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Much of the data that is collected and analyzed today is structural,
consisting not only of entities but also of relationships between
the entities. As a result, analysis applications rely on automated
structural data mining approaches to find patterns and concepts
of interest. This ability to analyze structural data has become a
particular challenge in many security-related domains. In these
domains, focusing on the relationships between entities in the data
is critical to detect important underlying patterns. In this study we
apply structural data mining techniques to automate analysis of
nuclear smuggling data. In particular, we choose to model the data
as a graph and use graph-based relational learning to identify pat-
terns and concepts of interest in the data. In this article, we identify
the analysis questions that are of importance to security analysts
and describe the knowledge representation and data mining ap-
proach that we adopt for this challenge. We analyze the results
using the Russian nuclear smuggling event database.
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INTRODUCTION

The success of machine learning and data mining for business and scientific
purposes has fueled the expansion of its scope to new representations and
techniques. Originally, data modeling and mining focused on data that could
be represented as a vector of feature values. However, much collected data
is structural in nature. Structural data contains entities as well as relationships
between these entities. Compelling data in bioinformatics [28], network in-
trusion detection [15], Web analysis [1, 7], and social network analysis [5, 24]
have become available that require effective handling of structural data.

The ability to learn structural concepts from data has also become a
crucial challenge in many security-related domains. For example, the U.S.
House and Senate Intelligence Committees’ report on their inquiry into the
activities of the intelligence community before and after the September 11,
2001 terrorist attacks revealed the necessity for “connecting the dots” [26],
that is, focusing on the relationships between entities in the data, rather
than merely on an entity’s features or attributes. The ability to discover
relationship-driven patterns can impact our ability to prevent future attacks
and ensure national security.

Data mining and information technology is cited as a critical tool for
ensuring the safety of our country [21]. In response to the government’s
call for science and technology to aid in the war against terror, researchers
have found ways of using artificial intelligence technologies to address this
challenge [2]. These projects include recognition of terrorist activity [8, 12, 17]
and detection of outliers that may indicate suspicious behavior [16].

In this article, we focus on one particularly challenging area of security:
nuclear smuggling and export control. The U.S. government has initiated a
number of efforts to curtail nuclear smuggling including the State Depart-
ment’s Export Control and Related Border Security Assistance Program [25]
and the NNSA’s International Nonproliferation Export Control Program [20].
Data relevant to export control and weapons of mass destruction (WMD)
proliferation can be acquired at a much higher rate than can be analyzed.
Analysts need new and automated tools to deal with this glut of complex
real-world data. The end goal of this research is to predict intent of smugglers
in order to prevent terrorist events and the spread of WMD.

The goal of this project is to utilize artificial intelligence techniques to
model and analyze nuclear smuggling data. We hypothesize that by analyzing
the features and the structure of nuclear smuggling data, we can find patterns
that consistently appear in nuclear smuggling events and can find interesting
links between event components. We anticipate that the automated discovery
of such patterns will aid analysts in understanding the nature of smuggling
events. This outcome will be useful in more quickly and effectively detecting
future smuggling events and in answering the real question faced by analysts:
intent.
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The outcome of this study will be the answers to four questions:

• Are there recurring structural patterns in nuclear smuggling data that can
be discovered by an automated structural analysis algorithm?

• Can an automated analysis algorithm infer whether a link exists between
a pair of smuggling events?

• Are there recurring structural patterns that occur in linked smuggling events
that can be automatically discovered and that provide insights on the nature
of smuggling strategies?

• Are there individual components that play a central role throughout the
entire database (i.e., that act as hubs or authorities for nuclear smuggling
activities)?

First, we will describe the database we use for this study and our planned
approach for automated analysis. We will then describe the results of the
study as applied to an actual nuclear smuggling database.

