
Journal of Arti�cial Intelligence Research 1 (1994) 231-255 Submitted 12/93; published 2/94Substructure Discovery Using Minimum DescriptionLength and Background KnowledgeDiane J. Cook cook@cse.uta.eduLawrence B. Holder holder@cse.uta.eduDepartment of Computer Science EngineeringBox 19015University of Texas at ArlingtonArlington, TX 76019 USA AbstractThe ability to identify interesting and repetitive substructures is an essential compo-nent to discovering knowledge in structural data. We describe a new version of our Sub-due substructure discovery system based on the minimum description length principle.The Subdue system discovers substructures that compress the original data and representstructural concepts in the data. By replacing previously-discovered substructures in thedata, multiple passes of Subdue produce a hierarchical description of the structural reg-ularities in the data. Subdue uses a computationally-bounded inexact graph match thatidenti�es similar, but not identical, instances of a substructure and �nds an approximatemeasure of closeness of two substructures when under computational constraints. In addi-tion to the minimumdescription length principle, other background knowledge can be usedby Subdue to guide the search towards more appropriate substructures. Experiments ina variety of domains demonstrate Subdue's ability to �nd substructures capable of com-pressing the original data and to discover structural concepts important to the domain.1. IntroductionThe large amount of data collected today is quickly overwhelming researchers' abilities tointerpret the data and discover interesting patterns within the data. In response to thisproblem, a number of researchers have developed techniques for discovering concepts indatabases. These techniques work well for data expressed in a non-structural, attribute-value representation, and address issues of data relevance, missing data, noise and uncer-tainty, and utilization of domain knowledge. However, recent data acquisition projectsare collecting structural data describing the relationships among the data objects. Corre-spondingly, there exists a need for techniques to analyze and discover concepts in structuraldatabases.One method for discovering knowledge in structural data is the identi�cation of com-mon substructures within the data. The motivation for this process is to �nd substructurescapable of compressing the data and to identify conceptually interesting substructures thatenhance the interpretation of the data. Substructure discovery is the process of identifyingconcepts describing interesting and repetitive substructures within structural data. Oncediscovered, the substructure concept can be used to simplify the data by replacing instancesof the substructure with a pointer to the newly discovered concept. The discovered sub-structure concepts allow abstraction over detailed structure in the original data and providec1994 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

Cook & Holdernew, relevant attributes for interpreting the data. Iteration of the substructure discoveryand replacement process constructs a hierarchical description of the structural data in termsof the discovered substructures. This hierarchy provides varying levels of interpretation thatcan be accessed based on the goals of the data analysis.We describe a system called Subdue (Holder, Cook, & Bunke, 1992; Holder & Cook,1993) that discovers interesting substructures in structural data based on the minimumdescription length principle. The Subdue system discovers substructures that compressthe original data and represent structural concepts in the data. By replacing previously-discovered substructures in the data, multiple passes of Subdue produce a hierarchical de-scription of the structural regularities in the data. Subdue uses a computationally-boundedinexact graph match that identi�es similar, but not identical, instances of a substructure and�nds an approximate measure of closeness of two substructures when under computationalconstraints. In addition to the minimum description length principle, other backgroundknowledge can be used by Subdue to guide the search towards more appropriate substruc-tures.The following sections describe the approach in detail. Section 2 describes the process ofsubstructure discovery and introduces needed de�nitions. Section 3 compares the Subduediscovery system to other work found in the literature. Section 4 introduces the minimumdescription length encoding used by this approach, and Section 5 presents the inexactgraph match algorithm employed by Subdue. Section 6 describes methods of incorporatingbackground knowledge into the substructure discovery process. The experiments detailedin Section 7 demonstrate Subdue's ability to �nd substructures that compress the data andto re-discover known concepts in a variety of domains. Section 8 details the hierarchicaldiscovery process. We conclude with observations and directions for future research.2. Substructure DiscoveryThe substructure discovery system represents structured data as a labeled graph. Objectsin the data map to vertices or small subgraphs in the graph, and relationships betweenobjects map to directed or undirected edges in the graph. A substructure is a connectedsubgraph within the graphical representation. This graphical representation serves as inputto the substructure discovery system. Figure 1 shows a geometric example of such an inputgraph. The objects in the �gure (e.g., T1, S1, R1) become labeled vertices in the graph, andthe relationships (e.g., on(T1,S1), shape(C1,circle)) become labeled edges in the graph.The graphical representation of the substructure discovered by Subdue from this data isalso shown in Figure 1.An instance of a substructure in an input graph is a set of vertices and edges fromthe input graph that match, graph theoretically, to the graphical representation of thesubstructure. For example, the instances of the substructure in Figure 1 are shown inFigure 2.The substructure discovery algorithm used by Subdue is a computationally-constrainedbeam search. The algorithm begins with the substructure matching a single vertex in thegraph. Each iteration through the algorithm selects the best substructure and expands theinstances of the substructure by one neighboring edge in all possible ways. The new uniquegenerated substructures become candidates for further expansion. The algorithm searches232

Substructure Discovery
S1

T1

T2 T3 T4

S2 S3 S4

C1

R1

SubstructureInput Graph

on

sh
ap
e

sh
ap
e

triangle

squareFigure 1: Example substructure in graph form.
T2

S2

T3

S3

T4

S4

T1

S1

Instance 1 Instance 2 Instance 3 Instance 4Figure 2: Instances of the substructure.for the best substructure until all possible substructures have been considered or the totalamount of computation exceeds a given limit. The evaluation of each substructure is guidedby the MDL principle and other background knowledge provided by the user.Typically, once the description length of an expanding substructure begins to increase,further expansion of the substructure will not yield a smaller description length. As aresult, Subdue makes use of an optional pruning mechanism that eliminates substructureexpansions from consideration when the description lengths for these expansions increases.3. Related WorkSeveral approaches to substructure discovery have been developed. Winston's Arch pro-gram (Winston, 1975) discovers substructures in order to deepen the hierarchical descriptionof a scene and to group objects into more general concepts. The Arch program searches fortwo types of substructure in the blocks-world domain. The �rst type involves a sequenceof objects connected by a chain of similar relations. The second type involves a set ofobjects each having a similar relationship to some \grouping" object. The main di�erencebetween the substructure discovery procedures used by the Arch program and Subdue isthat the Arch program is designed speci�cally for the blocks-world domain. For instance,the sequence discovery method looks for supported-by and in-front-of relations only.Subdue's substructure discovery method is domain independent, although the inclusion ofdomain-speci�c knowledge would improve Subdue's performance.Motivated by the need to construct a knowledge base of chemical structures, Levinson(Levinson, 1984) developed a system for storing labeled graphs in which individual graphs233

