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Abstract – This paper presents the use of graph-based 
approaches to discovering anomalous instances of structural 
patterns in data that represent insider threat activity. The 
approaches presented search for activities that appear to match 
normal transactions, but in fact are structurally different. We 
show the usefulness of applying graph theoretic approaches to 
discovering suspicious insider activity in domains such as e-mail 
correspondences, business processes, and cybercrime. The paper 
then concludes with some future research that deals with the 
handling of dynamic graphs, as well as the implementation of 
these graph-based anomaly detection algorithms in a frequent 
subgraph miner. 
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I. INTRODUCTION 
The ability to mine data for nefarious behavior is difficult 
due to the mimicry of the perpetrator.  If a person or entity is 
attempting to participate in some sort of illegal activity, they 
will attempt to convey their actions as close to legitimate 
actions as possible. Recent reports have indicated that 
approximately 6% of revenues are lost due to fraud, and 
almost 60% of those fraud cases involve employees [1]. The 
Identity Theft Resource Center recently reported that 16.9 
percent of the security breaches in 2009 came from insiders, 
up from 15.8 percent in 2008 [2]. Various insider activities 
have threatened our nation’s security, such as violations of 
system security policy by an authorized user, deliberate and 
intended actions such as malicious exploitation, theft, or 
destruction of data, the compromise of networks, 
communications, or other IT resources, and the difficulty in 
differentiating suspected malicious behavior from normal 
behavior. Organizations responsible for the protection of 
their company’s valuable resources require the ability to 
mine and detect internal transactions for possible insider 
threats.  Yet, most organizations spend considerable 
resources protecting their networks and information from the 
outside world, with little effort being applied to the threats 
from within. 

Cybercrime is one of the leading threats to company 
confidential data and resources.  A recent study by the 
Ponemon Institute surveyed 577 IT practitioners, who rated 
the issue of cybercrime as the top trend in their industry for 
the next few years, over such hot topics as cloud computing, 
mobile devices, and peer-to-peer sharing [3].  The U.S. 
Department of Justice, in its Computer Crime & Intellectual 
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Property Section, reported nine incidences in the last month 
alone (June 2010), ranging from hacking into a wireless 
network to counterfeiting [4].  News stories detail how 
insiders have bilked corporations out of millions due to their 
ability to access sensitive information – sometimes after they 
have resigned from a company that did not immediately 
remove their confidential access [5].  There have even been 
studies that suggest that the economy has impacted, or will 
impact, the surge in cybercrime [6][7]. 

For the last several years, companies have been analyzing 
their IT operations and processes for the purpose of 
uncovering insider threats and cybercrime.  Most approaches 
have been either statistical in nature, leading to various data 
mining approaches, or a visualization of their resources 
where they can monitor for illegal access or entry.  However, 
recently, the ability to mine relational data has become 
important for detecting structural patterns.  The complex 
nature of heterogeneous data sets, such as network activity, 
e-mail, payroll and employee information, provides for a rich 
set of potentially interconnected and related data.  A 
potential avenue for detecting threats from insiders in 
structurally complex data can be found in graph-based 
anomaly detection. 

II. RELATED WORK 
Much of the information related to insider threats resides in 
the relationships among the various entities involved in an 
incident. Recently there has been an impetus towards 
analyzing multi-relational data using graph theoretic 
methods.  Not to be confused with the mechanisms for 
analyzing “spatial” data, graph-based data mining 
approaches are an attempt at analyzing data that can be 
represented as a graph (i.e., vertices and edges). 