NUCLEAR SMUGGLING DATA

During the last two decades, there have been numerous reports of nuclear
materials smuggling worldwide. Several databases have been created to doc-
ument reported smuggling incidents [34]. We restrict our analysis to data that
has been made publicly available. Analyzing nuclear smuggling incidents
requires analyzing the structure of the incidents. Many nuclear materials can
be exported for beneficial uses as well as for the creation of weapons, so
called dual-use materials. For example, Americium 241 and Plutonium can
serve as an alpha-particle source for smoke detectors as well as a compo-
nent of nuclear weapons. Thus it is necessary to examine the context of the
shipment, the path that it will take, and connections between export ship-
ments and organizations involved in the export to detect illicit smuggling
attempts.

In order to determine whether data mining algorithms can provide an
automated analysis of nuclear smuggling data, we select the Nuclear Smug-
gling dataset as a testbed. The Nuclear Smuggling dataset consists of re-
ports on Russian nuclear materials smuggling [18]. The database originally
appeared as an index to a paper by Williams and Woessner [29] that inves-
tigated the dynamics of nuclear material smuggling in terms of suppliers,
smuggling organizations, and end users. The information in the chronol-
ogy is based on open-source reporting, primarily World News Connection
(WNC) and Lexis-Nexis [27]. There are also some articles obtained from vari-
ous sources that have been translated from Italian, German, and Russian. The
research from which the chronology grew began in 1994 and the chronology
itself first appeared as an appendix to a paper by Williams and Woessner [29]
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and later with an updated chronology [30]. DARPA’s Evidence Extraction and
Link Discovery (EELD) program updated the chronology to include incidents
through March 2000.

In the Nuclear Smuggling database, each incident, or event, is described
by a set of features. Links between events and event components are also
included in the database. The database contains 45 relational tables. Each
table fits into one of the following categories:

• Event objects. The event table (EV EVENT) contains the basic information
about each smuggling event.

• Entity objects. The entity tables contain information about the event lo-
cation (E LOCATION), material that was being smuggled (E MATERIAL),
the organization responsible (E ORGANIZATION), persons involved in the
incident (E PERSON), the source of the material (E SOURCE), and any
weapon found on the person (E WEAPON).

• Link objects. These tables explicitly represent a connection between
events (LK EVENT EVENT), between entities (LK LOCATION LOCATION,
LK MATERIAL LOCATION, LK MATERIAL MATERIAL, LK MATERIAL OR-
GANIZATION, LK MATERIAL WEAPON, LK ORG ORG, LK ORGANIZA-
TION LOCATION, LK ORGANIZATION WEAPON, LK PERSON LOC, LK
PERSON MATERIAL, LK PERSON OCC, LK PERSON ORG, LK PERSON
PERSON, LK PERSON WEAPON, LK WEAPON LOCATION, LK WEAPON
WEAPON), and between events and entities (LK EVENT MATERIAL,
LK EVENT ORGANIZATION, LK EVENT PERSON, LK EVENT SOURCE,
LK EVENT WEAPON).

• Feature encodings. These tables provide numeric encodings of feature val-
ues (L CLASSIFICATIONS, L CONCEALMENT, L CONFIDENCE, L COUNT-
RIES, L EELD COMPONENT, L EVENTS, L GENDERS, L MATERIALS,
L METHODS, L MOTIVES, L OCCUPATIONS, L ORGANIZATIONS,
L PLACES, L RELATIONS, L SOURCE TYPES, L WEAPONS).

The number of entries in each table varies from as few as 2–3 elements to
as many as 800. There are 302 events described in the database, with almost
2,500 links defined between events and event components. As is indicated
by the larger number of links, the database is highly structural and contains
an abundance of information for each event. For this reason, a graph is a
natural representation for the data. After representing the relational informa-
tion as a graph, a graph-based relational learning algorithm can be used to
discover recurring patterns and learn concepts from the data. Alternative rep-
resentations would be to model the data and relationships as logical expres-
sions. The data could then be analyzed using techniques such as Inductive
Logic Programming, as was considered by Mooney et al. [19]. Because graph
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algorithms exist to perform the types of analyses we have targeted, we de-
cided to employ a graph representation for this data.

GRAPH-BASED RELATIONAL LEARNING

There are a number of data mining algorithms that could be useful in ana-
lyzing this data. Because we want to identify prevalent patterns in the data,
supervised learning algorithms will not be sufficient for this task. In addi-
tion, the data is inherently structural. Thus we need a structural discovery,
or graph-based relational learning, approach.

