of the useful-move concept generally improves e�ciency. At point a,the useful-move concept recommends no operators, and the problem solver does nothing.For the e�ectiveness versus TRUIFY response curve, truifying subexpressions of the useful-move concept has no e�ect on e�ectiveness, because TRUIFY only increases the number ofoperators considered useful. For the e�ectiveness versus FALSIFY response curve, falsifyingsubexpressions of the useful-move concept generally degrades e�ectiveness, because FALSIFY113
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Figure 5.3: Performance responses for MetaLEX.only decreases the number of operators considered useful. At point a, the useful-move conceptrecommends no operators, and the problem solver solves none of the benchmark problems.MetaLEX adapts these trends according to statistics collected during the problem solver'sattempt to solve the benchmark problems. When performance falls below the desired objectives,MetaLEX uses these adapted trends along with contextual knowledge from problem-solvingtraces to select the best transformation (TRUIFY or FALSIFY) and subexpression of the useful-move concept that will move performance closer to the objectives. When performance estimatesindicate achievement of the objectives, the hill-climbing transformation procedure ceases andthe problem solver attempts to solve the benchmark problems using the transformed useful-move concept. If performance does not meet the objectives, then MetaLEX uses the sameinformation to assess blame on recent transformations, which are then undone until estimatedperformance is again within the objectives. This procedure continues until the problem solvercan solve the benchmark problems within the desired performance objectives.5.1.1.5 Comparison to MBACDespite the similarity to the adaptive control structure of MBAC, MetaLEX takes the oppositeend of the generality/contextual-knowledge spectrum. At MBAC's end of the spectrum, theapproach is general across several learning transformation methods, knowledge representations,114



performance dimensions, tasks and performance elements. Therefore, MBAC can expect littlecontextual-knowledge help in transforming the knowledge to achieve the performance objec-tives. At the other end of the spectrum, the MetaLEX method applies to only two speci�ctransformations, one knowledge representation, two performance dimensions, and one perfor-mance element. Although MetaLEX uses only one task to demonstrate the method, there isnothing to prevent other tasks.Due to the speci�c performance environment, MetaLEX derives much knowledge from thecontext of the environment to aid in the selection of a proper transformation. The models inFigure 5.3 assume execution of only one transformation, TRUIFY or FALSIFY. Because Met-aLEX intermixes applications of the two transformations, the contextual knowledge integratesthe TRUIFY and FALSIFY models for each performance dimension. The MBAC approachis unable to intermix transformations in this way. The contextual information from solutiontraces and statistics generated during solution of the benchmark problems helps MetaLEX se-lect what search control knowledge to transform, as well as how to transform this knowledge.The performance objectives determine how much to transform the search control knowledge.Keller emphasizes the need for explicit performance objectives in MetaLEX in order to moreprecisely de�ne the operationality of knowledge. MBAC advocates a more explicit performanceenvironment, including the performance element, transformations and knowledge, as well asthe performance objectives. The element of MBAC that permits this further explicitness is themodel of the general utility problem trend of Figure 2.1. The independence of this model fromcontextual knowledge allows MBAC to work in a more explicit, and therefore more general,performance environment.5.1.2 ComposerThe Composer system [Gratch and DeJong, 1991] controls the utility of learned knowledge (setof control rules) by adding a control rule to the existing set of control rules only if the new rulehas high conditional utility with respect to the current set of control rules. Composer measuresthe conditional utility of a control rule r with respect to a set of control rules R asUtility(frg [ R j ;) = Utility(R j ;) + Utility(frg j R)115



Composer uses the Prodigy system to generate candidate control rules and maintains empir-ical estimates of each rule's condition utility with respect to the current control strategy and acon�dence bound on this estimate. When a control rule has a signi�cantly positive conditionalutility, Composer adds the rule to the control strategy. Appropriate settings for the con�dencebounds increases the probability that the additional control rule will add utility to the controlstrategy. The higher the desired probability, the more examples Composer needs to insurepositive utility.The expression for conditional utility constitutes a formal model relating the knowledge(control rule) to performance. The model depends on knowledge of the performance elementand domain theory. Gratch and DeJong's experimentation with Composer indicates that fewercontrol rules are necessary to improve performance than retained in the Prodigy system. Thisobservation supports the trend of the general utility problem in which peak performance occursearly with smaller amounts of learned knowledge. Like Prodigy, Composer identi�es whichknowledge positively a�ects performance at the expense of extracting knowledge about theperformance environment.5.1.3 Minimum Description LengthThe minimum description length (MDL) principle [Rissanen, 1989] states that the best theoryto infer from a set of data is the one that minimizes the sum of the length of the theory and thelength of the data as described by the theory. The power of the MDL approach comes from anappropriate selection for the encoding scheme that converts the theory and data into a stringof symbols. An appropriate encoding scheme allows the MDL principle to �nd the theory thatstill has high accuracy on unseen data.Quinlan and Rivest [1989] use the MDL principle to control the utility of induced decisiontrees. Their encoding scheme for decision trees and data is complex and not described here.Using the encoding scheme and the MDL principle, Quinlan and Rivest are able to identifydecision trees of an appropriate size that reduce over�t and maintain utility. The success ofthis method relies on the encoding scheme to relate the length of the encoded string to thee�ects of the corresponding decision tree on classi�cation accuracy. Therefore, the encodingscheme approximates a model relating the performance to the complexity of the decision tree(which can be related to the amount of learned knowledge). The bene�t of this approach is the116