In 2003, Noble and Cook used the SUBDUE system to look 
at the problem of anomaly detection from both the 
anomalous substructure and anomalous subgraph perspective 
[8].  They were able to provide measurements of anomalous 
behavior as it applied to graphs from two different 
perspectives.  Anomalous substructure detection dealt with 
the unusual substructures that were found in an entire graph.  
In order to distinguish an anomalous substructure from the 
other substructures, they created a simple measurement 
whereby the value associated with a substructure indicated a 
degree of anomaly.  They also presented the idea of 
anomalous subgraph detection which dealt with how 
anomalous a subgraph (i.e., a substructure that is part of a 
larger graph) was to other subgraphs.  The idea was that 
subgraphs that contained many common substructures were 
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generally less anomalous than subgraphs that contained few 
common substructures.   

Several approaches employ statistical measures to identify 
individual node or edge anomalies. Lin and Chalupsky [9] 
took the approach of applying what they called rarity 
measurements to the discovery of unusual links within a 
graph.  The AutoPart system presented a non-parametric 
approach to finding outliers in graph-based data [10].  Part 
of this approach was to look for outliers by analyzing how 
edges that were removed from the overall structure affected 
the minimum descriptive length (MDL) of the graph [11].  
The idea of entropy was used by Shetty and Adibi in their 
analysis of the famous Enron e-mail data set [12].  Using 
bipartite graphs, Sun et al. [13] presented a model for 
scoring the normality of nodes as they relate to other nodes.  
Rattigan and Jensen went after anomalous links using a 
statistical approach [14]. 

In Priebe et al.’s work, they used what are called "scan 
statistics" on a graph of the e-mail data that is represented as 
a time series [15].  While their approach detects statistically 
significant events (excessive activity), without further 
analysis, they are unable to determine whether the events are 
relevant (like insider trading). Martin et al. examined what 
they called “behavioral features” of a particular user’s 
network traffic in order to discover abnormal activity [16].  
Through various clustering approaches, and comparisons to 
methods such as Support Vector Machines and Naives Bayes 
Classification, they group sets of users into single behavioral 
models.  Wang et al. used attack graphs to measure and 
quantify potential network attacks [37].  In their model, an 
attack graph is a directed graph representing prior knowledge 
about vulnerability, where the harder it is to attack some 
vulnerability, the less likely that path will be taken by an 
insider. Diesner et al. applied various network analytic 
techniques in their exploration of the structural properties of 
the Enron network.  They used various graph structural 
metrics, such as betweenness centrality, eigenvectors and 
total degree in order to identify key players across time [17].  
In 2007, Kurcz et al. used hierarchical spectral clustering to 
evaluate weighted call graphs [18].  They analyzed several 
heuristic approaches using phone calls made over an eight-
month period.  In Swayne et al.’s work, they used graph 
techniques to explore AT&T phone records [19].  While 
their approach was able to provide for the analysis of phone 
traffic, it was entirely based upon graph visualization, rather 
than any graph theoretic approaches.  In fact, when it comes 
to generating graphs of information, much research has dealt 
with only the visual aspects of what is represented, rather 
than the structural aspects of the graphs themselves. 

The advantage of graph-based anomaly detection is that the 
relationships between elements can be analyzed, as opposed 
to just the data values themselves, for structural oddities in 
what could be a complex, rich set of information. 

III. GRAPH-BASED ANOMALY DETECTION (GBAD) 
The idea behind the approach used in our work is to find 
anomalies in graph-based data where the 
anomalous substructure in a graph is part of (or attached to 
or missing from) a normative pattern, which in our 
implementation is a substructure that minimizes the 
description length (MDL) of a graph.  

Definition: A graph substructure S’ is anomalous if it is not 
isomorphic to the graph’s normative substructure S, but is 
isomorphic to S within X%. 

X signifies the percentage of vertices and edges that would 
need to be changed in order for S’ to be isomorphic to S.  
The importance of this definition lies in its relationship to 
any deceptive practices that are intended to illegally obtain 
or hide information.  The United Nations Office on Drugs 
and Crime states the first fundamental law of money 
laundering as “The more successful money-laundering 
apparatus is in imitating the patterns and behavior of 
legitimate transactions, the less the likelihood of it being 
exposed” [20]. 

