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Systems biology has become a major field of post-genomic bioinformatics
research. A biological network containing various objects and their relation-
ships is a fundamental way to represent a bio-system. A graph consisting of
vertices and edges between these vertices is a natural data structure to rep-
resent biological networks. Substructure analysis of metabolic pathways by
graph-based relational learning provides us biologically meaningful substruc-
tures for system-level understanding of organisms.

This chapter presents a graph representation of metabolic pathways to
describe all features of metabolic pathways and describes the application of
graph-based relational learning for structure analysis on metabolic pathways
in both supervised and unsupervised scenarios. We show that the learned
substructures can not only distinguish between two kinds of biological net-
works and generate hierarchical clusters for better understanding of them,
but also have important biological meaning.

1 Introduction

A biological organism has one ultimate goal: to continue the life of its species
and itself in the natural environment. This goal requires two important ac-
tivities, maintaining low entropy in the environment and reproducing oneself.
Biological organisms need to process various functions to maximize free en-
ergy and minimize entropy. These two basic processes are preformed by a
variety of interactions in an organism.

Fundamentally the organism is a system itself as well as a property of a bio-
ecosystem. A biological organism is not just composed of various objects, but
also has dynamic and interactive relationships among them. A system-level
understanding is a more efficient way to approach the organisms. With ad-
vances in computer science, bioinformatics plays a central role in life science.
Traditional bioinformatics has been focused on molecular-level research. Ge-
nomics and proteomics, main areas in molecular-level research, have studied
function and structure of macromolecules in organisms, and produced a huge
amount of results. However almost every biomolecule plays its role only in
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harmony with other components of the cytoplasmic environment. Molecular-
level understanding is definitely a fundamental step, but it is not the final
step. It is time to steer our steps to system-level approaches to bio-systems.

A biological network is a fundamental and indispensable way to describe
a complex system in terms of both the structure and its dynamics. The fi-
nal goal of systems biology is to model and simulate the biological networks
for better understanding of bio-systems and contribution for drug discovery.
An efficient way to model unrecognized biological networks is to discover
patterns in existing biological networks. Biological networks contain various
biomolecules and their relationships. The patterns of relationships in biolog-
ical networks are crucial to understanding organisms and to modeling them
at the system-level. Structure analysis of biological networks is a primary
movement in systems biology.

Logic-based and graph-based approaches, as subfields of multi-relational
data mining, are applied to mine patterns in biological networks. Logic-based
data mining, also called inductive logic programming, represents networks
using logic [22]. But this approach requires complicated syntax and the defi-
nition of prior knowledge. A graph has been widely used to represent a variety
of relational data such as computer networks, social networks, and biological
data. A biological network is another appropriate domain to be represented
as a graph. Graph-based relational learning can be applied to find the mean-
ingful patterns in the biological network that is represented as a graph.

In this paper, we review systems biology and some multi-relational data
mining approaches applied to biological networks, and we describe the knowl-
edge discovery approach used in the SUBDUE graph-based relational learning
system. We then show the application of SUBDUE to metabolic pathways,
which are downloaded from the KEGG PATHWAY database and represented
as a graph. The goal of this research is to show that the learned substructures
describe the system-level features in metabolic pathways and convey impor-
tant biological meaning. Structure analysis on the same metabolic pathways
from different species finds the substructure showing the unique features for
specific species. Supervised learning shows that the learned substructures can
identify what is unique about a specific type of pathway, which allows us to
understand better how pathways differ. Unsupervised learning produces hi-
erarchical clusters that describe what is common about a specific group of
pathways, which provides us better understanding of common structure in
pathways. Ultimately, these substructures can improve both our ability to
understand recognized pathways and categorize unrecognized ones.

2 Systems Biology and Biological Networks

Systems biology is a novel stream of life science focusing on a compre-
hensive bio-system including integrated and interacting biological networks
which are relations of genes, proteins and other biomolecules [15]. A system
should be studied in a system-level manner including using comprehensive
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Fig. 1. TCA cycle biological network of Homo Sapiens [26]

methodologies, integrating heterogeneous data and understanding interac-
tions with other data and various conditions. A system cannot be compre-
hended as a part but as a whole system.

Fundamentally an organism is a system itself as well as a property of
a bio-ecosystem. The organism has a systematically well-organized structure
consisting of multi-level compositions such as tissue, organ and organ system,
all of which are based on a cell as a functional and structural basic unit.
Each constituent is cooperating with others interactively as well as organized
systematically. Even the basic unit, the cell, is also a system itself. A cell
has a variety of biomolecules that are working with interactive relationships
among them.

A huge amount of biological data has been generated by long-term re-
search. Each result cannot allow us to understand a whole biological system,
because any molecule or constituent in the organism never works alone. They
always interact with others in the system. For this reason an organism should
be explored as a system.

A biological system can be described as a large biological network, which
consists of numerous small networks. Each network has various biomolecules
and their relationships. Generally a cellular system is represented by three
kinds of biological networks: metabolic pathways, protein-protein interactions
and gene regulatory networks [16]. Our research is currently focused on the
metabolic pathways.
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Figure 1 shows a metabolic pathway called the TCA cycle which is
a metabolic pathway for the production of ATP (a fundamental energy
molecule in a cell). A rectangle represents an enzyme (protein) or a gene,
and a circle represents a chemical compound. Each arrow describes a relation-
ship between these molecules. In marked area (A), a compound, (S)-Malate
(L-Malic acid), as a substrate is changed to another compound, Fumarate,
as a product by an enzyme, ec:4.2.1.2. This is a basic biochemical reaction.
The metabolic pathway is a complex network of biochemical reactions. A
fundamental step to study metabolic pathways is the identification of struc-
tures covering a variety of biomolecules and their relationships. Dynamics
and control methods of metabolic pathways are also included, because bi-
ological systems are interactive and well-controlled optimized systems [15].
Our current research is focused on identifying the structure. Our ultimate
goal is to make a blueprint for system-level understanding and its applica-
tion based on an understanding of the structure, dynamics and control of
metabolic pathways.

The KEGG PATHWAY is a widely known database which contains infor-
mation on various kinds of pathways including pathway image files (figure 1)
[14]. The KEGG PATHWAY database has 84,441 pathways generated from
344 reference pathways (on December, 2008). It has six fundamental cat-
egories of pathways: Metabolism, Genetic information processing, Environ-
mental information processing, Cellular processes and human diseases and
Drug development . This database contains not only various information
on pathways, but also plentiful information of their components as linked
databases. It also has the KGML (KEGG Markup Language) as an exchange
format for KEGG pathways, based on XML.

3 Related Work

Biological networks consist of various molecules and their relationships. Each
molecule can have its own properties and can also influence relationships with
other molecules. For this reason, traditional data mining, focusing only on
the properties, is not applicable to biological networks. Multi-relational data
mining is focused not only on properties of molecules but also their relation-
ships [7]. To apply multi-relational data mining, it is necessary to represent
the data along with its multiple relations. First-order logics and graph rep-
resentations are used for representation of multi-relational data. These rep-
resentation methods lead to two general approaches of multi-relational data
mining: logic-based data mining and graph-based data mining.

In this section, we introduce several approaches to analyze biological net-
works. Then, we will introduce the multi-relational data mining approach as
a method to analyze biological networks including inductive logic program-
ming as a logic-based data mining method and two categories of graph-based
data mining: graph-based relational learning and frequent subgraph mining
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[10]. Graph-based relational learning, as our main focus, will be described in
section 4.