non-empirical nature of the model. Once an appropriate encoding scheme is found, the MDLprinciple easily selects the best theory.5.1.4 APUIn addition to the learning paradigms discussed in Chapter 2, the general utility problem alsoextends to analogical learning. The APU system [Bhansali and Harandi, 1991] synthesizesUNIX shell scripts using derivational analogy [Carbonell, 1986]. Bhansali and Harandi showthat the acquisition of base cases for derivational analogy provides a factor of two speedup forthe problem solver; however, the results assume a uniform distribution over the examples inthe domain. If the distribution is not uniform, then an increasing number of base cases willeventually degrade problem-solving performance.Bhansali and Harandi propose a measure for evaluating the utility of adding a new basecase to the case library. The library indexing scheme associates to each unique feature thecases that contain that feature in their de�nition. The measure of utility is the change in theaverage ratio of cases per feature in the library indexing scheme. If the ratio increases, thenthe added cases are similar to existing cases and have low utility with respect to analogicalproblem-solving. If the ratio decreases, then the added cases are di�erent from existing casesand may add new knowledge towards the problem-solving domain.This model of utility uses knowledge of the analogical learning process; namely, similarcases have less bene�t than dissimilar cases, because the similar cases add little additionalinformation compared to the cost of storing and retrieving them. The utility measure is similarto that used in the Prodigy system and, therefore, stresses which knowledge to learn versus howmuch knowledge to learn.5.2 Multiple Learning Method ControlThe problem of controlling the utility of learned knowledge is di�cult enough for a singlelearning method. However, some systems have attempted the control of multiple learningmethods within a single framework. The following sections describe three such systems andcompare them to the MBAC approach. 117
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Figure 5.6: VBMS model relating utility U to a particular problem characteristic C for aparticular inductive method I .for problems with few features; whereas, region R2 indicates that I2 is better for problems withmany features. The division of problem space into regions forms a piecewise constant functionmapping problem characteristics to inductive method.For each region in problem space, VBMS maintains a region belief table (RBT), which is theaverage of the utility vectors of the points within the region. In Figure 5.5 the RBT for R1 is(1:0; 0:4), and the RBT for R2 is (0:5; 1:0). When VBMS encounters a new learning problem,the resulting ~u in Figure 5.4 is the RBT for the region enclosing the corresponding point inproblem space. When the estimated RBT is not su�ciently similar to the emerging utilityvector u, VBMS searches for another RBT that more closely matches u.The function over problem space represents VBMS's model of how transformations (induc-tive methods) a�ect performance (utility). For example, Figure 5.6 illustrates a possible modelmaintained by VBMS for a particular inductive method I , particular problem characteristic C,and utility measure U . The problem space function consolidates these individual models intothe multi-dimensional problem space and utility vectors.5.2.1.2 Comparison to MBACLike MBAC, VBMS learns to control the application of learning methods by adapting a modelof their performance utility. However, several di�erences exist between the two systems. Onedi�erence is the explicitness of the performance environment. VBMS combines the performancemeasures for the learning methods into one global utility value. Combining the performancemeasures prevents a more re�ned learning method selection based on multiple performanceobjectives. VBMS also does not explicitly de�ne the stopping criteria for the region belief table120