Graph-based data mining is the task of finding novel, useful, and under-
standable graph-theoretic patterns in a graph representation of data. Several
approaches to graph-based data mining identify frequently occurring sub-
graphs in graph transactions, that is, those subgraphs meeting a minimum
level of support [13, 14, 22, 31].

We distinguish graph-based relational learning (GBRL) from graph-
based data mining in that GBRL focuses on identifying novel, but not nec-
essarily most frequent, patterns in a graph representation of data [11]. Only
a few GBRL approaches have been developed to date. Two specific ap-
proaches, Subdue [3] and GBI [32], take a greedy approach to finding sub-
graphs maximizing an information-theoretic measure. Subdue searches the
space of subgraphs by extending candidate subgraphs by one edge. Each
candidate is evaluated using a minimum description length (MDL) metric
[23], which measures how well the subgraph compresses the input graph if
each instance of the subgraph were replaced by a single vertex. GBI contin-
ually compresses the input graph by identifying frequent triples of vertices,
some of which may represent previously compressed portions of the input
graph. Candidate triples are evaluated using a measure similar to informa-
tion gain. Kernel-based methods have also been used for supervised GBRL
[9]. Because we want to be able to perform unsupervised discovery as well
as supervised learning on our structural data, and because we want to be
able to easily interpret the results, we use the Subdue algorithm for this
analysis.

The Subdue algorithm [3] encompasses several approaches to graph-
based learning, including discovery, clustering, and supervised learning. Sub-
due uses a labeled graph G = (V,E,L) as both input and output, where V
= {v1, v2, . . . , vn} is a set of vertices, E = {(vi, vj) | vi, vj ∈ V} is a set of
edges, and L is a set of labels that can appear on vertices and edges. The
graph G can contain directed edges, undirected edges, self-edges (i.e., (vi;
vi) ∈ E), and multi-edges (i.e., more than one edge between vertices vi and
vj). The input graph G need not be connected, but the learned patterns must
be connected subgraphs (called substructures) of G.
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Unsupervised Discovery

Inputs to Subdue’s discovery algorithm include the input graph (or a set of
graphs), the beam length, and a limit on the total number of substructures
considered by the algorithm. Subdue searches for a substructure that best
compresses the input graph. A substructure in Subdue consists of a subgraph
definition and all its occurrences throughout the graph. The initial state of the
search is the set of substructures consisting of all uniquely labeled vertices.
The only operator of the search is the ExtendSubstructure operator, which
extends a substructure in all possible ways by a single edge or an edge and
a neighboring vertex.

Subdue uses a beam search to identify candidate substructure concepts
by applying the ExtendSubstructure operator to each substructure in the
current state. The substructures are kept on a beam-limited queue and are
ordered based on their description length (sometimes referred to as value)
as calculated using the MDL principle.

The search terminates upon reaching a user-specified limit on the num-
ber of substructures extended, or upon exhaustion of the search space.
Once the search terminates and Subdue returns the list of best substructures
found, the graph can be compressed using the best substructure. The com-
pression procedure replaces all instances of the substructure in the input
graph by single vertices, which represent the substructure definition. Incom-
ing and outgoing edges to and from the replaced instances will point to,
or originate from the new vertex that represents the instance. The Subdue
algorithm can be invoked again on this compressed graph. This procedure
can be repeated a user-specified number of times, and is referred to as an
iteration.

Subdue’s search is guided by the minimum description length (MDL) [26]
principle. The evaluation heuristic based on the MDL principle assumes that
the best substructure is the one that minimizes the description length of the
input graph when compressed by the substructure. The description length of
the substructure S given the input graph G is calculated as DL(S) + DL(G|S),
where DL(S) is the description length of the substructure, and DL(G|S) is
the description length of the input graph compressed by the substructure.
Description length is calculated as the number of bits in a minimal encoding
of the graph. Subdue seeks a substructure S that maximizes compression,
calculated as

Compression = DL(G)

DL(S) + DL(G|S)
.