3.1 Analysis of Biological Networks

Aittokallio and Schwikowski survey recent works of graph-based methods for
analysis of biological networks [1]. They categorize graph-based approaches
into three levels: global structural property, local structural connectivity
and hierarchical functional description. They also introduced some recent
approaches including integrating data from multiple source, graph-based
software tools for network analysis and network reconstruction by reverse
engineering.

Cheng et al. [3] show an approach of mining bridges and motifs from bio-
logical networks. They use a statistical method to detect structural bridges
and motifs, and compare their bridges and motifs with functional units in the
biological networks. They suggest the structures of the discovered bridges and
motifs are significantly related to their function. Hwang et al. [13] introduce
an approach of detecting novel functional patterns in protein-protein inter-
action networks using graph properties and signal transduction behavior.
They model the dynamic relationships between two proteins using a sig-
nal transduction model to represent functional similarity between proteins.
Huan et al. [12] try to discover spatial patterns in protein structures using
the subgraph mining approach. They use Delaunay tessellation to represent
three-dimensional structure of proteins, where Delaunay tessellation is de-
fined based on the coordinates of molecules in the proteins. If two Voronoi
cells share a common face, two points are connected by an edge. In this
way, they represent the protein structure as a graph, and apply the frequent
subgraph mining approach.

Mathematical modeling abstractly describes a system using mathematical
formulae [20, 27]. Most of these approaches, as a type of quantitative analysis,
model the kinetics of pathways and analyze the trends in the amounts of
molecules and the flux of biochemical reactions. But most of them disregard
relations among multiple molecules.

Our research applies graph-based data mining to learn the patterns in
the dynamics of biological networks [29, 30]. We introduce a dynamic graph
containing a sequence of graphs that represent the time-based versions of
biological networks to represent the structural changes of biological networks.
Our approach first discovers graph rewriting rules between two sequential
graphs to represent how one network is changed to another, and then discover
more general transformation rules in the set of the graph rewriting rules to
describe how biological networks change over time.

There are many computational approaches to analyze biological networks.
Biosystems are organized as networks and perform their function in relations
to molecules and systems. For this reason, we need to focus on the structural
properties of biological networks rather than the molecules themselves.
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3.2 Logic-Based Data Mining

Logic-based data mining is a multi-relational data mining technique using
first order logic to represent data. Inductive Logic Programming (ILP), a
typical logic-based data mining technique, is an approach to induce hypothe-
ses (rules, concepts, or knowledge) from observations (examples, instances,
or experiences) by using logic to represent hypotheses and observations [7].
ILP has been applied in several ways to biological domains such as genomics
and proteomics. ILP in company with other approaches has been applied to
metabolic pathways.

Support Vector Inductive Logic Programming (SVILP) is the intersection
approach between Support Vector Machines (SVM) and ILP. By using logic
to represent background knowledge, the SVILP technique has been applied
to the prediction of toxicity of given materials [23]. Stochastic methods are
also applied to logic programming to model metabolic pathways. This ap-
proach models rates of biochemical reactions using probabilities in addition
to representation of metabolic pathways by logic [21]. A last approach is
a cooperation between induction and abduction. This approach generates
hypotheses from not only abductive reasoning from experimental data (con-
centrations of metabolites), but also inductive reasoning from general rules
(from the KEGG database) to model inhibition in metabolic pathways [25].
An inhibitor is a chemical compound to control biochemical reactions.

Several ILP-related techniques have been successfully applied to metabolic
pathways. Logic programming can efficiently represent relational data, but
prior rules and examples may be necessary to represent entire pathways.

3.3 Frequent Subgraph Mining

The graph is an abstract data structure consisting of vertices and edges which
are relationships between vertices. Graph-based data mining denotes a col-
lection of algorithms for mining the relational aspects of data represented as
a graph. Graph-based data mining has two major approaches: frequent sub-
graph mining and graph-based relational learning. Frequent subgraph mining
is focused on finding frequent subgraphs in a graph. There are two well-known
approaches to bioinformatics domains. Frequent SubGraph discovery, FSG,
finds all connected subgraphs that appear frequently in a set of graphs. FSG
starts by finding all frequent single and double edge graphs. During each
iteration FSG expands the size of frequent subgraphs by adding one edge
to generate candidate subgraphs. Then, it evaluates and prunes discovered
subgraphs with user-defined constraints [19].

Graph-based Substructure Pattern Mining, gSpan, uses the depth-first
search and lexicographic ordering. First gSpan sorts the labels, removes in-
frequent vertices and edges, and it relabels the remaining vertices and edges.
Next it starts to find all frequent one-edge subgraphs. The labels on these
edges and vertices define a code for each graph. Larger subgraphs map them-
selves to longer codes. If the code of B is longer than A, the B code is a
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child of the A code in a code tree. If there are two not-unique codes in the
tree, one of them is removed during the depth-first search traversal to reduce
the cost of matching frequent subgraphs [28]. There are a few approaches of
frequent subgraph mining applied to metabolic pathways. Pathway Miner, a
simplified graph-mining approach on metabolic pathways, proposes a simpli-
fied graph representation consisting of just enzyme relationships. In this way,
the approach may avoid the NP-hard subgraph isomorphism problem and
find frequent patterns quickly [17]. However, the over-simplified representa-
tion makes this approach focus on just enzyme relationships, missing some
important features of metabolic pathways.

Mining coherent dense subgraphs uses the correlation of graphs which
represent gene regulatory networks [11]. This approach compresses a group
of graphs into two meta-graphs using correlated occurrences of edges for
efficient clustering. This approach also loses some biological characteristics
of gene regulatory networks, because its representation of a graph is derived
only from the similarity of the gene expression patterns between two genes,
not representing how the practical biological interactions exist.

4 Graph-Based Relational Learning

Graph-based relational learning is focused on novel and meaningful, but not
necessarily most frequent, substructures in a graph representation of data. We
use the SUBDUE graph-based relational learning approach to discover pat-
terns which not only abstract instances of the patterns by compression, but
also provide better understanding of the data [5]. SUBDUE can perform un-
supervised learning and supervised learning by substructure discovery based
on Minimum Description Length (MDL). Using background knowledge given
as predefined substructures can guide graph-based relational learning to find
more meaningful substructures. SUBDUE has been applied to a variety of
areas such as Chemical Toxicity [4], Molecular Biology [24], Security [9] and
Web Search [6].

SUBDUE accepts input data which is represented as a graph with labeled
vertices and labeled, directed or undirected edges between vertices. The ob-
jects and attribute values of the data are usually represented as vertices, while
attributes and relationships between objects are represented as edges. Figure
3 shows a graph representation of a KEGG biological network. There are five
‘Entry’ vertices which represents Enzyme or Compound. Each Entry has two
attributes: name and type. Relationships are given as directed and labeled
edges from Entry to its attributes. More detail on this graph representation
will be provided later.