search. Rendell et al. [1987b] mention bounds on the rate of utility improvement and resourcecost as possible stopping criteria. An explicit representation of the performance environmentallows MBAC to better identify the strengths and weaknesses of the available learning methods.Another di�erence between the two approaches lies in the expression of the model. TheVBMS model is a piecewise constant function relating the utility of a learning method to thecharacteristics of a learning problem. The MBACmodel is a continuous quadratic curve relatingperformance to the amount of learned knowledge for a single problem. The reason VBMS usesthe more general piecewise constant function model is the lack of decomposition of the learningmethods. MBAC decomposes the learning methods to a level of granularity su�cient to perceivethe performance response trend (see Section 3.4.1). VBMS observes only the �nal performanceof the learning methods and, therefore, requires a more general model to �t the variations inthese utility values. Constraining MBAC's model to a quadratic curve avoids the over�tting ofthe performance response possible with more general models.One bene�t of VBMS over MBAC is the use of problem characteristics as the indepen-dent variables to the performance model. The performance of learning methods depends oncharacteristics of the learning problem. VBMS assumes the user selects proper problem charac-teristics that convey enough information to detect the relationship to performance for a learningmethod. MBAC obviates selecting problem characteristics by utilizing the commonality of theperformance response curve among learning methods. A promising compromise between thetwo approaches is to await the derivation of formal models relating performance to problemcharacteristics (as in the analysis of Section 2.5.1.1). Replacing the empirical model with theformal model yields more accurate estimation of the performance of learning methods.5.2.2 AIMSThe Adaptive Interactive Modeling System (AIMS) [Tcheng et al., 1989; Tcheng et al., 1991] ex-tends the VBMS approach along several dimensions to form a more robust system for managinginductive bias. AIMS learns to control multiple learning methods by adapting a function thatrelates performance objectives to inductive bias and using the predicted-optimal bias to selectamong the competing methods. Figure 5.7 depicts AIMS as an adaptive control loop. Given alearning task, AIMS selects an inductive bias predicted to optimize the performance objectivesaccording to the functional relationship between objectives and bias (i.e., the objective surface121
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evaluation strategies measure and validate the error in CRL's hypothesis. Hypothesis error met-rics include average deviation, standard error, entropy and vector di�erence. Error validationstrategies include error on training set, error on testing set, and v-fold cross validation.The current inductive bias selects a subset of these strategies along with their parametersto build a tree using the generalized recursive splitting technique. CRL tries each strategy ata node in the tree and selects the one yielding the most reduction in the error of the overallhypothesis. CRL continues this process until either the error of the overall hypothesis does notdecrease more than a speci�ed threshold, the number of examples at the node is less than aspeci�ed threshold, or the time exceeds a speci�ed threshold.5.2.2.2 Induce and Select OptimizerIn order to reduce the size of the search space considered by CRL, the induce and selectoptimizer (ISO) uses experience from AIMS to estimate the relationship between performanceobjectives and inductive bias, and selects a bias that optimizes the performance objectives.Each time AIMS uses CRL (controlled by the current inductive bias) to generate a hypothesis,the performance of the hypothesis provides a new point in the bias space for estimating theobjective surface over this space. ISO employs CRL as the inducer. ISO's CRL induces anexpression for the objective surface from the examples of performance values at di�erent biaspoints. ISO's selector uses CRL's suggested objective surface and the examples to select aninductive bias that optimizes the performance objectives. When the user speci�es multipleobjectives, ISO outputs a set of Pareto optimal (non-dominated) set of biases.AIMS provides two parameters, novelty and performance, for controlling the selector's useof the examples and the induced objective surface. High novelty urges the selector to ignore theinduced objective surface and try biases that are maximally distant from previously-attemptedbiases. High performance urges the selector to adhere to the induced objective surface andselect the point that optimizes that surface. AIMS passes the resulting bias selection to theversion of CRL that induces hypotheses for the learning task.5.2.2.3 Comparison to MBACMBAC is similar to AIMS in several ways. First, both systems allow explicitly-de�ned, multipleperformance objectives. AIMS goes further to implement a multi-objective optimizer for dealing123