As an example, Figure 1 shows the four instances that Sub-
due discovers of a pattern S1 in the example input graph and the
resulting compressed graph, as well as the pattern S2 found in this new
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FIGURE 1 Example of Subdue’s unsupervised discovery algorithm. A repetitive subgraph
(S1) is identified and used to compress the graph. New discoveries (in this case, pattern S2)
are made in subsequent iterations of the algorithm.

graph and the resulting compressed graph. To allow slight variations be-
tween instances of a discovered pattern (as is the case in Figure 1), Subdue
applies an error-tolerant graph match between the substructure definition
and potential instances.

Supervised Learning from Training Graphs

Extending a graph-based discovery algorithm to perform supervised learning
[11] introduces the need to handle negative examples (focusing on the two-
class scenario). The negative information can come in two forms. First, the
data may be in the form of numerous small graphs, or graph transactions,
each labeled either positive or negative. Second, data may be composed of
two large graphs: one positive and one negative.

The first scenario is closest to the standard supervised learning problem
in that we have a set of clearly defined examples. Figure 2 depicts a set
of positive (G+) and negative (G−) examples. One approach to supervised
learning is to find a subgraph that appears in many positive graphs, but in few
negative graphs. This amounts to replacing the compression-based measure
with an error-based measure. For example, we would find a subgraph S that
minimizes the value

|{g ∈ G+|S �⊂ g}| + |g ∈ G−|S ⊆ g}|
|G+| + |G−| = FN + FP

P + N
,

where S ⊆ g means S is isomorphic to a subgraph of g (although we do
not need to perform a subgraph isomorphism test during learning). The first
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FIGURE 2 Visualization of graph-based data with (a) four positive and four negative exam-
ples, and (b, c) two possible graph concepts learned from the examples. Graphs that contain
the learned concept are labeled as examples of the positive class, while other graphs are
members of the negative class.

term of the numerator is the number of false negatives, and the second term
is the number of false positives.

This approach will lead the search toward a small subgraph that dis-
criminates well (e.g., the subgraph shown in Figure 2(b)). However, such a
subgraph does not necessarily compress well, nor represent a characteristic
description of the target concept. We can bias the search toward a charac-
teristic description by using the compression-based measure to look for a
subgraph that compresses the positive examples, but not the negative exam-
ples. If DL(G) represents the description length (in bits) of the graph G, and
DL(G|S) represents the description length of G compressed by subgraph S,
then we look for an S that minimizes DL(G+|S)+DL(S)+DL(G−)−DL(G−|S),
where the last two terms represent the portion of the negative graph in-
correctly compressed by the subgraph. This approach will lead the search
toward a larger subgraph that characterizes the positive examples, but not
the negative examples (e.g., the subgraph shown in Figure 2(c)).

Finally, this process can be iterated in a set-covering approach to learn
a disjunctive hypothesis. Using the error measure, any positive example con-
taining the learned subgraph would be removed from subsequent iterations.
Using the compression-based measure, instances of the learned subgraph
in both the positive and negative examples (even multiple instances per
example) are compressed to a single vertex.

DISCOVERING PATTERNS IN NUCLEAR SMUGGLING DATA

The first type of analysis we performed was to discover recurring struc-
tural patterns in the entire Nuclear Smuggling database. In order to apply
the Subdue graph-based relational learner to this problem, we first had to
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FIGURE 3 Graph representation for a pair of smuggling events. In this example, one event is
described by the event start/end date, method, and location attributes. This event is connected
to another event through a link to a common person that was involved in both smuggling
events.

determine how to represent the information as a graph. Generally, entities
are represented as nodes in a graph model, and relationships between the
entities are represented as directed or undirected links between the nodes.
For this dataset, entities include the smuggling events and the event objects
as described earlier, while each of the relations described in the link tables
corresponds to a directed link between entities in the graph. In addition,
entities are described by a set of attributes. Some of these attributes are fur-
ther described by sub-attributes (e.g., the attribute “location” is broken down
into the sub-attributes “location place type,” “location place name,” “location
city,” “location country,” and “location latitude/longitude”). In our graph rep-
resentation, we included a link between each entity and its attribute values
and between each attribute and its sub-attributes. Figure 3 shows a portion
of the graph representation for a pair of smuggling events that are linked
through a person that was involved in both events. Each event is centered at
a node labeled “EV EVENT” and is linked to the event attributes as well as
possibly being linked to other events in the database. Creating a graph model
of the entire set of nuclear smuggling events took less than one minute on a
PC with 3 GB of memory. The resulting graph contained 25,951 vertices and
27,152 links.