4.1 Discovery Algorithm

The SUBDUE discovery algorithm is based on a beam search as shown in fig-
ure 2. The algorithm starts with three parameters: input graph, beam length
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Subdue(graph G, beam B, limit L)
Q = {v | v is a vertex in G with a unique label}
bestSub = first substructure in Q
repeat

foreach substructure S ∈ Q do
add Extend(S) into extSubs
foreach newSub ∈ extSubs do

Evaluate(newSub)
add newSub in Q′ (length < B)

if best Sub ∈ Q′ better than bestSub then
bestSub = best Sub ∈ Q′

Q = Q′

until Q is empty or Num.OfSubs.Extended > L
return bestSub

Extend(S): extend Sub. S by one edge in all possible ways
Evaluate(S): evaluate Sub. S using MDL

Fig. 2. SUBDUE’s discovery algorithm

and limit value. The beam length limits the length of the queue which con-
tains extended substructures, and the limit value restricts the total number
of substructures considered by the algorithm. The initial state of the search
is the set of substructures representing each uniquely labeled vertex and their
instances. The Extend(S) function extends each instance of a substructure in
the Q in all possible ways by adding a single edge and a vertex, or by adding
a single edge if both vertices are already in the substructure. The substruc-
tures in the Q′ are ordered base on their ability to compress the input graph
as evaluated by Evaluate(S), using the minimum description length (MDL)
principle. This search (repeat loop) terminates when the number of substruc-
tures considered reaches the limit value, or the algorithm exhausts the search
space. Then it returns the best substructure.

SUBDUE can be given background knowledge in the form of predefined
substructures. SUBDUE finds the instances of these substructures and com-
presses them. Using this approach, we can verify whether the patterns learned
from a graph belong to another graph.

4.2 MDL and Heuristic Methods

The discovery algorithm of SUBDUE fundamentally is guided by the
minimum description length principle. The heuristic evaluation by the MDL
principle assumes that the best substructure is the one that minimizes the
description length of the input graph when compressed by the substructure
[5]. The description length of the substructure S is represented by DL(S), the
description length of the input graph is DL(G), and the description length
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of the input graph after compression is DL(G|S). SUBDUE’s discovery algo-
rithm tries to minimize DL(S) + DL(G|S) which represents the description
length of the graph G given the substructure S. The compression of the graph
can be calculated as

Compression =
DL(S) + DL(G|S)

DL(G)

where description length DL() is calculated as the number of bits in a
minimal encoding of the graph. Cook and Holder describe the detailed com-
putation of DL(G) in [5].

The discovery algorithm of SUBDUE is computationally expensive as other
graph-related algorithms. SUBDUE uses two heuristic constraints to main-
tain polynomial running time: Beam and Limit. Beam constrains the number
of substructures by limiting the length of the Q′ in figure 2. Limit is a user-
defined bound on the number of substructures considered by the algorithm.

4.3 Unsupervised Learning

Once the best structure is discovered, the graph can be compressed using
the best substructure. The compression procedure replaces all instances of
the best substructure in the input graph with a pointer, a single vertex, to
the discovered best substructure. The discovery algorithm can be repeated
on this compressed graph for multiple iterations until the graph cannot be
compressed any more or on reaching the user-defined number of iterations.
Each iteration generates a node in a hierarchical, conceptual clustering of the
input data. On the ith iteration, the best substructure Si is used to compress
the input graph, introducing a new vertex labeled Si to the next iteration.
Consequently, any subsequently discovered subgraph Sj can be defined in
terms of one or more Si, where i < j. The result is a lattice, where each
cluster can be defined in terms of more than one parent subgraph.

4.4 Supervised Learning

The SUBDUE discovery algorithm has been extended to perform graph-based
relational concept learning, or supervised learning [8]. The main approach of
supervised learning is to find a substructure that appears often in the pos-
itive examples, but not in the negative examples. The substructure value is
increased when positive examples are covered by the substructure, but is de-
creased where negative examples are covered. Positive examples not covered
by the substructure and negative examples covered by the substructure are
considered errors. The substructure value is calculated by

value = 1 − error

where the error is calculated by
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error =
#PosEgsNotCvd + #NegEgsCvd

#PosEgs + #NegEgs

#PosEgsNotCvd is the number of positive examples not containing the sub-
structure, and #NegEgsCvd is the number of negative examples containing
the substructure. #PosEgs is the number of positive examples remaining in
the experimental set, of which the positive examples that have already been
covered in a previous iteration were removed, and #NegEgs is the total
number of negative examples, which is constant, because negative examples
are not removed.

SUBDUE’s supervised learning uses two approaches to minimize error.
First, by using the definition of description length SUBDUE tries to find
a substructure S minimizing DL(G+|S) + DL(S) + DL(G−) − DL(G−|S),
where the last two terms represent the incorrectly compressed negative ex-
ample graph. This approach will lead the discovery algorithm toward a larger
substructure that characterizes the positive examples, but not the negative
examples.

In addition to the compression-based evaluation, SUBDUE can use a set-
cover approach based on the error measure. At each iteration SUBDUE adds
a new substructure to the disjunctive hypothesis and removes covered positive
examples. This process continues until either all positive examples are covered
or no substructure exists discriminating the remain positive examples from
the negative examples.

5 Substructure Analysis in Metabolic Pathways

Our goal is the application of the SUBDUE graph-based relational learning
system to the KEGG metabolic pathways to find better understanding and
biologically meaningful substructures. These substructures can distinguish
two pathways or provide the common features in several pathways. Research
shows that topological features of biological networks are closely related to
biological functions [13, 2].

A simple way to apply supervised or unsupervised learning to the pathways
is based on molecules, such as genes, proteins and other macro molecules.
Because each molecule has a specific structure and other biochemical fea-
tures, we can easily distinguish two groups or find the common features in
a group. But our research is focused on the pattern of the relationship be-
tween molecules for system-level understanding of pathways. The pattern of
relationship can be shown in a variety of forms, such as biochemical reaction,
enzyme activity and signal transduction.

This section first introduces our graph representation (section 5.1). As a
preliminary task, we describe substructure analysis on individual metabolic
pathways (section 5.2). Then we represent our main experiments in this re-
search: supervised learning (section 5.3) and unsupervised learning (section
5.4) on groups of metabolic pathways. The ultimate goal of our exploration
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is to show that the substructures found by graph-based relational learning
are biologically important and meaningful.

5.1 Graph Representation

Input graphs for SUBDUE are converted from KGML files. KGML is a stan-
dard data format to express and distribute a biological network from KEGG.
There are three major entities in KGML: Entry, Relation and Reaction. Entry
represents various biomolecules in the metabolic pathway, such as enzyme,
gene, compound and so on. Relation denotes a relationship between two or
more enzymes, genes and maps. The maps denote the types of the Entry
nodes linked to the other pathways [26]. The names of these Entry nodes
represent the name of the linked pathways. Reaction is a biochemical reac-
tion between two or more compounds catalyzed by one or more enzymes.
Detailed information on KGML is described in [26]. In biochemical seman-
tics, Entries are nodes of metabolic pathways, and Relations and Reactions
are relationships between two or more Entries.

entry

enzyme ec:1.4.1.5

entry

enzyme ec:1.4.1.3
relation

GErel

entry

compound cpd:06563

entry

compound cpd:06560

entry

compound cpd:06562

reaction

reversible

Rn:R05573

reaction

reversible

Rn:R05575

value
E_to_Rct

Rct_to_P
name

type
S_to_Rct

Rct_to_P

E_to_Rel
Rel_to_E

type
namenametype

S_to_Rct

name

type

E_to_Rct

type
name

nametypetype
subtype

name
type

compound

Fig. 3. A graph representation of a metabolic pathway

In our graph representation, Relations and Reactions are also represented
as vertices in order to describe the properties of Relations and Reactions.
Vertices representing major entities have two satellite vertices which are con-
nected to their main vertex by edges, labeled as Name and Type, to explain
its property. A name vertex linked by the Name edge denotes the KEGG ID,
and a type vertex linked by the Type edge describes the property of the entity
vertex. A Relation represents the association between two or more Entries
(genes or enzymes) by an edge whose label represents a direction from one
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Entry to another. Reaction also has connections with two compounds (de-
scribed as a substrate and a product) and an enzyme (as a catalyst). Figure
3 shows an example of our graph representation, which has five Entries: three
compounds and two enzymes. There is also a Relation between two enzymes,
and two Reactions sharing a compound and having relationships with two
other compounds.