with the tradeo�s among multiple objectives. This ability is not implemented in MBAC. Second,both systems adapt a functional relationship between performance and bias based on experience.Third, both systems use this relationship to control the application of learning methods.Several di�erences exists between AIMS and MBAC. First, although both systems adapt afunctional relationship between performance and bias, MBAC further constrains the functionto be quadratic near the peak of the function as recommended by the performance responsetrend revealed in Chapter 2. Although AIMS can converge to a quadratic expression of thefunction, not constraining the function in light of the empirical evidence may allow AIMS toover�t the performance response. However, AIMS has the capability to �t other models tothe performance response when the response is not quadratic. Some performance responsesnot considered in this investigation will have a non-quadratic shape. In this case, AIMS mayachieve a better �t to the response than MBAC.A second di�erence concerns the dimensions of the bias space. AIMS de�nes several di-mensions to the bias space for controlling the learning, decomposition and evaluation strategiesof CRL. MBAC attempts to control only one bias: the amount of learned knowledge. Theamount of learned knowledge is more di�cult to describe than most parameters used to controllearning, but allows the MBAC approach to extend to non-empirical learning paradigms (e.g.,analytical learning).Finally, MBAC maintains separate homogeneous hypotheses for a learning task, while AIMSregenerates a hybrid hypothesis for each inductive bias point. Therefore, MBAC spends lesstime learning, because a change in recommended bias corresponds to a change in MBAC'sexisting hypotheses; whereas, AIMS must rebuild the hybrid hypothesis, which may involvere-execution of several learning strategies.5.2.3 MTLThe Multistrategy Task-adaptive Learning system (MTL) controls the application of multiplelearning strategies [Tecuci and Michalski, 1991]. The strategies currently implemented includededuction, analogy, abduction and induction. Along with the learning strategies, MTL main-tains facts, generalization hierarchies and rules about the domain. MTL's goal is to deriveuseful knowledge from the input, where the input and background knowledge are in the form of�rst-order rules. Given an example, MTL uses the strategies to build a justi�cation tree that124



explains the example in terms of the background knowledge. MTL employs the strategies inthe order given above. Once the justi�cation tree is generated, MTL generalizes the tree usinga technique similar to explanation-based generalization [Mitchell et al., 1986].Two di�erences exist between MTL and MBAC. First, MTL relies on a common representa-tion of the knowledge on which each strategy performs some transformation. This dependenceon a common representation precludes the use of learners whose hypotheses are not expressedas �rst-order rules. MBAC maintains a hybrid representation of the knowledge, which allowsthe learners to operate on their own individual knowledge representation. Second, MTL relieson a priori strengths to select among the competing strategies. MBAC adapts the strategyselection process according to performance on the task. MTL's task adaptiveness resides onlyin the changing background knowledge according to information from the domain; whereas,MBAC adapts both the knowledge and the procedure for transforming the knowledge.5.3 Adaptive ControlAdaptive control research related to the MBAC approach falls in the areas of model-referenceadaptive control [Sastry and Bodson, 1989], system identi�cation [Ljung, 1987], and intelligentcontrol [Saridis, 1987]. Figure 5.8 shows a simple adaptive control loop. The update procedureuses feedback from the plant performance to adapt a model of the plant. This model providesthe necessary control to reduce the error between the plant performance and desired perfor-mance. Model-reference adaptive control uses di�erences between model predictions and actualoutcomes to update the model. System identi�cation uses a variety of methods (e.g., regression)to identify the correct model of the plant. Intelligent control encompasses numerical as well asnon-numeric methods for updating the model. For example, Michie and Chambers [1968] de-scribe an adaptive control technique called Boxes for solving the pole-balancing problem. Morerecent work by Barto et al. [1983] also address the pole-balancing problem using neuron-likeadaptive elements. Self [1990] describes the successful implementation of fuzzy adaptive controlfor the auto-focussing mechanism of a camera.The main similarity of MBAC to adaptive control is the search for a model of the perfor-mance element (plant) based on feedback from the performance environment. Adaptive controlanalysis requires a mathematically expressible model in order to prove stability and convergence125
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Figure 5.8: Adaptive control loop.of the performance response. MBAC proposes a simple quadratic model related performanceto the amount of learned knowledge for a variety of learning methods, performance elements(plants), and performance objectives. Although not a part of this investigation, results fromadaptive control on proving system stability may be applicable to proving the stability of theMBAC approach when converging to desired performance objectives.
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Chapter 6Future WorkSeveral future directions exist for improving the analysis of the general utility problem andenhancing the MBAC approach. The current MBAC approach attempts to reduce dependenceon knowledge of the performance environment in order to integrate several learning methodsinto a common framework. Figure 6.1 shows the spectrum of dependence on knowledge ofthe performance environment. MBAC resides at point B near the zero knowledge side of thespectrum. Systems described in previous chapters possess more knowledge of the performanceenvironment and reside near point A of the spectrum. The optimal point along the spectrumresides somewhere in the middle, taking advantage of more knowledge while retaining a commonframework for integrating multiple methods. The following future directions describe possibleapproaches for moving the MBAC approach further to the right along this spectrum.6.1 Analysis of the General Utility ProblemThe analysis of the general utility problem in Section 2.5 o�ers one approach to moving MBACtowards the use of more knowledge from the performance environment. This analysis attempts
Knowledge of
Performance
Enviroment0