Cook & Holderare represented by the set of vertices in a universal graph. In addition, the individual graphsare maintained in a partial ordering de�ned by the subgraph-of relation, which improvesthe performance of graph comparisons. The universal graph representation provides amethod for compressing the set of graphs stored in the knowledge base. Subgraphs ofthe universal graph used by several individual graphs suggest common substructure in theindividual graphs. One di�erence between the two approaches is that Levinson's systemis designed to incrementally process smaller individual graphs; whereas, Subdue processeslarger graphs all at once. Also, Levinson's system discovers common substructure onlyas an indirect result of the universal graph construction; whereas, Subdue's main goalis to discover and output substructure de�nitions that reduce the minimum descriptionlength encoding of the graph. Finally, the subgraph-of partial ordering used by Levinson'ssystem is not included in Subdue, but maintaining this partial ordering would improve theperformance of the graph matching procedure by pruning the number of possible matchinggraphs.Segen (Segen, 1990) describes a system for storing graphs using a probabilistic graphmodel to represent subsets of the graph. Alternative models are evaluated based on a min-imum description length measure of the information needed to represent the stored graphsusing the model. In addition, Segen's system clusters the graphs into classes based onminimizing the description length of the graphs according to the entire clustering. Apartfrom the probabilistic representation, Segen's approach is similar to Levinson's system inthat both methods take advantage of commonalities in the graphs to assist in graph stor-age and matching. The probabilistic graphs contain information for identifying commonsubstructure in the exact graphs they represent. The portion of the probabilistic graphwith high probability de�nes a substructure that appears frequently in the exact graphs.This notion was not emphasized in Segen's work, but provides an alternative method tosubstructure discovery by clustering subgraphs of the original input graphs. As with Levin-son's approach, graphs are processed incrementally, and substructure is found across severalgraphs, not within a single graph as in Subdue.The Labyrinth system (Thompson & Langley, 1991) extends the Cobweb incrementalconceptual clustering system (Fisher, 1987) to handle structured objects. Labyrinth usesCobweb to form hierarchical concepts of the individual objects in the domain based ontheir primitive attributes. Concepts of structured objects are formed in a similar mannerusing the individual objects as attributes. The resulting hierarchy represents a componentialmodel of the structured objects. Because Cobweb's concepts are probabilistic, Labyrinthproduces probabilistic models of the structured objects, but with an added hierarchicalorganization. The upper-level components of the structured-object hierarchy produced byLabyrinth represent substructures common to the examples. Therefore, although not theprimary focus, Labyrinth is discovering substructure, but in a more constrained contextthan the general graph representation used by Subdue.Conklin et al. (Conklin & Glasgow, 1992) have developed the i-mem system for con-structing an image hierarchy, similar to that of Labyrinth, used for discovering commonsubstructures in a set of images and for e�cient retrieval of images similar to a given image.Images are expressed in terms of a set of relations de�ned by the user. Speci�c and general(conceptual) images are stored in the hierarchy based on a subsumption relation similar234

Substructure Discoveryto Levinson's subgraph-of partial ordering. Image matching utilizes a transformationalapproach (similar to Subdue's inexact graph match) as a measure of image closeness.As with the approaches of Segen and Levinson, i-mem is designed to process individualimages. Therefore, the general image concepts that appear higher in i-mem's hierarchywill represent common substructures across several images. Subdue is designed to discovercommon substructures within a single image. Subdue can mimic the individual approachof these systems by processing a set of individual images as one disconnected graph. Thesubstructures found will be common to the individual images. The hierarchy also representsa componential view of the images. This same view can be constructed by Subdue usingmultiple passes over the graph after replacing portions of the input graph with substructuresdiscovered during previous passes. i-mem has performed well in a simple chess domainand molecular chemistry domains (Conklin & Glasgow, 1992). However, i-mem requiresdomain-speci�c relations for expressing images in order for the hierarchy to �nd relevantsubstructures and for image matching to be e�cient. Again, maintaining the concepts(images, graphs) in a partially-ordered hierarchy improves the e�ciency of matching andretrieval, and suggests a possible improvement to Subdue.The CLiP system (Yoshida, Motoda, & Indurkhya, 1993) for graph-based induction ismore similar to Subdue than the previous systems. CLiP iteratively discovers patterns ingraphs by expanding and combining patterns discovered in previous iterations. Patternsare grouped into views based on their collective ability to compress the original inputgraph. During each iteration CLiP uses existing views to contract the input graph andthen considers adding to the views new patterns consisting of two vertices and an edge fromthe contracted graph. The compression of the new proposed views is estimated, and thebest views (according to a given beam width) are retained for the next iteration.CLiP discovers substructures (patterns) di�erently than Subdue. First, CLiP producesa set of substructures that collectively compress the input graph; whereas, Subdue producesonly single substructures evaluated using the more principled minimum description length.CLiP has the ability to grow substructures agglomeratively (i.e., merging two substructurestogether); whereas, Subdue always produces new substructures using incremental growthalong one new edge. CLiP initially estimates the compression value of new views based onthe compression value of the parent view; whereas, Subdue performs an expensive exactmeasurement of compression for each new substructure. Finally, CLiP employs an e�cientgraph match based on graph identity, not graph isomorphism as in Subdue. Graph identityassumes an ordering over the incident edges of a vertex and does not consider all possiblemappings when looking for occurrences of a pattern in an input graph. These di�erencesin CLiP suggest possible enhancements to Subdue.Research in pattern recognition has begun to investigate the use of graphs and graphgrammars as an underlying representation for structural problems (Schalko�, 1992). Manyresults in grammatical inference are applicable to constrained classes of graphs (e.g., trees)(Fu, 1982; Miclet, 1986). The approach begins with a set of sample graphs and produces ageneralized graph grammar capable of deriving the original sample graphs and many others.The production rules of this general grammar capture regularities (substructures) in thesample graphs. Jeltsch and Kreowski (Jeltsch & Kreowski, 1991) describe an approach thatbegins with a maximally-speci�c grammar and iteratively identi�es common subgraphs inthe right-hand sides of the production rules. These common subgraphs are used to form235