To discover recurring patterns, we ran Subdue on this graph input using
the default parameter settings. Subdue spent over five hours performing 200
discover-and-compress iterations on the data. The initial discoveries were
not that insightful, mostly describing the infrastructure of the graph. Because
the relational tables include so many relation types and sub-relation types,
the top-rated substructure that was discovered contains only a network of
relation type descriptions and the relationships between them, as shown in
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FIGURE 4 Highest-scoring substructure discovered by Subdue. This graph shows the patterns
of an event described by a person involved in the event and three types of relationships
between the person and the event.

Figure 4. This substructure does occur often in the database (there are 695
occurrences) and is fairly large. On the other hand, no information that is
specific to any particular event is included in the discovery.

Fortunately, we can compress much of the graph’s infrastructure away
by using Subdue’s option to replace the top substructure with a single node
and repeat the discovery process. The first 50 iterations of Subdue resulted in
substructures containing mostly infrastructure (links between attribute types
and subtypes). After this infrastructure was compressed away, Subdue did
find a number of insightful recurring patterns. For example, the pattern
shown in Figure 5 showed up in 10 separate events. As the graph in Figure 5
shows, the pattern description is hierarchical—one of the nodes is labeled
“SUB 1,” which refers to the first substructure pattern that was discovered
(shown in Figure 4). The original pattern occurrence was replaced by this sin-
gle node, which became part of a larger pattern discovery. The complete pat-
tern in Figure 5 describes features of individuals that are commonly players in
a nuclear smuggling event. In particular, the person participates in a nuclear
smuggling event, is a worker at a nuclear facility, and is from Romania.

Another pattern that recurred in the database is the substructure shown
in Figure 6. This pattern linked together 7 different pairs of events. The
events were linked because a participant or organization involved in one of
the smuggling events was a rival of a participant or organization associated
with another smuggling event.

FIGURE 5 A substructure pattern discovered from the entire event database. This pattern
describes features of individuals that participate in smuggling events. Features include the
country of nationality and residence as Romania and occupation as a worker in a nuclear
facility.
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FIGURE 6 A substructure pattern discovered from the entire event database. This pattern
describes a link between pairs of events involving participants that are rivals.

This second discovery was particularly interesting, because it indicated
that there are connections between events and that some of these connec-
tions form common patterns. This type of structural pattern justifies our use
of a graph model and a graph-based relational learner. Finding such com-
mon links between smuggling events can provide intelligence analysts with
insights that aid in understanding the nature of smuggling events and in
identifying individuals, organizations, locations, and materials that are likely
to be part of a possible future smuggling event because of their relationship
with other attempted smuggling events.

LEARNING TO RECOGNIZE LINKED EVENT PAIRS

To address our second question, whether we can learn to recognize linked
event pairs, we formulated the problem as the following supervised learn-
ing problem: Given a pair of events, are they linked or not? Our goal is to
learn a concept that maps pairs of events onto one of the values {Linked,
Not Linked}. In addition to learning a concept that accurately labels pairs
of events, we also are interested in the concept description itself. We hy-
pothesize that the concept description, if understandable, can provide some
insights on how smuggling events are likely to be related.

In order to create sample data for our learning algorithm, we represented
each pair of events that were directly linked in the database (appeared in
the LK EVENT EVENT table) as a positive example graph for the Subdue
graph-based relational learning algorithm. In order to not unduly bias the
algorithm, we removed the explicit link between the two events, but other
links between events and non-event entities were included in the graph. This
makes the learning problem more difficult than if the direct event relationship
were left intact [20], because the relationship needs to be inferred by features
of the events themselves and other non-direct links (e.g., a common person,
location, or weapon). To generate negative examples, we created a separate
example for every pair of graphs that were not directly linked in the database.
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The resulting graph database contained 162 positive examples and 45,289
negative examples.