Our research uses two kinds of graph representation: named and unnamed
graph. The graph in figure 3 is the named graph, which includes the KEGG
IDs. The unnamed graph is the same graph only excluding any unique IDs
of each Entry and Reaction; all vertices and edges regarding “name” are
removed from the graph in figure 3.

Unique IDs can pose potential problems when SUBDUE searches for sub-
structures that distinguish two groups of graphs, which contain a group of
pathways as positive examples and another group of pathways as negative
examples. For example, when we try to distinguish two metabolic pathways
G1 and G2, an enzyme which exists only in G1, but not in G2, is sufficient
to distinguish. Because our research is focused on the pattern of metabolic
pathways, a specific name is not useful for finding the pattern. For this rea-
son, our supervised (section 5.3) and unsupervised (section 5.4) learning on
groups of pathways use the unnamed graphs (the first phase). The named
graphs are used at the second phase to verify the biological meaning of the
patterns. The following sections describe this process in more detail.

5.2 Substructure in Metabolic Pathway

This section shows a brief example substructure analysis on metabolic path-
ways. Here we have two metabolic pathways. SUBDUE tries to find the sub-
structures that exist in one pathway, but not in another. In this experiment,
we show that the species-specificity is related to the structure of metabolic
pathways. Species-specificity is one of the most important concepts in biol-
ogy. Basically species-specificity is derived from protein structure and gene
sequence.

We arrange two glycolysis pathways from Human and E.coli : hsa00010 and
eco00010. Glycolysis is a representative energy generating process in almost
every cell. We seek a slightly structural difference between these pathways
from two species. A named graph of hsa00010 has 1047 vertices and 1208
edges, and the one of eco00010 has 1002 vertices and 1132 edges. The former
is a positive example and the latter is a negative example for supervised
learning of SUBDUE. Then we run SUBUDE to find substructures that exist
in hsa00010, but not in eco00010.

As a result, the best substructure is found as shown in figure 4. While this
substructure is discovered in eco00010 as well as hsa00010, it is still possible
to show how the two pathways differ. The instances of the best substructure
in figure 4 are found 10 times in hsa00010 and 6 times in eco00010. After
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entry
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type

E_to_Rct Rct_to_P

Fig. 4. An instance of the best substructure found in hsa00010

inspecting locations of these instances on each pathway, we can identify struc-
tural differences between two pathways.

Five cases out of 10 instances in hsa00010 are also found in eco00010. The
other five instances are found only in hsa00010. These five instances show
unique parts exist only in hsa00010. Figure 5 shows an example of one of
these five instances. Figure 5 (A) and (B) show the part of the glycolysis
pathways in human and E.coli respectively. Connected circled entities de-
note the instance of the best substructure. The marked instance includes a
reaction (R00710) catalyzed by an enzyme (ec:1.2.1.5) and three relations
related with the enzyme. The reaction R00710 exists only in hsa00010, but
not in eco00010. We can confirm this concept in figure 5. Rectangles and cir-
cles denote enzymes and compounds. There is no symbol of relation in this
figure. Grayed rectangles represent existing enzymes in the species and white
rectangles denote only conceptual views (practically do not exist). As shown
in this figure eco00010 does not include ec:1.2.1.5 and ec.1.1.1.2, which exist
in hsa00010. The process of Acetaldehyde (NAD+ oxidoreductase) does not
exist in eco00010. SUBDUE discovers this substructure existing in hsa00010,
but not in eco00010. In this way structure analysis by SUBDUE can charac-
terize the unique features of metabolic pathways.

We execute the same method on other experiment sets: 00020 (TCA cycle),
00051 (Fructose and mannose metabolism), 00061 (Fatty acid biosynthesis)
and 00272 (Cysteine metabolism) from human and E.coli. The results are
shown in table 1. The first column shows the name of the pathway. The
second column shows the number of instances of the best substructure found
in hsa pathways, and the third column shows the number of instances of the
best substructure found in eco pathways.

The best substructure of the 00020 experiment is found in both pathways
as in the 00010 experiment. But in the other three experiments the best sub-
structures are found only in the hsa pathway. The best substructure existing
only in one pathway precisely shows the unique features of the pathway. In
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Fig. 5. Part of Glycolysis pathways in human (A) and E.Coli (B) [26]. Connected
three circled entities represents an instance of the best substructure in figure 4.

Table 1. Results of structure analysis on pathways

Pathway Number of instance in hsa Number of instances in eco

00010 10 6
00020 66 47
00051 6 0
00061 171 0
00272 3 0

the case of the best substructure existing in both pathways, the number or
the location of the instances can also indicate distinguishing features of the
pathways: how many instances are in the pathway or what process is included
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into the pathway. In this way substructure analysis allows us to reveal the
system-level features of metabolic pathways.

5.3 Supervised Learning in Metabolic Pathways

The main goal of supervised learning is to distinguish between a biological
network in a species group and a different network in the same group. This
task provides us the unique substructures in the specific group of pathways
to understand better how pathways differ. The distinguishing pattern of re-
lationships between molecules, with limited consideration of the features of
each molecule, can also play an important role in system-level understanding
of organisms.

As described previously supervised learning uses the unnamed graphs for
substructure discovery (the first phase) and the named graphs for verification
of the substructure (the second phase). Graphs of metabolic pathways are di-
vided into two groups: positive and negative examples. SUBDUE searches for
patterns which exist in positive examples, but not in negative examples. We
then use SUBDUE to find the erased unique IDs or unfound (in the first
phase) vertices and edges in a group of named graphs using the best sub-
structure from the first phase as predefined substructures. The second phase
takes aim at verifying the biological meaning of the discovered substructures.
Linked databases of the KEGG PATHWAY are also used to identify biolog-
ical meaning of the final substructures.

The discovery algorithm uses the set-cover approach and it is iterated
for the number of positive examples. We use the heuristic constraint for
polynomial running time as described in section 4.2. Our heuristic Limit, L,
is calculated by

L = V + B(Eγ − 1) (1)

where V is the number of initial vertices, B is Beam length, E is the number
of unique labeled edges, and γ is a heuristic constant. V and E are determined
from the input graph (positive examples). B is set as 4 because this value is
generally used in the successful application of SUBDUE to various domains.
When we assume that the substructure learned by SUBDUE has the same
number of edges as the number of unique labeled edges in the metabolic
pathway, γ is 1.0. We try different γ values, and determine which value gives
the best substructure in the shortest time. After several experiments, we
found 1.5 supervised learning) and 1.0 (unsupervised learning) as the best
choice for γ in this domain.

Results of supervised learning

Supervised learning in SUBDUE tries to find the substructures that exist in
the positive examples, but not in the negative examples. The choice of which
set of pathways is the positive example might affect the classification result.
Since our goal is the better classification between two groups, we run two
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cases. First (A+), we make a positive example set and a negative example
set. The second (B+) is vice versa. We present the classification accuracy
and running time for both in each experimental set. Assuming that we run
two cases in parallel, the maximum accuracy expresses the best case of the
classification and the maximum running time represents the worst case of the
running time.