Cook & Holdernew, more general production rules. Although their method does not address the underlyingcombinatorial nondeterminism, heuristic approaches could provide a feasible method forextracting substructures in the form of graph grammars. Furthermore, the graph grammarproduction-rule may provide a suitable representation for background knowledge during thesubstructure discovery process.4. Minimum Description Length Encoding of GraphsThe minimum description length principle (MDLP) introduced by Rissanen (Rissanen,1989) states that the best theory to describe a set of data is that theory which minimizesthe description length of the entire data set. The MDL principle has been used for decisiontree induction (Quinlan & Rivest, 1989), image processing (Pednault, 1989; Pentland, 1989;Leclerc, 1989), concept learning from relational data (Derthick, 1991), and learning modelsof non-homogeneous engineering domains (Rao & Lu, 1992).We demonstrate how the minimum description length principle can be used to discoversubstructures in complex data. In particular, a substructure is evaluated based on how wellit can compress the entire dataset using the minimum description length. We de�ne theminimum description length of a graph to be the number of bits necessary to completelydescribe the graph.According to the minimum description length (MDL) principle, the theory that bestaccounts for a collection of data is the one that minimizes I(S) + I(GjS), where S is thediscovered substructure, G is the input graph, I(S) is the number of bits required to encodethe discovered substructure, and I(GjS) is the number of bits required to encode the inputgraph G with respect to S.The graph connectivity can be represented by an adjacency matrix. Consider a graphthat has n vertices, which are numbered 0; 1; : : : ; n� 1. An n� n adjacency matrix A canbe formed with entry A[i; j] set to 0 or 1. If A[i; j] = 0, then there is no connection fromvertex i to vertex j. If A[i; j] = 1, then there is at least one connection from vertex i tovertex j. Undirected edges are recorded in only one entry of the matrix. The adjacencymatrix for the graph in Figure 3 is shown below.xtriangleysquarerrectangle 266666664 0 1 1 0 0 00 0 0 0 0 00 0 0 1 1 00 0 0 0 0 00 0 0 0 0 10 0 0 0 0 0 377777775The encoding of the graph consists of the following steps. We assume that the decoderhas a table of the lu unique labels in the original graph G.1. Determine the number of bits vbits needed to encode the vertex labels of the graph.First, we need (lg v) bits to encode the number of vertices v in the graph. Then,encoding the labels of all v vertices requires (v lg lu) bits. We assume the vertices arespeci�ed in the same order they appear in the adjacency matrix. The total numberof bits to encode the vertex labels isvbits = lg v + v lg lu236

Substructure Discovery
sh
ap
e

sh
ap
e

triangle

square

x

on

y

on

sh
ap
e

rectangle

rFigure 3: MDL example graph.For the example in Figure 3, v = 6, and we assume that there are lu = 8 uniquelabels in the original graph. The number of bits needed to encode these vertices islg 6 + 6 lg 8 = 20:58 bits.2. Determine the number of bits rbits needed to encode the rows of the adjacency matrixA. Typically, in large graphs, a single vertex has edges to only a small percentage ofthe vertices in the entire graph. Therefore, a typical row in the adjacency matrix willhave much fewer than v 1s, where v is the total number of vertices in the graph. Weapply a variant of the coding scheme used by (Quinlan & Rivest, 1989) to encode bitstrings with length n consisting of k 1s and (n � k) 0s, where k � (n � k). In ourcase, row i (1 � i � v) can be represented as a bit string of length v containing ki1s. If we let b = maxi ki, then the ith row of the adjacency matrix can be encoded asfollows.(a) Encoding the value of ki requires lg(b+ 1) bits.(b) Given that only ki 1s occur in the row bit string of length v, only � vki� stringsof 0s and 1s are possible. Since all of these strings have equal probability ofoccurrence, lg � vki � bits are needed to encode the positions of 1s in row i. Thevalue of v is known from the vertex encoding.Finally, we need an additional lg(b+ 1) bits to encode the number of bits needed tospecify the value of ki for each row. The total encoding length in bits for the adjacencymatrix is rbits = lg(b+ 1) + vXi=1 lg(b+ 1) + lg � vki�= (v + 1) lg(b+ 1) vXi=1 lg � vki�237