This imbalance in the number of examples creates two difficulties. First,
in order to evaluate candidate concepts Subdue needs to determine if the cor-
responding graph pattern definition occurs in any negative examples. While
this step does not require an NP-Complete subgraph isomorphism test, it
does require a graph isomorphism test between the graph pattern definition
and potential instances in the negative examples. Therefore, Subdue would
take a very long time to complete the learning process. Second, the domi-
nance of negative examples may unduly bias the results. In fact, the concept
“all pairs are not linked” would achieve 99.6% classification accuracy, which
is quite good.

To counteract this imbalance, we randomly sampled 162 negative exam-
ples from the initial collection and used this sample, together with the 162
positive examples, to form the input database. We then used 3-fold cross
validation to obtain accuracy results for the learned concepts.

Subdue had a difficult time correctly labeling pairs of examples. While
one pattern was discovered that was consistently associated with positive
examples (linked events), the number of positive examples that contained
this pattern was fairly low (on average about 30% of the positive examples
contained this pattern whereas only 2% of the negative examples contained
the pattern). However, no other consistent patterns were found among the
remaining positive examples. The resulting average accuracy was 57%. The
one pattern that performed well indicated that one of the pair of linked
events had a participant who was a clear organizer of the smuggling event.

Because the explicit link between events comprising the positive exam-
ple pairs was removed, Subdue was essentially trying to find a pattern in one
or both events that indicated the “event would be linked to some other,” and
not necessarily trying to determine why this particular pair was connected.
As a result, we instead turned our attention to analyzing patterns associated
with known links between groups of events. This is described in the next
section of the article.

DISCOVERING PATTERNS IN LINKED EVENTS

A unique aspect of this study is that we are focusing on security data that
contains a distinct structural or relational component. If we can automatically
discover patterns that describe the nature of these relationships, then analysts
can use the information to better understand smuggling events. They can also
identify suspicious activities that might indicate attempted smuggling events
because of the presence of patterns that are common to linked smuggling
events, people, organizations, or locations.
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FIGURE 7 A substructure pattern discovered from the database of linked events. This pattern
shows a chain of linked events.

In order to automate the analysis of linked events, we generated a
third graph model of the nuclear smuggling data. This model represented in
graph form the relational information for all smuggling events that contain
links to one or more other smuggling events. The resulting graph contained
18,654 nodes and 19,740 edges. We ran 200 iterations of the Subdue dis-
cover/compress process on this graph and found a number of interesting
results.

Figure 7 shows a type of pattern that was discovered from the database
of linked events. In particular, this pattern reflects a chain of linked events.
This is a particularly intriguing find, because all of the relations contained
in the original database were only pair-wise relations. By applying graph
analysis to a model of the data we were able to extend this pattern to an entire
sequence of related events. The nature of the link between these events was
not discovered in the original database (the link type is “Linked”). However,
we can see that if the technique is applied to a more detailed database,
the approach could discover chains such as a sequence of countries that the
material was routed through as it was smuggled, a cluster of events that share
a common participant person or organization, or a temporal event ordering
that reflects an intended sequence of smuggled components, perhaps to be
later assembled into a weapon.

FINDING IMPORTANT ENTITIES

The goal of our last task is to find the most important, or authoritative,
entities in the database. We define an important entity as one that links to
a large number of other important entities and to which a large number of
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FIGURE 8 A subgraph of the dataset containing the top-ranked node (highlighted in the
middle of the graph) and a portion of the neighborhood surrounding the node.

other important entities link. In this way an important entity acts both as a
hub (i.e., points to data elements of importance) and as an authority (i.e., is
pointed to by important data elements). The method for finding important
nodes in a graph was introduced by Brin and Page [1] and was used by them
to determine a Web page’s relevance or importance.

For this task, we used a graph implementation of the PageRank algo-
rithm that is included in the igraph [4] suite of graph tools. The PageRank
algorithm calculates a probability distribution over nodes in the graph. Each
node starts with its own estimated value of relative importance and propa-
gates this value evenly over its outgoing links. The final probability values
are calculated using an iterative method that corresponds to the principal
eigenvector of the normalized graph adjacency matrix.