Table 2. Results of supervised learning

Set Ex. Size Time Acc. Time Acc. Time Acc.
(A B:src) (A / B) (V+E) A+(s) A+(%) B+(s) B+(%) Max(s) Max(%)

00300 00310:euk 9/16 14,715 1.26 44.00 1.17 64.00 1.26 64.00
00520 00530:euk 14/17 15,689 2.19 83.87 1.44 67.74 2.19 83.87
00010 00900:euk 17/16 38,804 79.00 100.00 8.84 100.00 79.00 100.00
00010 00061:euk 17/15 56,914 27.72 100.00 54.12 100.00 54.12 100.00
00230 00240:euk 17/17 75,086 49.38 100.00 111.31 55.88 111.31 100.00
00010 00230:euk 17/17 75,786 57.62 100.00 50.79 94.12 57.62 100.00
00300 00310:45 33/42 41,569 11.22 44.00 18.50 56.00 18.50 56.00
00520 00530:45 39/40 42,092 17.48 64.56 18.71 54.43 18.71 64.56
00010 00510:45 44/31 82,767 129.71 100.00 337.25 44.00 337.25 100.00
00010 00900:45 44/41 88,041 109.42 100.00 130.19 100.00 130.19 100.00
00010 00020:45 44/39 110,701 302.62 63.86 876.96 50.60 876.96 63.86
00251 00252:45 45/45 116,621 354.47 61.11 226.82 53.33 354.47 61.11
00010 00061:45 44/39 117,582 247.18 100.00 305.51 46.99 305.51 100.00
00010 00251:45 44/45 129,187 410.27 94.38 503.64 61.80 503.64 94.38
00010 00230:45 44/45 179,393 1322.95 76.40 650.40 91.01 1322.95 91.01
00230 00240:45 45/45 183,701 368.12 100.00 2349.60 60.00 2349.60 100.00
00520 00530:150 137/136 150,363 874.79 53.85 1236.14 53.41 1236.14 53.85
00300 00310:150 136/143 157,267 441.32 48.75 587.7 53.41 587.7 53.41
00010 00900:150 149/143 286,091 1610.45 95.21 1117.41 100.00 1610.45 100.00
00010 00061:150 149/140 371,032 3107.66 100.00 4013.80 48.44 4013.80 100.00

Table 2 shows the experimental sets and the results for supervised learn-
ing. The first column shows the name of the set which consists of three parts:
A, B and source group. A and B represent two groups of pathways [26], and
the source group represents the species set. The Eukaryote set consists of
all eukaryote species (17) in the KEGG PATHWAY database. The 45 set
has 45 species, and the 150 set has 150 species. The second column provides
the number of pathways in each group. This number is less than or equal
to the number of each source set, since the metabolic pathway may not yet
be constructed (or not presented) in the specific species. For example all 17
species of the eukaryote cell have the 00010 network. But, Encephalitozoon
cuniculi (fungi) and Danio rerio (Zebra fish) do not have the 00061 network.
The third column shows the total size of the graphs, which is calculated as
size(G) = |V | + |E|, where a graph G = (V, E), V is the set of vertices
and E is the set of edges. The 4th and the 6th columns show the running
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Fig. 6. Running time with graph size in supervised learning

time (seconds), and the 5th and the 7th columns show the accuracy. Accu-
racy is calculated as (TP + TN)/(|A| + |B|), where TP is the number of
the positive examples containing at least one of the best patterns from any
iteration, and TN is the number of the negative examples containing none
of the best patterns from any iteration. The 4th and the 5th columns (A+)
represent experiments that have A as positive and B as negative examples.
The 6th and the 7th columns (B+) represent the reverse experiments. The
last two columns show the maximum running time and accuracy in each set.
We use a convention A(+) B(-):src when we denote each experimental case.
For example, 00300(+) 00310(-):euk represent A+ case of 00300 00310:euk
experiment.

Supervised learning uses 1.5 as the γ constant in the heuristic equation
(1). Higher γ may sometimes afford better substructures which show more
accuracy. But computational expense is usually not worth the small increase
in accuracy. We make a compromise on this γ constant between running time
and accuracy of classification. Each set has 11 ∼ 13 initial unique vertices
and 8 ∼ 11 unique edges, so Limit, L, can be calculated as 55 ∼ 73.

Each case shows the different result in terms of running time and accuracy,
dependent on what is used as the positive examples. The average accuracy of
all experiments consisting of A+ and B+ is 71.76%. The average of maximum
accuracy is 82.3%. There are discrepant cases between A+ and B+. 7 sets
out of 20 show that one case is better than the average and another is worse.
For instance, the 00010 00510:45 set has 100.00% accuracy in A+ case and
44.00% in B+. However, SUBDUE finds the substructures well to distinguish
between two groups of pathways with more than 60% accuracy (17 sets out
of 20). Figure 6 shows the running time with the graph size: A+, B+, and
MaxRun (the maximum running time). SUBDUE’s running time increased
polynomially with the size of the graph.
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Verification of the substructures

The goal of supervised learning is to find the patterns which are not only
able to distinguish between two sets of examples, but are also biologically
meaningful. The pattern found by SUBDUE can differentiate well between
two examples. We verify biological meaning of these patterns by using the
linked database of KEGG PATHWAY [26]. Figure 7 shows the best substruc-
ture, which is found in 40 instances of 40 examples in the first iteration of the
00010(+) 00900(-):45 experiment. This substructure which covers 90.9% of
the positive examples (40 out of 44) is related to two reactions. Because the
edge E to Rct represents a relationship between reaction and enzyme (gene),
the entry should be the enzyme or the gene.

entryreaction reactionE_to_RctE_to_Rct

Fig. 7. First best pattern from supervised learning on 00010(+) 00900(-):45 set
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Fig. 8. Updated best pattern from supervised learning on 00010(+) 00900(-):45 set

In the second phase (verification phase) SUBDUE runs on the named graph
of the same example set 00010(+) 00900(-):45 with the first best pattern
(figure 7) as the predefined substructure. SUBDUE can find clearly all forty
instances in the named graph. The second phase adds more vertices and edges
which are erased in the unnamed graph or are not found at the first phase.
The substructure in figure 8, which is the updated pattern from the result of
the first phase, is the final result of this experiment. The vertices and edges
marked by “[ ]” are included from the original substructure learned in the first
phase. With this completed substructure, we can refer to linked databases in
the KEGG PATHWAY database.

SUBDUE supervised learning finds the substructure representing that an
enzyme catalyzing two reactions, which share the same substrate and prod-
uct. Generally an enzyme catalyzes a reaction, but some enzymes can be
related to two or more reactions. Figure 8 shows two reaction vertices are
connected to an entry (enzyme) vertex by two E to Rct edges, which denote
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links between an enzymes and a reaction. The two reactions include a shared
substrate (linked by a S to Rct edge) and product (linked by a Rct to P
edge). The S to Rct edge denotes a link from a substrate to a reaction, and
the Rct to P edge represents a link from a reaction to a product. SUBDUE
finds that this substructure exists only in 00010 examples, not in 00090 ex-
amples.