Cook & HolderFor the example in Figure 3, b = 2, and the number of bits needed to encode theadjacency matrix is (7 lg 3)+lg �62�+lg �60�+lg �62�+lg �60�+lg �61�+lg �60� = 21:49bits.3. Determine the number of bits ebits needed to encode the edges represented by theentries A[i; j] = 1 of the adjacency matrix A. The number of bits needed to encodeentry A[i; j] is (lgm) + e(i; j)[1 + lg lu], where e(i; j) is the actual number of edgesbetween vertex i and j in the graph and m = maxi;j e(i; j). The (lgm) bits are neededto encode the number of edges between vertex i and j, and [1 + lg lu] bits are neededper edge to encode the edge label and whether the edge is directed or undirected. Inaddition to encoding the edges, we need to encode the number of bits (lgm) neededto specify the number of edges per entry. The total encoding of the edges isebits = lgm+ vXi=1 vXj=1 lgm+ e(i; j)[1+ lg lu]= lgm+ e(1 + lg lu) + vXi=1 vXj=1A[i; j] lgm= e(1 + lg lu) + (K + 1) lgmwhere e is the number of edges in the graph, andK is the number of 1s in the adjacencymatrix A. For the example in Figure 3, e = 5, K = 5, m = 1, lu = 8, and the numberof bits needed to encode the edges is 5(1 + lg 8) + 6 lg 1 = 20.The total encoding of the graph takes (vbits + rbits + ebits) bits. For the example inFigure 3, this value is 62:07 bits.Both the input graph and discovered substructure can be encoded using the abovescheme. After a substructure is discovered, each instance of the substructure in the inputgraph is replaced by a single vertex representing the entire substructure. The discoveredsubstructure is represented in I(S) bits, and the graph after the substructure replacement isrepresented in I(GjS) bits. Subdue searches for the substructure S in graph G minimizingI(S) + I(GjS).5. Inexact Graph MatchAlthough exact structure match can be used to �nd many interesting substructures, manyof the most interesting substructures show up in a slightly di�erent form throughout thedata. These di�erences may be due to noise and distortion, or may just illustrate slightdi�erences between instances of the same general class of structures. Consider the imageshown in Figure 9. The pencil and the cube would make ideal substructures in the picture,but an exact match algorithm may not consider these as strong substructures, because theyrarely occur in the same form and level of detail throughout the picture.Given an input graph and a set of de�ned substructures, we want to �nd those subgraphsof the input graph that most closely resemble the given substructures. Furthermore, we wantto associate a distance measure between a pair of graphs consisting of a given substructureand a subgraph of the input graph. We adopt the approach to inexact graph match givenby Bunke and Allermann (Bunke & Allermann, 1983).238

Substructure Discovery
4

5

1 2
3

A B
B

B

A

a b

a

b

g1 g2

b

aFigure 4: Two similar graphs g1 and g2.In this inexact match approach, each distortion of a graph is assigned a cost. A distortionis described in terms of basic transformations such as deletion, insertion, and substitutionof vertices and edges. The distortion costs can be determined by the user to bias the matchfor or against particular types of distortions.An inexact graph match between two graphs g1 and g2 maps g1 to g2 such that g2 isinterpreted as a distorted version of g1. Formally, an inexact graph match is a mappingf : N1 ! N2 [f�g, where N1 and N2 are the sets of vertices of g1 and g2, respectively. Avertex v 2 N1 that is mapped to � (i.e., f(v) = �) is deleted. That is, it has no correspondingvertex in g2. Given a set of particular distortion costs as discussed above, we de�ne the costof an inexact graph match cost(f), as the sum of the cost of the individual transformationsresulting from f , and we de�ne matchcost(g1; g2) as the value of the least-cost function thatmaps graph g1 onto graph g2.Given g1, g2, and a set of distortion costs, the actual computation of matchcost(g1; g2)can be determined using a tree search procedure. A state in the search tree corresponds toa partial match that maps a subset of the vertices of g1 to a subset of the vertices in g2.Initially, we start with an empty mapping at the root of the search tree. Expanding a statecorresponds to adding a pair of vertices, one from g1 and one from g2, to the partial mappingconstructed so far. A �nal state in the search tree is a match that maps all vertices of g1 tog2 or to �. The complete search tree of the example in Figure 4 is shown in Figure 5. Forthis example we assign a value of 1 to each distortion cost. The numbers in circles in this�gure represent the cost of a state. As we are eventually interested in the mapping withminimum cost, each state in the search tree gets assigned the cost of the partial mappingthat it represents. Thus the goal state to be found by our tree search procedure is the�nal state with minimum cost among all �nal states. From Figure 5 we conclude that theminimum cost inexact graph match of g1 and g2 is given by the mapping f(1) = 4, f(2) = 3.The cost of this mapping is 4.Given graphs g1 with n vertices and g2 with m vertices, m � n, the complexity of thefull inexact graph match is O(nm+1). Because this routine is used heavily throughout the239

Cook & Holder
(1, 3) (1, 4) (1, 5) (1,)

(2,4) (2,5) (2,) (2,3) (2,5) (2,) (2,3) (2,4) (2,) (2,3) (2,4) (2,5) (2,)

1 0 1

7 6 10 3 6 9 7 7 10 9 10 9 11

1Figure 5: Search tree for computing matchcost(g1,g2) from Figure 4.discovery and evaluation process, the complexity of the algorithm can signi�cantly degradethe performance of the system.To improve the performance of the inexact graph match algorithm, we extend Bunke'sapproach by applying a branch-and-bound search to the tree. The cost from the root of thetree to a given node is computed as described above. Nodes are considered for pairings inorder from the most heavily connected vertex to the least connected, as this constrains theremaining match. Because branch-and-bound search guarantees an optimal solution, thesearch ends as soon as the �rst complete mapping is found.In addition, the user can place a limit on the number of search nodes considered bythe branch-and-bound procedure (de�ned as a function of the size of the input graphs).Once the number of nodes expanded in the search tree reaches the de�ned limit, the searchresorts to hill climbing using the cost of the mapping so far as the measure for choosing thebest node at a given level. By de�ning such a limit, signi�cant speedup can be realized atthe expense of accuracy for the computed match cost.Another approach to inexact graph match would be to encode the di�erence betweentwo graphs using the MDL principle. Smaller encodings would indicate a lower match costbetween the two graphs. We leave this as a future research direction.6. Guiding the Discovery Process with Background KnowledgeAlthough the principle of minimum description length is useful for discovering substruc-tures that maximize compression of the data, scientists may realize more bene�t from thediscovery of substructures that exhibit other domain-speci�c and domain-independent char-acteristics.To make Subdue more powerful across a wide variety of domains, we have added theability to guide the discovery process with background knowledge. Although the minimumdescription length principle still drives the discovery process, the background knowledge canbe used to input a bias toward certain types of substructures. This background knowledgeis encoded in the form of rules for evaluating substructures, and can represent domain-independent or domain-dependent rules. Each time a substructure is evaluated, these input240