ABFigure 6.1: Spectrum measuring a system's knowledge of the performance environment. Sys-tems near point A have more knowledge of the performance environment, whereas systems atpoint B have less knowledge of the performance environment. Arrows indicate future directions.127



to derive a formal model for the relationship between performance and the amount of learnedknowledge. As the analysis shows, these formal models may depend on the properties of the taskdomain. For example, the formal model for splitting methods depends on the number of traininginstances and the number of dimensions in instance space. The formal model for networksdepends on the number of training instances. Empirical results using VBMS show that taskdomain properties are useful for selecting among multiple learning methods (see Section 5.2.1).This dependence on properties of the task domain is an attempt to estimate the complexityof the function to be learned. The formal models provide a more precise representation of therelationship between performance and the amount of learned knowledge.Future work on the analysis of the general utility problem will continue to derive formalmodels for other learning methods. Although not yet at the stage of a mathematical model,the analysis of analytical learning methods in Section 2.5.2 identi�es the components of themodel. The next step is to derive a model based on these components and properties of thetask domain (e.g., number of operators, complexity of operators, and size of the problem space).Formal models of other learning methods (e.g., analogy) will follow.This research concentrates on learning methods and performance dimensions that combineto demonstrate the general utility problem trend. For example, plotting classi�cation accuracyafter each split of a splitting method results in the trend identi�ed in Chapter 2. However, notall combinations of learning methods and performance dimensions yield a performance responsefollowing this trend. For example, the storage requirements of a neural network remain con-stant during the course of the network learning method, and hypothesis comprehensibility ofa decision tree measured in terms of number of leaves increases monotonically with increasingnumbers of splits. Although a second order curve (e.g., a parabola) can express these perfor-mance responses by setting the higher-order coe�cients to zero, a model constrained to theproper order would be more appropriate for these cases. Formal analyses of these degeneratetransformation/performance-dimension combinations will reveal the appropriate model.As the formal models mature, MBAC will replace the parabolic model with the more preciseformal model. MBAC's model of the performance response will no longer rely on empiricalestimation. For learning methods still lacking a formal model, MBAC will retain the empiricalmodel. Thus, MBAC provides a exible architecture for the insertion of alternative formal128



models; however, the models should retain enough constraints to enforce the general utilityproblem trend. The formal models derived in Section 2.5 follow this trend.As with the formal models in Section 2.5, the new formal models will also depend on ameasure of knowledge speci�c to the learning method. Future work will attempt to furtherunify the models by extending the measure to a more generic de�nition of knowledge. Asalluded to by the requirement of a general to speci�c ordering of knowledge transformations,this new de�nition of knowledge will derive from an expression relating changes in knowledge tochanges in knowledge generality. For example, additional splits in a splitting method increasethe speci�city of the learned hypothesis. The splits increase the degree of the function overinstance space. Expressing the transformations in terms of their e�ects on hypothesis speci�citywill retain the ability to use formal models in place of empirical models and to integrate multiplelearning methods within one framework based on one de�nition of knowledge.Although a more precise de�nition for the amount of learned knowledge will move the MBACapproach further to the right in Figure 6.1, a much larger move towards the incorporationof performance-environment knowledge involves the determination of which knowledge a�ectsperformance. For example, the addition of one macro-operator by an analytical learning methodmay have a much greater e�ect on performance than another. Furthermore, the e�ect dependson the knowledge already learned by the method. The MetaLEX system (see Section 5.1.1)attempts to identify the knowledge responsible for a performance degradation and transformsthis knowledge accordingly. The ability to identify individual pieces of knowledge directlyresponsible for changes in performance requires considerable knowledge of the performanceenvironment. Extending MBAC to incorporate such knowledge is contradictory to MBAC'sgoal of unifying multiple learning paradigms. Each paradigm would require meta-knowledge ofhow each type of learnable knowledge can a�ect performance.The general-to-speci�c constraint on the order of knowledge transformations addresses theissue of which knowledge to learn. The analysis in Section 2.5 requires the knowledge transfor-mations to be ordered such that the learned hypothesis becomes more specialized with increasingnumbers of transformations. Therefore, the constraint recommends that speci�c knowledge isresponsible for degrading performance. Assuming the order of transformations satis�es this con-straint, the issue of which knowledge is at fault reduces to determining the knowledge learnedmost recently, and controlling performance reduces to controlling the amount of learned knowl-129