Once we calculated the PageRank values of all of the nodes in our graph
model, we sorted them to highlight the nodes with greatest importance. Of
the 25,952 nodes in the graph, 20,869 of the nodes had a value close to
0.0000. Another 4,548 nodes had a value of 0.0001, 491 nodes had a value
of 0.0002, and 39 nodes had a value of 0.0003. Of greatest interest were the
top four nodes in the graph. The top-ranked node had a value of 0.0005 and
the next three had a value of 0.0004.

Figure 8 shows a portion of the neighborhood around the top-ranked
node. The entire neighborhood (of distance one) around this node contains
40 nodes and edges, and is too big to show here. This node contains links
to and from 9 other events. In addition, there are links between the node
and descriptors of people, locations, and smuggled materials. Clearly, this
node is a central source of information in the nuclear smuggling database.
The next three nodes in the ranking also represented smuggling events
and while they had fewer incoming and outgoing links than the top-ranked
node, the types of links were similar in nature to those for the top-ranked
node.

Analyzing the top-ranked smuggling event (#22) in detail will likely give
experts insight on the smuggling strategies. In this case, event 22 describes
the theft of 100 kg of uranium in 1992 from the Chepetskiy Metallurgical
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Combine in Glazov, Russia. This event is linked to five other events, four
of which have a “rival” relationship to event 22 and describe the seizure of
some of this uranium. Four other events link to event 22 and describe deals or
transfers related to this uranium. From these related events additional events
are linked that describe how the remainder of the uranium was eventually
sold, distributed, or seized. We see here that the theft of a significant amount
of nuclear material can result in the separation of the material into smaller
amounts that are then distributed in varied routes, generating a network of
nuclear smuggling events.

This analysis shows that a graph representation is useful for capturing
the structure of security data such as nuclear smuggling events. In addition,
existing AI-based graph algorithms such as Subdue and PageRank are effec-
tive at identifying nodes, patterns, and concepts of interest for understanding
nuclear smuggling activity.

CONCLUSIONS

Preventing the proliferation of nuclear materials and weapons is an impor-
tant challenge to national and global security. Like many security problems,
nuclear non-proliferation involves a vast network of people, places, orga-
nizations, and materials. Tools for assisting analysts in their investigations
in these areas must be able to reason not only about the attributes of enti-
ties involved in events, but also the relationships between these entities. In
this work we have explored the investigation of nuclear smuggling events
using a network, or graph-based, perspective. Specifically, we have shown
the benefits of using graph-based pattern learning to identify characteristic
patterns of nuclear smuggling events and distinguishing patterns between
linked and non-linked events. These patterns indicated the types of facilities,
locations, and people involved in nuclear smuggling events, as well as the
typical presence of an organizer behind linked events. A graph-based ap-
proach to this problem also allows the application of network analysis tools
for identifying entities central to the problem. In this case we found certain
events involving the theft of a large amount of nuclear material initiate a
series of events for dividing and selling this material.

The information discovered from our analysis gives insight into the
techniques and routes used to smuggle nuclear material, which can then be
used to better protect existing materials and better respond to new events.
This analysis also shows that other security-related problems may benefit
from such a graph-based approach. As a next step for this research, we
will address the question of whether structural analysis of the nuclear smug-
gling database identifies patterns that enable analysts to predict intent when
presented with a new event. This is the long-term goal of this research
project.



516 D. Cook et al.

In addition to the analyses shown here, numerous other graph-based
analysis tools can be applied to the nuclear smuggling data and similar
problems. Graph-based anomaly detection [6] can detect small, unexpected
deviations to normative patterns in a graph that may indicate an attempt to
hide illicit behavior by mimicking normal patterns. Dynamic graph mining
[33] looks for patterns in how a graph changes or evolves over time and
can be used to detect emerging criminal networks or predict how smuggling
routes might change over time. These and other graph-based techniques
hold promise for analyzing security data and will be pursued in the future.
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