Substructure Discoveryrules are used to determine the value of the substructure under consideration. Becauseonly the most-favored substructures are kept and expanded, these rules bias the discoveryprocess of the system.Each background rule can be assigned a positive, zero, or negative weight, that biasesthe procedure toward a type of substructure, eliminates the use of the rule, or biases theprocedure away from a type of substructure, respectively. The value of a substructure isde�ned as the description length (DL) of the input graph using the substructure multi-plied by the weighted value of each background rule from a set of rules R applied to thesubstructure. value(s) = DL(G; s)� jRjYr=1 ruler(s)er (1)Three domain-independent heuristics that have been incorporated as rules into the Sub-due system are compactness, connectivity, and coverage. For the de�nitions of these rules,we will let G represent the input graph, s represent a substructure in the graph, and Irepresent the set of instances of the substructure s in G. The instance weight w of aninstance i 2 I of a substructure s is de�ned to bew(i; s) = 1� matchcost(i; s)size(i) ; (2)where size(i) = #vertices(i) + #edges(i). If the match cost is greater than the size of thelarger graph, then w(i; s) = 0. The instance weights are used in these rules to compute aweighted average over instances of a substructure. A value of 1 is added to each formula sothat the exponential weights can be used to control the rule's signi�cance.The �rst rule, compactness, is a generalization of Wertheimer's Factor of Closure, whichstates that human attention is drawn to closed structures (Wertheimer, 1939). A closedsubstructure has at least as many edges as vertices, whereas a non-closed substructurehas fewer edges than vertices (Prather, 1976). Thus, closed substructures have a highercompactness value. Compactness is de�ned as the weighted average of the ratio of thenumber of edges in the substructure to the number of vertices in the substructure.compactness(s) = 1 + 1jI jXi2I w(i; s)� #edges(i)#vertices(i) (3)The second rule, connectivity, measures the amount of external connection in the in-stances of the substructure. The connectivity rule is a variant of Wertheimer's Factorof Proximity (Wertheimer, 1939), and is related to earlier numerical clustering techniques(Zahn, 1971). These works demonstrate the human preference for \isolated" substructures,that is, substructures that are minimally related to adjoining structure. Connectivity mea-sures the \isolation" of a substructure by computing the inverse of the average number ofexternal connections over all the weighted instances of the substructure in the input graph.An external connection is de�ned here as an edge that connects a vertex in the substructureto a vertex outside the substructure. The formula for determining the connectivity of asubstructure s with instances I in the input graph G is given below.241

Cook & Holderconnectivity(s) = 1 + " 1jI jXi2I w(i; s)� num external conns(i)#�1 (4)The third rule, coverage, measures the fraction of structure in the input graph describedby the substructure. The coverage rule is motivated from research in inductive learning andprovides that concept descriptions describing more input examples are considered better(Michalski & Stepp, 1983). Although MDL measures the amount of structure, the coveragerule includes the relevance of this savings with respect to the size of the entire input graph.Coverage is de�ned as the number of unique vertices and edges in the instances of thesubstructure divided by the total number of vertices and edges in the input graph. In thisformula, the unique structure(i) of an instance i is the number of vertices and edges in ithat have not already appeared in previous instances in the summation.coverage(s) = 1 + Pi2I w(i; s)� unique structure(i)size(G) (5)Domain-dependent rules can also be used to guide the discovery process in a domainwhere scientists can contribute their expertise. For example, CAD circuits generally consistof two types of components, active and passive components. The active components arethe main driving components. Identifying the active components is the �rst step in under-standing the main function of the circuit. To add this knowledge to Subdue we includea rule that assigns higher values to substructures (circuit components) representing activecomponents and lower values to substructures representing passive components. Since theactive components have higher scores, they are expected to be selected. The system canthen focus the attention on the active components which will be expanded to the functionalsubstructures.Another method of biasing the discovery process with background knowledge is to letbackground rules a�ect the prior probabilities of possible substructures. However, choosingthe appropriate prior probabilities to express desired properties of substructures is di�-cult, but indicates a future direction for the inclusion of background knowledge into thesubstructure discovery process.7. ExperimentsThe experiments in this section evaluate Subdue's substructure discovery capability inseveral domains, including chemical compound analysis, scene analysis, CAD circuit designanalysis, and analysis of an arti�cially-generated structural database.Two goals of our substructure discovery system are to �nd substructures that can reducethe amount of information needed to describe the data, and to �nd substructures that areconsidered interesting for the given database. As a result, we evaluate the Subdue systemin this section along these two criteria. First, we measure the amount of compression thatSubdue provides across a variety of databases. Second, we use the Subdue system with theadditional background knowledge rules to re-discover substructures that have been identi�edas interesting by experts in each speci�c domain. Section 7.1 describes the domains usedin these experiments, and Section 7.2 presents the experimental results.242

Substructure Discovery
CH3

O

O

CH3 C O

CH OH2

OHFigure 6: Cortisone.
C C

CH
2

CH3 H

CH
2

C C

CH
2

CH3 H

CH
2

C C

CH
2

CH3 H

CH
2

C C

CH
2

CH3
H

CH
2

C C

CH
2

CH3 H

CH
2Figure 7: Natural rubber (all-cis polyisoprene).7.1 Domains7.1.1 Chemical Compound AnalysisChemical compounds are rich in structure. Identi�cation of the common and interestingsubstructures can bene�t scientists by identifying recurring components, simplying the datadescription, and focusing on substructures that stand out and merit additional attention.Chemical compounds are represented graphically by mapping individual atoms, such ascarbon and oxygen, to labeled vertices in the graph, and by mapping bonds between theatoms onto labeled edges in the graph. Figures 6, 7, and 8 show the graphs representingthe chemical compound databases for cortisone, rubber, and a portion of a DNA molecule.7.1.2 Scene AnalysisImages and scene descriptions provide a rich source of structure. Images that humansencounter, both natural and synthesized, have many structured subcomponents that drawour attention and that help us to interpret the data or the scene.Discovering common structures in scenes can be useful to a computer vision system.First, automatic substructure discovery can help a system interpret an image. Instead ofworking from low-level vertices and edges, Subdue can provide more abstract structuredcomponents, resulting in a hierarchical view of the image that the machine can analyze atmany levels of detail and focus, depending on the goal of the analysis. Second, substructurediscovery that makes use of an inexact graph match can help identify objects in a 2D imageof a 3D scene where noise and orientation di�erences are likely to exist. If an object ap-pears often in the scene, the inexact graph match driving the Subdue system may captureslightly di�erent views of the same object. Although an object may be di�cult to identify243