In this substructure aae:aq 1065 which is the gene name, represents the en-
zyme ec:1.2.1.12 (glyceraldehyde-3-phosphate dehydrogenase). This enzyme
catalyzes two reactions, R01061 and R01063, which are oxidoreductase re-
actions of NAD+ and NADP+ [26]. NAD+ and NADP+ are coenzymes
that function as carriers of hydrogen atoms and electrons in some oxidation-
reduction reactions, especially ATP (Adenosine TriPhosphate: energy mate-
rial) related reactions. In our experiment the learned substructure is found
only in the positive examples (Glycolysis), not in the negative examples
(Terpenoid biosynthesis). Glycolysis is an energy generating process which
degrades a molecule of glucose in a series of enzyme-catalyzed reactions to
yield two molecules of the Pyruvates and ATPs. The conclusion of verifica-
tion shows that the substructure found by SUBDUE can distinguish between
two metabolic pathways and has an understandable biological meaning.

Two different metabolic pathways have unique relations as well as unique
biochemical molecules. This research is focused on the unique relations. In
case of 00010(+) 00900(-):45, an enzyme has relations with two reactions at
the same time. The enzyme has an important feature called substrate speci-
ficity, which indicates that an enzyme can be active only when binding with
a specific compound. For this reason, the enzyme, ec:1.2.1.12, catalyzes two
reactions which have a common relation with the compound, cpd:C00118.
In addition that identification of the unique biomolecules in each biologi-
cal network is a fundamental step, but discovery of the unique relations is
also important to classify metabolic pathways. The pattern of relations in
the metabolic pathway can be a guide to model an unrecognized metabolic
pathway.

5.4 Unsupervised Learning in Metabolic Pathways

Unsupervised learning tries to find common substructures in a set of dif-
ferent pathways of one species. The ultimate purpose of applying unsuper-
vised learning to metabolic pathways is to provide a better understandable
blueprint of metabolic pathways by using hierarchical topologies. This ex-
periment allows us to understand what common structures the different net-
works have. The common patterns of relationships in metabolic pathways
can contribute to biological network research accompanied with traditional
bioinformatics.

Like supervised learning, unsupervised learning also employs the unnamed
graphs in the first phase and the named graphs in the second phase. In the
first phase SUBDUE discovers the substructures and generates hierarchical
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Table 3. Results of unsupervised learning

Set Number of examples Size Running time
(Species) (Number) (V+E) (sec.)

ath 100 68,585 267.81
dme 92 58,166 204.52
eco 102 78,252 418.42
rno 96 61,409 183.60
sce 86 63,078 249.69

mmu 106 81,634 556.81
hsa 110 90,157 598.99

clusters using iterative discovery. Then SUBDUE adds eliminated unique
IDs or unfound vertices and edges from the first phase. This process uses
the substructures discovered from the first phase as predefined substructures
in the second phase. The second phase also tries to verify the biological
meaning of the discovered substructures by referring to the linked databases
of the KEGG PATHWAY, which are used to identify biological meaning of
the final substructures. The same heuristic equation (1) is used to compute
the limit, L, as in supervised learning.
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Fig. 9. Running time with graph size

Results of unsupervised learning

Table 3 shows the experimental sets used in unsupervised learning. Set rep-
resents the name of the species [26]. The number of examples denotes the
number of metabolic pathways which the species has in the KEGG PATH-
WAY database. The 110 metabolic pathways in hsa (Homo Sapiens) is the
largest number in the KEGG, when we include just metabolic pathways, not
regulatory networks. Other species have fewer metabolic pathways, because
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they do not exist or are yet to beconstructed. Size is the size of the graph as
described above. The last column shows the running time. Each run iterates
10 times to construct hierarchical clusters. Unlike supervised learning, this
experiment uses MDL as the evaluation method. Unsupervised learning uses
1.0 as the γ constant in the heuristic equation (1). Each set has 14 ∼ 16
initial unique labeled vertices and 8 ∼ 11 unique labeled edges. Limit, L, is
calculated as 42 ∼ 54. SUBDUE runs in polynomial time with the size of the
graph as shown in figure 9.

Verification of the substructures

The purpose of SUBDUE unsupervised learning is to find the common sub-
structures, which describe the regular features in a group of metabolic path-
ways. Moreover, hierarchical clusters of the common substructures show a
blueprint of metabolic pathways. We provide hierarchical clusters learned by
SUBDUE and verify them using the linked databases of KEGG PATHWAY.
Partial hierarchical clusters of substructures learned from the dme (fruit fly)
set are shown in figure 10. SUB i denotes the best substructure in the i-th
iteration.

The hierarchical clusters show that the substructures in the upper level are
contained in lower level. For example, SUB 8 includes two SUB 1, one SUB 3
and one SUB 4. The general substructures are used to compose more specific
substructures. This is how SUBDUE shows the common relational patterns
of the metabolic pathways and how the patterns relate to each other hierar-
chically. SUB 8 is discovered in three metabolic pathways of fruit fly (dme).
This substructure is not only the common feature in these three pathways,
but also the distinct property from other pathways.
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Fig. 10. Partial Hierarchical Clusters of metabolic pathways in fruit fly
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SUB 1 shows a basic reaction that is found in 972 instances of 90 exam-
ples. SUB 3 is found in 3,659 instances of 47 examples at the third iteration.
SUB 4, found in 1,136 instances of 21 examples, represents a relation with the
ECrel property. The ECrel relation is an enzyme-enzyme relation where two
enzymes catalyze successive reaction steps [26]. SUB 8 discovered in 264 in-
stances of 3 examples includes one relation of two enzymes which catalyze two
successive reactions. Moreover, SUB 8 has an additional meaning to SUB 4
such that the “link” edge connects to a compound which is a product of the
first reaction of this relation and a substrate of the second reaction at the
same time [26].

SUB 8 includes an enzyme-enzyme relation which relates three consecutive
chemical compounds. Figure 11 shows an example of SUB 8 which is found
in the dme00052, Galactose metabolic pathway of the fruit fly. Figure 11 is
a fully updated substructure thorough the second phase. Like the previous
case, the nodes and edges checked with “[ ]” are found in the first phase;
others were added in the second phase. This substructure shows a relation
between two enzymes which shares a compound as a substrate by one and
a product by another. The enzyme-enzyme relation has a relationship with
two reactions: R01092 and R01105 [26]. R01092 is catalyzed by the enzyme
of the gene, dme:CG5288-PA, and R01105 is catalyzed by the enzyme of the
gene, dme:CG9092-PA. The substrate of R01092 is the C05796 compound
(Galactin). The product of this reaction is C00124 (D-Galactose), which is
also the substrate of R01092. R01092 produces C00446 (alpha-D-Galactose 1-
phosphate) as the product compound. The relation in this substructure has the
link as a pointer to C00124 because this compound is the shared metabolite in
two reactions catalyzed by two enzymes connected within this relation.

SUB 1 and SUB 4 are found in all experimental sets (species), and SUB 8
is commonly found in ath, dme, eco and sce. A hierarchical clustering
presents the common relations, which shows how biological molecules work
interactively with others in the different species. This provides system-level
understanding of metabolic pathways.
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6 Conclusion

Systems biology views an organism as a system. System-level understand-
ing indispensably involves integrating heterogeneous data and a variety of
relations among the entities. The biological network is a crucial way to de-
scribe the biological system. Biological networks include various biomolecules
and assorted relationships among molecules. Structure analysis of metabolic
pathways allows us to understand how biomolecules interact with others. The
research on the relations can play a contributive role in systems biology.

This research shows several methods of structure analysis on metabolic
pathways. Substructure discovery on the same metabolic pathways from two
species reveals the unique features of the pathways related to the species.
Even in the cases that SUBDUE cannot find a unique substructure distin-
guishing two pathways, the number or the location of the instances of the
substructure is able to distinguish them; how many specific relations or what
specific relations are included into the pathway. Supervised learning shows
the substructures that can identify what is unique about a specific type of
pathway, which allows us to understand better how pathways differ. Unsu-
pervised learning generates hierarchical clusters that reveal what is common
about a specific type of pathways, which provides us better understanding of
the common structure in pathways.