edge. Future work on more precise de�nitions of knowledge will rely on this ordering constraintto avoid incorporating considerable knowledge from the performance environment and to retaina unifying framework for multiple learning paradigms.6.2 Model-Based Adaptive ControlUntil formal models of learning methods are available, MBAC o�ers a useful empirical approachfor avoiding the general utility problem. Improvements to the MBAC approach will utilizetechniques from other systems described previously. These improvements move the MBACapproach to the right in Figure 6.1 toward increased utilization of performance environmentknowledge.One result from the experimentation in Chapter 4 is the sensitivity of the parabola esti-mation procedure to variations in the performance response. Although task transfer alleviatedsome of this sensitivity by forcing additional sampling, this sensitivity is still a problem. Otherapproaches address the sensitivity issue by maintaining more general models of the performanceresponse. For example, MetaLEX maintains qualitative models describing the e�ects of trans-formations on performance (see Section 5.1.1). VBMS maintains a piecewise constant functionas the model of the performance response and uses PLS1 to adapt instances of the model (seeSection 5.2.1). AIMS has the ability to �t a variety of curves to the performance response (seeSection 5.2.2). Future extensions to MBAC's modeling capabilities will migrate towards themore general models used by VBMS and AIMS. However, the migration will not be completein order to retain the constraints identi�ed in the performance response trend of Chapter 2.Approaches to this controlled migration include more robust curve-�tting techniques [Press etal., 1986] and constraints on the more general modeling techniques exempli�ed in VBMS andAIMS.One advantage of AIMS over MBAC is the ability to trade o� multiple performance objec-tives. Section 3.5 addresses this issue, but the implementation of MBAC in Chapter 4 doesnot include this capability. Incorporation of multiple performance objectives into MBAC willrequire modi�cations to the transformation selection procedure (see Section 4.4.1). The mainmodi�cation will add the ability to handle cases where two or more transformation recom-mendations achieve di�erent Pareto optimal (non-dominated) points. The optimizer in AIMS130



�nds these Pareto optimal recommendations. Incorporation of this technique into MBAC willimprove the transformation selection procedure when deciding among competing performanceobjectives.Chapter 4 uses only empirical learning methods to evaluate the MBAC approach. A morecomplete evaluation requires application of the MBAC approach to other learning paradigms.This evaluation will not only con�rm the usefulness of MBAC for these methods, but also pro-vide the ability to compare di�erent paradigms. For example, an alternative to an analyticallearning method may be to use a structural induction method on the solutions to the trainingproblems. Furthermore, one task may bene�t from the application of more than one transforma-tion. For example, MBAC might choose an empirical learning method to prove an intermediatefact needed in the solution of a problem using an analytical learning method. Evaluation of theMBAC approach on these additional learning methods requires further experimentation.
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Chapter 7ConclusionsThe general utility problem in machine learning is the generation of low utility knowledge due tothe uncontrolled application of machine learning methods. Uncontrolled selection of a learningmethod for a given learning task may generate low utility knowledge, because the selectedmethod is inappropriate for the task. Uncontrolled execution of the selected learning methodmay generate low utility knowledge, because the method over�ts the training data. Successfulapplication of learning methods requires the selection of an appropriate learning method andthe determination of the appropriate amount of knowledge to be generated by the method.Model-based adaptive control (MBAC) addresses these two control dimensions of the generalutility problem by using a model of the performance response trend common among severaldi�erent learning methods. This thesis investigates the MBAC approach to the general utilityproblem. Section 7.1 summarizes the results of this investigation, and Section 7.2 enumeratesthe contributions of the research.7.1 SummaryThe investigation of the general utility problem in machine learning begins in Chapter 2 bydemonstrating the existence of the problem in several di�erent learning paradigms. Chapter 2introduces the performance response curve as a tool for observing the general utility problem.The performance response curve plots performance during the execution of the learning method.Plotting the performance response of several learning methods over several domains revealsa general trend in the curve as depicted in Figure 2.1. The performance response initially132