Cook & Holder
OCH2

O

N

N

N
N

N

H

H

H

O

N

O CH3

O

O
OCH2

O

N
O

PO OH

O

O

PO OH

OCH2

O

O

PO OH

CH2

O

P OHO

H

H

O

CH3

O

CH2

O
NO

N
N

NN

N

P OHO

O

O

CH2

O

N H

N
N O

H

P OHO

O

O

N
N

OCH3

H

H N

N
N

N

H

N

adenine

guanine

thymine adenine

cytosine

thymine

Figure 8: Portion of a DNA molecule.
Figure 9: Scene analysis example.244

Substructure Discovery
f a l

k x p

t

mFigure 10: Possible vertices and labels.
l

l l l l

l l l l l l

l l

l

l

l

t

t

t
t

t

l

t

l

t

lt

t

m

a

l

l

l

a

a

f

aFigure 11: Portion of graph representing scene in Figure 4.from just one 2D picture, Subdue will match instances of similar objects, and the di�er-ences between these instances can provide additional information for identi�cation. Third,substructure discovery can be used to compress the image. Replacing common interestingsubstructures by a single vertex simpli�es the image description and reduces the amount ofstorage necessary to represent the image.To apply Subdue to image data, we extract edge information from the image andconstruct a graph representing the scene. The graph representation consists of eight typesof vertices and two types of arcs (edge and space). The vertex labels (f , a, l, t, k, x, p, andm) follow the Waltz labelings (Waltz, 1975) of junctions of edges in the image and representthe types of vertices shown in Figure 10. An edge arc represents the edge of an object in theimage, and a space arc links non-connecting objects together. The edge arcs represent anedge in the scene that connects two vertices, and the space arcs connect the closest verticesfrom two disjoint neighboring objects. Distance, curve, and angle information has not beenincluded in the graph representation, but can be added to give additional information aboutthe scene. Figure 11 shows the graph representation of a portion of the scene depicted inFigure 9. In this �gure, the edge arcs are solid and the space arcs are dashed.245

Cook & Holder
drain

drain

GND

gate

gate

source

VCC

ext_pin

n_mosfet

connect

ext_pin

n_mosfet

drain

gate

source

drain

gate

source

connectFigure 12: Ampli�er circuit and graph representation.7.1.3 CAD Circuit AnalysisIn this domain, we employ Subdue to �nd circuit components in CAD circuit data. Discov-ery of substructures in circuit data can be a valuable tool to an engineer who is attempting toidentify common reusable parts in a circuit layout. Replacing individual components in thecircuit description by larger substructure descriptions will also simplify the representationof the circuit.The data for the circuit domain was obtained from National Semiconductor, and con-sists of a set of components making up a circuit as output by the Cadence Design System.The particular circuit used for this experiment is a portion of an analog-to-digital con-verter. Figure 12 presents a circuit for an ampli�er and gives the corresponding graphrepresentation.7.1.4 Artificial DomainIn the �nal domain, we arti�cially generate graphs to evaluate Subdue's ability to discoversubstructures capable of compressing the graph. Four substructures are created of varyingsizes with randomly-selected vertices and edges (see Figure 13). The name of a substructurereects the number of vertices and edges in its graph representation. Next, these substruc-tures are embedded in larger graphs whose size is 15 times the size of the substructure.The graphs vary across four parameters: number of possible vertex and edge labels (onetimes and two times the number of labels used in the substructure), connectivity of thesubstructure (1 or 2 external connections), coverage of the instances (60% and 80%), and246

Substructure Discovery
n1 n4 n3 n2

e1e2e3
n4 n3 n2 n1

e1

e3

e3 e3

e2

e2

n7 n5 n2 n5 n3 n1 n6
e6 e3 e1 e4 e2 e6

n3 n1 n7 n4 n2 n3 n1

e7

e8

e3

e5 e3 e8

e6

e9

e1Figure 13: Four arti�cial substructures used to evaluate Subdue.the amount of distortion in the instances (0, 1 or 2 distortions). This yields a total of 96graphs (24 for each di�erent substructure).7.2 Experimental Results7.2.1 Experiment 1: Data compressionIn the �rst experiment, we test Subdue's ability to compress a structural database. Usinga beam width of 4 and Subdue's pruning mechanism, we applied the discovery algorithm toeach of the databases mentioned above. We repeat the experiment with match thresholdsranging from 0.0 to 1.0 in increments of 0.1. Table 1 shows the description length (DL) of theoriginal graph, the description length of the best substructure discovered by Subdue, andthe value of compression. Compression here is de�ned as DL of compressed graphDL of original graph . Figure 14,shows the actual discovered substructures for the �rst four datasets.As can be seen from Table 1, Subdue was able to reduce the database to slightlylarger than 14 of its original size in the best case. The average compression value overall of these domains (treating the arti�cial graphs as one value) is 0.62. The results ofthis experiment demonstrate that the substructure discovered by Subdue can signi�cantlyreduce the amount of data needed to represent an input graph. We expect that compressingthe graph using combinations of substructures and hierarchies of substructures will realizeeven greater compression in some databases.247