Moreover, our results show that the substructures discovered by SUBDUE
have understandable biological meaning. These substructures, when consid-
ered as building blocks, can be used to construct new metabolic pathways.
Ultimately, we can consider these substructures as guides to define a graph
grammar for metabolic pathways that would improve both our ability to gen-
erate new networks and our comprehension of pathways [18]. These building
blocks of metabolic pathways open our sights to an advanced application:
drug discovery. The substructure of metabolic pathways learned by SUBDUE
allows us to identify the target place of the drug in pathways. In addition a
graph grammar of relational patterns on metabolic pathways can guide us to
simulate the drug interaction on pathways.

Our future works include graph-based relational learning on graphs repre-
senting dynamics of biological networks and association with other method-
ologies for efficient learning on biological networks.

References

1. Aittokallio, T., Schwikowski, B.: Graph-based methods for analysing networks
in cell biology. Briefings in Bioinformatics 7(3), 243–255 (2006)

2. Bu, D., Zhao, Y., Cai, L., et al.: Topological structure analysis of the protein-
protein interaction network in budding yeast. Nucleic Acids Research 31, 2443–
2450 (2003)



260 C.h. You, L.B. Holder, and D.J. Cook

3. Cheng, C.Y., Huang, C.Y., Sun, C.T.: Mining bridge and brick motifs from
complex biological networks for functionally and statistically significant dis-
covery. IEEE Transactions on Systems, Man, and Cybernetics, Part B 38(1),
17–24 (2008)

4. Chittimoori, R., Holder, L., Cook, D.: Applying the subdue substructure dis-
covery system to the chemical toxicity domain. In: Proceedings of the Florida
AI Research Symposium, pp. 90–94 (1999)

5. Cook, D., Holder, L.: Substructure discovery using minimum description length
and background knowledge. Journal of Artificial Intelligence Research 1, 231–
255 (1994)

6. Cook, D., Manocha, N., Holder, L.: Using a graph-based data mining system to
perform web search. International Journal of Pattern Recognition and Artificial
Intelligence 17(5) (2003)

7. Dzerosk, S.: Multi-relational data mining: an introduction. SIGKDD Explo-
rations Newsletter 5(1), 1–16 (2003)

8. Gonzalez, J., Holder, L., Cook, D.: Graph-based relational concept learning. In:
Proceedings of the International Conference on Machine Learning, pp. 219–226
(2002)

9. Holder, L., Cook, D., Coble, J., Mukherjee, M.: Graph-based relational learning
with application to security. Fundamenta Informaticae Special Issue on Mining
Graphs, Trees and Sequences 6, 83–101 (2005)

10. Holder, L., Cook, D., Gonzalez, J., Jonyer, I.: Structural Pattern Recognition in
Graphs. In: Pattern Recognition and String Matching, pp. 255–280. Springer,
Heidelberg (2003)

11. Hu, H., Yan, X., Huang, Y., Han, J., Zhou, X.J.: Mining coherent dense sub-
graphs across massive biological networks for functional discovery. Bioinformat-
ics 21(1), 213–221 (2005)

12. Huan, J., Wang, W., Bandyopadhyay, D., Snoeyink, J., Prins, J., Tropsha, A.:
Mining protein family specific residue packing patterns from protein structure
graphs. In: Eighth Annual International Conference on Research in Computa-
tional Molecular Biology (RECOMB), pp. 308–315 (2004)

13. Hwang, W., Cho, Y.R., Zhang, A., Ramanathan, M.: A novel functional module
detection algorithm for protein-protein interaction networks. Algorithms for
Molecular Biology 1 (2006)

14. Kanehisa, M., Goto, S., Kawashima, S., Okuno, U., Hattori, M.: KEGG re-
source for deciphering the genome. Nucleic Acids Research 32, 277–280 (2004)

15. Kitano, H.: Systems biology: A brief overview. Science 295, 1662–1664 (2002)
16. Klipp, E., Herwig, R., Kowald, A., Wierling, C., Lehrach, H.: Systems Biology

in Practice: Concepts, Implementation and Application, 1st edn. WILEY-VCH,
Weinheim (2005)

17. Koyuturk, M., Grama, A., Szpankowski, W.: An efficient algorithm for detect-
ing frequent subgraphs in biological networks. In: Proceedings of the Interna-
tional Conference on Intelligent Systems for Molecular Biology, vol. 20, pp.
200–207 (2004)

18. Kukluk, J., You, C., Holder, L., Cook, D.: Learning node replacement graph
grammars in metabolic pathways. In: Proceedings of International Conference
on Bioinformatics and Computational Biology, BIOCOMP 2007 (2007)

19. Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: Proceedings of
the IEEE Conference on Data Mining, pp. 313–320 (2001)



Substructure Analysis of Metabolic Pathways 261

20. Laub, M., Loomis, W.: A molecular network that produces spontaneous os-
cillations in excitable cells of dictyostelium. Mol. Biol. Cell 9(12), 3521–3532
(1998)

21. Lodhi, H., Muggleton, S.H.: Modelling metabolic pathways using stochastic
logic programs-based ensemble methods. In: Danos, V., Schachter, V. (eds.)
CMSB 2004. LNCS (LNBI), vol. 3082, pp. 119–133. Springer, Heidelberg (2005)

22. Muggleton, S.: Inductive logic programming. New Generation Computing 8,
295–318 (1991)

23. Muggleton, S.H., Lodhi, H., Amini, A., Sternberg, M.J.E.: Support Vector In-
ductive Logic Programming. In: Hoffmann, A., Motoda, H., Scheffer, T. (eds.)
DS 2005. LNCS, vol. 3735, pp. 163–175. Springer, Heidelberg (2005)

24. Su, S., Cook, D., Holder, L.: Application of knowledge discovery to molecular
biology: Identifying structural regularities in proteins. In: Proceedings of the
Pacific Symposium on Biocomputing, vol. 4, pp. 190–201 (1999)

25. Tamaddoni-Nezhad, A., Kakas, A., Muggleton, S., Pazos, F.: Modelling inhi-
bition in metabolic pathways through abduction and induction. In: Camacho,
R., King, R., Srinivasan, A. (eds.) ILP 2004. LNCS, vol. 3194, pp. 305–322.
Springer, Heidelberg (2004)

26. KEGG, http://www.genome.jp
27. Wolf, J., Sohn, H., Heinrich, R., Kuriyama, H.: Mathematical analysis of a

mechanism for autonomous metabolic oscillations in continuous culture of sac-
charomyces cerevisiae. FEBS Lett. 499(3), 230–234 (2001)

28. Yan, X., Han, J.: Gspan: Graph-based substructure pattern mining. In: Pro-
ceedings of the IEEE Conference on Data Mining, pp. 721–724 (2002)

29. You, C., Holder, L., Cook, D.: Graph-based data mining in dynamic net-
works: Empirical comparison of compression-based and frequency-based sub-
graph mining. In: IEEE International Conference on Data Mining (ICDM)
Workshop on Analysis of Dynamic Networks (2008)