increases to a single peak and then decreases at a lower rate. The fact that the performancedecreases from the peak before termination of the learning method indicates the existence of thegeneral utility problem. In addition, the peak of the performance response is higher than theperformance achieved by popular methods for alleviating the general utility problem. Therefore,convergence to the peak of the response curve would improve the performance of the learningmethod. Section 2.5 formally analyzes several learning methods and derives formal modelsrelating performance to the amount of learned knowledge. These formal models con�rm thegeneral utility problem trend of Figure 2.1.The common trend in the performance response curves of several learning paradigms indi-cates that a model of the trend may be su�cient to control the amount of learned knowledgeand avoid the general utility problem. Chapter 3 introduces the model-based adaptive control(MBAC) approach based on this observation. MBAC utilizes a parameterized curve to modelthe performance response. The curve adapts the parameters according to data points sampledfrom actual response curve data. With a model of the performance response, MBAC can predictthe amount of learned knowledge necessary to achieve the performance objectives. By main-taining models for several learning methods, MBAC can select the most appropriate methodfor the learning task based on the models' predictions of achievable performance. Thus, MBACcombats the general utility problem by modeling the performance response and using the modelto control the selection of learning methods and the generation of low utility knowledge.In order to determine the e�ectiveness of the MBAC approach, Chapter 4 evaluates severalcomponents of MBAC. The success of MBAC depends on the predictive accuracy of the model.The �rst experiment shows that the parabolic model is superior to the rote and nearest-neighbormodels. Experiment 1 also shows that the peak of the parabola corresponds closely to the peakof the true performance response. The success of the MBAC approach also depends on theability to measure the certainty of the model. Experiment 2 compares three model certaintyestimates according to their correlation to the ordering of learning methods from best to worst.Results indicate that the standard deviation of the model is an accurate estimate of modelcertainty. MBAC's success also depends on the accuracy of the models' predictions. The thirdexperiment compares the predicted performance for some number of knowledge transformationsto the actual performance obtained by performing the recommended number of transformations.Results show that the models closely predict the actual performance.133



Experiments 4 and 5 evaluate the MBAC approach during the initial phase of adaptingthe model based on samples from the performance response. Experiment 4 illustrates MBAC'sprogress during this phase. Results indicate that MBAC adapts to the performance response,but can falter when the performance response contains local peaks. Experiment 5 shows howtask transfer can alleviate some of this sensitivity to local peaks by transferring knowledge fromother tasks.MBAC exploits the general utility problem trend to maintain the utility of learned knowledgeand select appropriate learning methods. The experimental results con�rm the e�ectiveness ofthe MBAC approach over several learning methods and domains.7.2 ContributionsThe investigation of the general utility problem and the MBAC approach provides several con-tributions to research in machine learning. First, the realization that the utility problem occursin several learning paradigms helps to unify machine learning methods. The unifying idea is thesearch for a concept in generalization space (the space of possible hypotheses ordered accordingto generality, similar to the version space). As in empirical learning, analytical learning at-tempts to �nd a concept (set of control rules or macro-operators) that maximizes performance.The concept must be at the correct level of generality that improves performance on a majorityof the examples, but does not degrade performance by attending to lower-probability exam-ples. The knowledge learned from the lower-probability examples will degrade performance.Learning methods that attempt to maximize performance via generalization risk su�er fromthe general utility problem.The second contribution of this work is the observation that the performance response viewof the general utility problem retains a common shape over several learning methods and taskdomains. Perception of the performance response trend requires new perspectives on how tolearn. First, learning should proceed in smaller increments to allow the integration of feedbackfrom the performance environment. The performance of simpler hypotheses considered duringthe course of current learning methods typically exceeds the performance of the �nal hypothesis.Second, if the small learning increments are taken in a speci�c order along the dimension ofhypothesis generality, then control of the amount of learned knowledge is su�cient to control134



the performance. Finally, the performance objectives of the learning task should be separatefrom the learning method. Explicit performance objectives allow more control over the learningand more exibility in adapting to dynamic performance environments.This work introduces and evaluates the MBAC approach. The performance response trendpermits a single model for the relationship between performance and the amount of learnedknowledge. Maintaining such a model for each combination of task domain, knowledge trans-formation and performance dimension, MBAC selects appropriate transformations and avoidsgeneration of low utility knowledge. Furthermore, since the model is adaptive, MBAC can adaptthe knowledge to changes in the performance environment. Experimental results con�rm theapplicability of MBAC to the general utility problem. Analysis of related work indicates thatthe stronger model of performance is the source of MBAC's more accurate control of learning.Although the amount of learned knowledge is a course measure for controlling a learningmethod, the measure is useful in several situations where a more re�ned measure is unavailable.A system designed to learn in a variety of previously unknown domains will have little orno knowledge of the domain with which to control the learning. When the system attemptsto control knowledge in an unknown performance environment (e.g., performance element is ablack box), transformations to the knowledge have unknown e�ects on performance. Controllingthe amount of learned knowledge helps to insure that the knowledge acquired by the system iswithin reasonable constraints. These constraints derive from the general utility problem trendand prevent performance degradation due to excessive amounts of learned knowledge.Finally, this work contributes a preliminary formal analysis of the general utility problem inseveral learning methods. The analysis con�rms the trend identi�ed in Chapter 2. Re�nementof the model-based adaptive control approach according to the enhancements described inChapter 6, and incorporation of more formal models of the performance response will evolvethe approach into a general methodology for maintaining the utility of learned knowledge. Atthe heart of the methodology will be the model of the performance response whose commonshape serves to unify multiple learning paradigms under one framework.
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APPENDIX ADomainsA.1 Empirical Learning DomainsFive domains are used to test the empirical learning methods: DNF2, Breast Cancer, Flag,Flare, and Voting. The �rst domain, DNF2, is de�ned by a DNF concept over forty binary-valued features that appears in [Pagallo and Haussler, 1990]. In all trials, 1000 randomly-chosenexamples were used for training and 500 for testing. The concept is reproduced below:DNF2: x1x3x14x19x26x35x36 + x8x15x31x37 + x5x10x14x27x29 +x18x20x30x36 + x2x3x9x19x24 + x24x25x27x36x37 +x6x7x14x25x26x31x34 + x1x6x22x30The remaining four domains come from the UC Irvine database. For each domain, missingfeature values were �lled in probabilistically according to the distribution of values in otherexamples having the same classi�cation. In all trials, two-thirds of the entire dataset wererandomly chosen without replacement to comprise the training set. The remaining one-thirdof the examples were used for testing. In the case of reduced-error pruning, the training,pruning and testing sets were chosen similarly in the ratios one-half, one-fourth, and one-fourth,respectively.The Breast Cancer database was obtained from the University Medical Centre, Instituteof Oncology, Ljubljana, Yugoslavia due to M. Zwitter and M. Soklic. The database contains286 examples over nine features and a binary-valued class that indicates whether or not breastcancer will recur. 136