Cook & Holder
Database DLoriginal Thresholdoptimal DLcompressed CompressionRubber 371.78 0.1 95.20 0.26Cortisone 355.03 0.3 173.25 0.49DNA 2427.93 1.0 2211.87 0.91Pencils 1592.33 1.0 769.18 0.48CAD { M1 4095.73 0.7 2148.8 0.52CAD { S1SegDec 1860.14 0.7 1149.29 0.62CAD { S1DrvBlk 12715.12 0.7 9070.21 0.71CAD { BlankSub 8606.69 0.7 6204.74 0.72CAD { And2 427.73 0.1 324.52 0.76Arti�cial (avg. over 96 graphs) 1636.25 0.0: : :1.0 1164.02 0.71Table 1: Graph compression results.

l

a

a

C

C

OCH2

O

C
C

O

C

C

C C

CH
2

CH3 H

CH
2

(a) (b) (c) (d)Figure 14: Best substructure for (a) rubber database, (b) cortisone database, (c) DNAdatabase, and (d) image database.248

Substructure DiscoveryFigure 15: Benzene ring discovered by Subdue.7.2.2 Experiment 2: Re-discovery of known substructures using backgroundknowledgeAnother way of evaluating the discovery process is to evaluate the interestingness of thediscovered substructures. The determination of this value will change from domain todomain. As a result, in this second set of experiments we test Subdue's ability to discoversubstructures that have already been labeled as important by experts in the domains underconsideration.In the chemical compound domain, chemists frequently describe compounds in terms ofthe building-block components that are heavily used. For example, in the rubber compounddatabase shown in Figure 7, the compound is made up of a chain of structures that arelabeled by chemists as isoprene units. Subdue's ability to re-discover this structure isexempli�ed in Figure 14a. This substructure, which was discovered using the MDL principlewith no extra background knowledge, represents an isoprene unit.Although Subdue was able to re-discover isoprene units without extra backgroundknowledge, the substructure a�ording the most compression will not always be the most in-teresting or important substructure in the database. For example, in the cortisone databasethe benzene ring which consists of a ring of carbons is not discovered using only the MDLprinciple. However, the additional background rules can be used to increase the chance of�nding interesting substructures in these domains. In the case of the cortisone compound,we know that the interesting structures exhibit a characteristic of closure. Therefore, wegive a strong weight (8.0) to the compactness background rule and use a match threshold of0.2 to allow for deviations in the benzene ring instances. In the resulting output, Subdue�nds the benzene ring shown in Figure 15.In the same way, we can use the background rules to �nd the pencil substructure inthe image data. When the image in Figure 9 is viewed, the substructure of interest is thepencil in its various forms. However, the substructure that a�orded the most compressiondoes not make up an entire pencil. We know that the pencils have a high degree of closureand of coverage, so the weights for these rules are set to 1.0. With these weights, Subdueis able to �nd the pencil substructure shown in Figure 16 for all tested match thresholdsbetween 0.0 and 1.0.8. Hierarchical Concept DiscoveryAfter a substructure is discovered, each instance of the substructure in the input graph canbe replaced by a single vertex representing the entire substructure. The discovery procedurecan then be repeated on the compressed data set, resulting in new interesting substructures.If the newly-discovered substructures are de�ned in terms of existing substructure concepts,the substructure de�nitions form a hierarchy of substructure concepts.249

Cook & Holder
l

l l

a aFigure 16: Pencil substructure discovered by Subdue.Hierarchical concept discovery also adds the capability to improve Subdue's perfor-mance. When Subdue is applied to a large input graph, the complexity of the algorithmprevents consideration of larger substructures. Using hierarchical concept discovery, Sub-due can �rst discover those smaller substructures which best compress the data. Applyingthe compression reduces the graph to a more manageable size, increasing the chance thatSubdue will �nd the larger substructures on the subsequent passes through the database.Once Subdue selects a substructure, all vertices that comprise the exact instances ofthe substructure are replaced in the graph by a single vertex representing the discoveredsubstructure. Edges connecting vertices outside the instance to vertices inside the instancenow connect to the new vertex. Edges internal to the instance are removed. The discoveryprocess is then applied to the compressed data. If a hierarchical description of concepts isparticularly desired, heavier weight can be given to substructures which utilize previouslydiscovered substructures. The increased weight reects increased attention to this substruc-ture. Figure 17 illustrates the compressed rubber compound graph using the substructureshown in Figure 14a.To demonstrate the ability of Subdue to �nd a hierarchy of substructures, we let the sys-tem make multiple passes through a database that represents a portion of a DNA molecule.Figure 8 shows a portion of two chains of a double helix, using three pairs of bases whichare held together by hydrogen bonds. Figure 18 shows the substructures found by Subdueafter each of three passes through the data. Note that, on the third pass, Subdue linkedtogether the instances of the substructure in the second pass to �nd the chains of the doublehelix.Although replacing portions of the input graph with the discovered substructures com-presses the data and provides a basis for discovering hierarchical concepts in the data, thesubstructure replacement procedure becomes more complicated when concepts with inexactinstances are discovered. When inexact instances of a discovered concept are replaced bya single vertex in the data, all distortions of the graph (di�erences between the instancegraph and the substructure de�nition) must be attached as annotations to the vertex label.250