30. You, C., Holder, L., Cook, D.: Graph-based temporal mining of metabolic path-
ways with microarray data. In: ACM SIGKDD Workshop on Data Mining in
Bioinformatics, BIOKDD (2008)

http://www.genome.jp

	front-matter
	fulltext
	Current Trends in Biomedical Data and Applications
	Background
	Biomedical Data
	Interoperability of Biological Data
	Summary
	References


	fulltext_2
	Towards Bioinformatics Resourceomes
	Bioinformatics Resources
	A Universe in Expansion
	Searching for Bioinformatics Resources Today

	The New Waves
	Ontologies
	Web Services
	Software Agents
	Semantic Web
	Grids

	Intuitive Organization of Domains and Resources into Resourceomes
	Lost in the Universe
	What Is a Resourceome?
	A Semantic Browser for Resourceomes

	Comparison with Related Works
	Resourceomes and Web Directories
	Resourceomes and BioNavigation
	Resourceomes and Web Services
	Resourceomes and TAMBIS

	References


	fulltext_3
	A Summary of Genomic Databases: Overview and Discussion
	The Biological Databases Scenario
	Some (Very) Basic Biology
	Biological Database Classification

	Genomic Databases Analysis
	Recoverable Data
	Database Schemas
	Query Types
	Query Methods
	Result Formats
	The On-Line Synthetic Description

	Concluding Remarks
	References


	fulltext_4
	Protein Data Integration Problem
	Introduction
	Need for Common Languages
	The Gene Ontology
	MGED Ontology
	Open Issues in Biomedical Ontologies

	Protein Ontology Elements
	Generic Concepts of Protein Ontology
	Derived Concepts of Protein Ontology
	Relationships Protein Ontology
	Protein Ontology as a Structured Hierarchy

	Summary
	References


	fulltext_5
	Multimedia Medical Databases
	General Overview
	A General Model for Information Retrieval
	Content-Based Visual Query – Problem Definition
	The Need for Content-Based Visual Query in Multimedia Medical Databases
	Content-Based Image Retrieval Systems

	DICOM Standard
	Introduction
	The Organization of DICOM Files
	Extracting Data from DICOM File
	DICOM Viewers

	Content-Based Visual Query on Color Feature in Multimedia Medical Databases
	Introduction
	Color Fundamentals
	Color Perception
	Color Systems
	The Representation of the Color Features
	Computing Color Features Similarity in Content-Based Visual Retrieval
	Content-Based Visual Retrieval on Color Features – Experiments and Results

	Content-Based Visual Query on Texture Feature in Multimedia Medical Databases
	Overview
	Gabor Filters
	Co-occurrence Matrices
	Experiments and Results

	Automatic Segmentation and Content-Based Region Query in Multimedia Medical Databases
	Overview
	The Color Set Back-Projection Algorithm
	Content-Based Region Query – Experiments and Results

	Conclusions
	References


	fulltext_6
	Bio-medical Ontologies Maintenance and Change Management
	Introduction
	Philosophical Foundations
	Biomedical Ontologies and the Editorial Procedure – State of the Art
	The Gene Ontology (GO)
	UMLS Semantic Network
	Clinical Terms Version 3 (The Read Codes)

	Different Types of Changes in Biomedical Ontologies
	Tools and Methods to Support Ontology Change Management
	The RLR Framework for Ontology Change Management
	Representation of Evolving Ontologies Using Category Theory
	Application Scenario

	References


	fulltext_7
	Extraction of Constraints from Biological Data
	Introduction
	Application of Constraint Extraction
	Background
	Relational Model
	Constraints
	Association Rules

	Constraint Extraction in Biological Data
	Quasi Tuple Constraints and Quasi Functional Dependencies
	Violations of Constraints and Dependencies

	Experiments on Biological Data
	Biological Databases
	Extracting Association Rules
	Quasi Tuple Constraints
	Quasi Functional Dependencies

	Conclusions
	References


	fulltext_8
	Classifying Patterns in Bioinformatics Databases by Using Alpha-Beta Associative Memories
	Introduction
	Background Notions
	Bioinformatics
	Alpha-Beta Associative Memories

	Proposed Solution
	New Alpha-Beta Heteroassociative Memory
	Alpha-Beta Heteroassociative Multimemories
	Proposed Classifier

	Experimental Results
	DNA Promoter Sequence Classification
	DNA Splice-Junction Sequences Classification

	Conclusions and Future Work
	References


	fulltext_9
	Mining Clinical, Immunological, and Genetic Data of Solid Organ Tansplantation
	Introduction
	The $Health Mine$ Project
	Data Collection
	Mining HLA Patterns Associated with Liver Diseases
	Background and Motivations
	Frequent Pattern Discovery
	Mining HLA
	Patterns Evaluation

	Mining Temporal Patterns Assessing the Effectiveness of a Therapy
	Extracorporeal Photopheresis as a Therapy against Allograft Rejection
	From Sequential Patterns to $TAS$
	Case Study: Mining $TAS$ from Photopheresis Data

	Conclusions and Future Work
	References


	fulltext_10
	Substructure Analysis of Metabolic Pathways by Graph-Based Relational Learning
	Introduction
	Systems Biology and Biological Networks
	Related Work
	Analysis of Biological Networks
	Logic-Based Data Mining
	Frequent Subgraph Mining

	Graph-Based Relational Learning
	Discovery Algorithm
	MDL and Heuristic Methods
	Unsupervised Learning
	Supervised Learning

	Substructure Analysis in Metabolic Pathways
	Graph Representation
	Substructure in Metabolic Pathway
	Supervised Learning in Metabolic Pathways
	Unsupervised Learning in Metabolic Pathways

	Conclusion
	References


	fulltext_11
	Design of an Online Physician-Mediated Personal Health Record System
	Introduction
	Background
	Framework Design
	Usage and Functional Interactions
	Prototyping and Case Study
	User Logons
	EMR Access Request and Approvals
	Access Personal Health Charts
	Annotate Personal Health Records
	Sharing PHR with Physicians

	Discussion
	References


	fulltext_12
	Completing the Total Wellbeing Puzzle Using a Multi-agent System
	Introduction
	Multi-agent Systems and Ontologies in Health Domain
	A Holistic Approach to Health
	Physical and Mental Health
	Financial, Physical and Mental Health
	Social, Physical and Mental Health
	Emotions, Physical and Mental Health
	Physical and Spiritual Health
	Mental and Spiritual Health

	A Holonic Multi-agent System for Total Wellbeing
	Identify Agent Types According to Their Responsibilities
	Define Agent’s Intelligence
	Define Agent’s Collaborations
	Protect the System by Implementing Security Requirements
	Assemble Individual Agents

	Conclusion and Future Works
	References


	fulltext_13
	The Minimal Model of Glucose Disappearance in Type I Diabetes
	Introduction
	Data
	Background
	The Classic Minimal Model
	The Linear Minimal Model
	Rate of Appearance of External Glucose
	Insulin Absorption Model

	Statistical Analysis
	Goodness of Fit
	Analysis of Residuals

	Results
	Conclusions
	References


	fulltext_14
	Genetic Algorithm in $Ab Initio$ Protein Structure Prediction Using Low Resolution Model: A Review
	Introduction
	Conformational Complexity
	Non-computational Techniques
	Computational Techniques

	Models for Structure Prediction
	Search Algorithms
	Underlying Principle of Nondeterministic Search and GA Preliminaries
	Incorporating Intelligence into the GA
	Intelligence in Chromosomal Encoding
	Domain Knowledge Based Heuristic

	Preferred Lattice Structure for PSP
	hHPNX – An Extension of the HP Model
	Conclusions
	References


	back-matter