The Flag database was collected from the Collins Gem Guide to Flags by R. S. Forsyth.The database contains 194 examples over 30 features of which 10 were removed due to theirlack of relation to the ag descriptions. The religion feature was combined into a binary-valuedclass feature corresponding to eastern and western religions.The Flare database contains 1066 examples over 10 features describing regions of the sun,and a binary-valued class feature corresponding to the production of one or more solar aresin that region in the next 24 hours.The Voting database was collected from the Congressional Quarterly Almanac and con-tributed by J. Schlimmer. The database contains 435 examples over 16 features describingvoting records, and a binary-valued class feature corresponding to the political party.A.2 Analytical Learning DomainsExperimentation with the analytical learning method uses two domains: blocks and robot. Theblocks domain consists of four operators for moving blocks in the blocks-world. The robot do-main consists of eight operators using a robot to move boxes within a layout of connected rooms.The following sections further describe the analytical task domains and list the operators.A.2.1 Blocks DomainThe blocks domain consists of the four operators shown below for stacking and unstackingblocks in the blocks world. Given the number of blocks n, the problem generator returns arandomly-selected initial state and goal state. The states are generated by placing the n blockson the table in n columns. The state generator randomly chooses a column (1 : : :n) for eachblock. If two blocks have the same column, the blocks are stacked. For the experiments usingthe blocks domain, n = 3, the number of training examples is 100, and the number of testingexamples is 50.(Operator (pickup ?x):conditions ((clear ?x) (ontable ?x) (handempty)):delete-list ((ontable ?x) (clear ?x) (handempty)):add-list ((holding ?x)))(Operator (putdown ?x):conditions ((holding ?x)) 137



Figure A.1: Three-room con�guration used to generate initial and goal states for the robotdomain. :delete-list ((holding ?x)):add-list ((clear ?x) (handempty) (ontable ?x)))(Operator (stack ?x ?y):conditions ((clear ?y) (holding ?x)):delete-list ((holding ?x) (clear ?y)):add-list ((handempty) (clear ?x) (on ?x ?y)))(Operator (unstack ?x ?y):conditions ((on ?x ?y) (clear ?x) (handempty)):delete-list ((on ?x ?y) (clear ?x) (handempty)):add-list ((holding ?x) (clear ?y)))A.2.2 Robot DomainThe robot domain consists of the eight operators shown below using a robot to move boxeswithin a layout of connected rooms. Figure A.1 shows the three-room layout used in theexperimentation. Each room has a table and a door to the adjoining room. Given the numberof boxes n, the problem generator returns a randomly-selected initial states and goal state. Thestates are generated by randomly placing the n boxes and the robot into the three rooms. Forthe experiments using the robot domain, n = 2, the number of training examples is 25, and thenumber of testing examples is 25.(Operator (goto-door-from-table ?room ?door):conditions ((in-room ?room)(next-to TABLE)(door-to-room ?door ?room)):delete-list ((next-to TABLE)):add-list ((next-to ?door)))(Operator (goto-door-from-door ?room ?door1 ?door2):conditions ((in-room ?room)(next-to ?door1)(door-to-room ?door2 ?room))138
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