Substructure Discovery
S = C C

CH
2

CH3 H

CH
2

1

Highest-valued substructure

S
S

S
S

S

C C

CH
2

CH3 H

CH
2

C C

CH
2

CH3 H

CH
2

C C

CH
2

CH3 H

CH
2

C C

CH
2

CH3
H

CH
2

C C

CH
2

CH3 H

CH
2

=

G = 1
1

1
1

1

Compressed graph using discovered substructure

Figure 17: Compressed graph for rubber compound data.
251

Cook & Holder
CH2

O

S =1

OCH2

O

O

P

O

P

S1 C

S =2S =2 =

OCH2

O

OCH2

O

O

PO OH

O

O

PO OH

OCH2

O

O

PO OH

O OH

O

S2

O OHS2

O OHS2

S =3 =

Highest-valued substructure
after First Pass

Highest-valued substructure
after Second Pass

Highest-valued substructure
after Third Pass

O

Figure 18: Hierarchical discovery in DNA data.252

Substructure Discovery9. ConclusionsExtracting knowledge from structural databases requires the identi�cation of repetitive sub-structures in the data. Substructure discovery identi�es interesting and repetitive structurein structural data. The substructures represent concepts found in the data and a means ofreducing the complexity of the representation by abstracting over instances of the substruc-ture. We have shown how the minimum description length (MDL) principle can be used toperform substructure discovery in a variety of domains. The substructure discovery processcan also be guided by background knowledge. The use of an inexact graph match allowsdeviation in the instances of a substructure. Once a substructure is discovered, instancesof the substructure can be replaced by the concept de�nition, a�ording compression of thedata description and providing a basis for discovering hierarchically-de�ned structures.Future work will combine structural discovery with discovery of concepts using a linear-based representation such as AutoClass (Cheeseman, Kelly, Self, Stutz, Taylor, & Freeman,1988). In particular, we will use Subdue to compress the data fed to AutoClass, andlet Subdue evaluate the interesting structures in the classes generated by AutoClass. Inaddition, we will be developing a parallel implementation of the AutoClass / Subduesystem that will enable application of substructure discovery to larger structural databases.AcknowledgementsThis project is supported by NASA grant NAS5-32337. The authors would like to thankMike Shay at National Semiconductor for providing the circuit data. We would also liketo thank Surnjani Djoko and Tom Lai for their help with this project. Thanks also to thereviewers for their numerous insightful comments.ReferencesBunke, H., & Allermann, G. (1983). Inexact graph matching for structural pattern recog-nition. Pattern Recognition Letters, 1 (4), 245{253.Cheeseman, P., Kelly, J., Self, M., Stutz, J., Taylor, W., & Freeman, D. (1988). Autoclass:A bayesian classi�cation system. In Proceedings of the Fifth International Workshopon Machine Learning, pp. 54{64.Conklin, D., & Glasgow, J. (1992). Spatial analogy and subsumption. In Proceedings of theNinth International Machine Learning Workshop, pp. 111{116.Derthick, M. (1991). A minimal encoding approach to feature discovery. In Proceedings ofthe Ninth National Conference on Arti�cial Intelligence, pp. 565{571.Fisher, D. H. (1987). Knowledge acquisition via incremental conceptual clustering. MachineLearning, 2 (2), 139{172.Fu, K. S. (1982). Syntactic Pattern Recognition and Applications. Prentice-Hall.Holder, L. B., Cook, D. J., & Bunke, H. (1992). Fuzzy substructure discovery. In Proceedingsof the Ninth International Machine Learning Conference, pp. 218{223.253

Cook & HolderHolder, L. B., & Cook, D. J. (1993). Discovery of inexact concepts from structural data.IEEE Transactions on Knowledge and Data Engineering, 5 (6), 992{994.Jeltsch, E., & Kreowski, H. J. (1991). Grammatical inference based on hyperedge replace-ment. In Fourth International Workshop on Graph Grammars and Their Applicationto Computer Science, pp. 461{474.Leclerc, Y. G. (1989). Constructing simple stable descriptions for image partitioning. In-ternational journal of Computer Vision, 3 (1), 73{102.Levinson, R. (1984). A self-organizing retrieval system for graphs. In Proceedings of theSecond National Conference on Arti�cial Intelligence, pp. 203{206.Michalski, R. S., & Stepp, R. E. (1983). Learning from observation: Conceptual clustering.In Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (Eds.), Machine Learning:An Arti�cial Intelligence Approach, Vol. I, pp. 331{363. Tioga Publishing Company.Miclet, L. (1986). Structural Methods in Pattern Recognition. Chapman and Hall.Pednault, E. P. D. (1989). Some experiments in applying inductive inference principlesto surfa ce reconstruction. In Proceedings of the International Joint Conference onArti�cial Intelligence, pp. 1603{1609.Pentland, A. (1989). Part segmentation for object recognition. Neural Computation, 1,82{91.Prather, R. (1976). Discrete Mathemetical Structures for Computer Science. HoughtonMi�n Company.Quinlan, J. R., & Rivest, R. L. (1989). Inferring decision trees using the minimum descrip-tion length principle. Information and Computation, 80, 227{248.Rao, R. B., & Lu, S. C. (1992). Learning engineering models with the minimum descrip-tion length principle. In Proceedings of the Tenth National Conference on Arti�cialIntelligence, pp. 717{722.Rissanen, J. (1989). Stochastic Complexity in Statistical Inquiry. World Scienti�c PublishingCompany.Schalko�, R. J. (1992). Pattern Recognition: Statistical, Structural and Neural Approaches.John Wiley & Sons.Segen, J. (1990). Graph clustering and model learning by data compression. In Proceedingsof the Seventh International Machine Learning Workshop, pp. 93{101.Thompson, K., & Langley, P. (1991). Concept formation in structured domains. In Fisher,D. H., & Pazzani, M. (Eds.), Concept Formation: Knowledge and Experience in Un-supervised Learning, chap. 5. Morgan Kaufmann Publishers, Inc.Waltz, D. (1975). Understanding line drawings of scenes with shadows. In Winston, P. H.(Ed.), The Psychology of Computer Vision. McGraw-Hill.254

Substructure DiscoveryWertheimer, M. (1939). Laws of organization in perceptual forms. In Ellis, W. D. (Ed.), ASourcebook of Gestalt Psychology, pp. 331{363. Harcourt, Brace and Company.Winston, P. H. (1975). Learning structural descriptions from examples. In Winston, P. H.(Ed.), The Psychology of Computer Vision, pp. 157{210. McGraw-Hill.Yoshida, K., Motoda, H., & Indurkhya, N. (1993). Unifying learning methods by coloreddigraphs. In Proceedings of the Learning and Knowledge Acquisition Workshop atIJCAI-93.Zahn, C. T. (1971). Graph-theoretical methods for detecting and describing gestalt clusters.IEEE Transactions on Computers, 20 (1), 68{86.

255