GBAD (Graph-based Anomaly Detection) is an 
unsupervised approach, based upon the SUBDUE graph-
based knowledge discovery method [21].  Using a greedy 
beam search and MDL heuristic, each of the three anomaly 
detection algorithms in GBAD uses SUBDUE to find the 
best substructure, or normative pattern, in an input graph.  In 
our implementation, the MDL approach is used to determine 
the best substructure(s) as the one that minimizes the 
following: 

 )()|(),( SDLSGDLGSM +=  

where G is the entire graph, S is the substructure, DL(G|S) is 
the description length of G after compressing it using S, and 
DL(S) is the description length of the substructure. 

There are three general categories of anomalies: insertions, 
modifications and deletions.  Insertions would constitute the 
presence of an unexpected vertex or edge. Modifications 
would consist of an unexpected label on a vertex or edge. 
Deletions would constitute the unexpected absence of a 
vertex or edge.  We have developed three separate 
algorithms:  GBAD-MDL, GBAD-P and GBAD-MPS.  Each 
of these approaches is intended to discover one of the 
corresponding possible graph-based anomaly categories as 
set forth earlier.  The reader should refer to Eberle and 
Holder’s work for a more detailed description of the actual 
algorithms [22]. 

IV. EXPERIMENTS WITH GBAD 

A. E-mail Correspondences 
One of the more recent domains that have become publicly 
available is the data set of e-mails between employees from 
the Enron Corporation.  In addition to Deisner et al.’s work 
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[17] and Shetty and Adibi’s work [12], both of which were 
mentioned in the previous section, others have attempted to 
analyze this data set using graph-based approaches.  Wan et 
al. use a link-based event detection method that clusters 
similar vertices together and then considers deviations from 
each vertex’s individual profile [38].  Whereas, Huang uses 
probabilities to generate models that predict the likelihood of 
links with the topology of a graph [39].  Also, Akoglu et al. 
present an algorithm called OddBall that searches weighted 
graphs based upon a set of rules to determine whether or not 
an anomaly exists [40].  

The Enron e-mail dataset consists of not only messages, but 
also employee information such as their full name and work 
title.  By limiting our graph to the Enron employees and their 
correspondences, we are able to not only create a “social 
network”, but also discover anomalous behaviors among 
classes of individuals.  Thus, we generated graphs based 
upon the social aspect and company position of employees 
that start a “chain” of e-mails, where a chain consists of the 
originating e-mail and any subsequent replies or forwards to 
that corresponding e-mail.  Each graph consists of the 
substructures shown in Figure 1. 

 

<originating 
title> TRANSFERSENDER

<ORIG or 
RE or 
FW>

STATE

<mid>

MID

<TO or 
CC or 
BCC>

METHOD

<title>RECEIVER

 
Figure 1.  Graph substructure of e-mail data set. 

In this representation, a graph consists of individual, 
disconnected substructures that represent the “flow” of each 
e-mail that originates from someone with a specified 
employment title (e.g., Director).  An e-mail can be sent by 
one or more TRANSFERs to one or more individuals with 
varying employment titles (represented by a directional 
arrow to show who sent the message to whom), and can 
either be sent back (as a reply or forward) to the <originating 
title>, or forwarded/replied on to other <title> entities.  
There is no limit to the number of times a message can be 
replied/forwarded. 

There are many different employee titles within Enron (i.e., 
Managers, Directors, CEOs, etc.), and each of the GBAD 
algorithms were able to show different structural anomalies 
in the chains of e-mails that originated along people’s 
company titles.  For instance, running GBAD on the graph 
that consists of e-mails originating from Directors, the 
anomalous instance shown in Figure 2 is discovered. 

 
Figure 2.  Anomalous instance (portion) of e-mail being forwarded. 

This anomalous instance consists of a message being sent 
from a Director to an Employee (i.e., non-management 
personnel), that was then forwarded to another non-
management Employee.  What is interesting about this 
anomaly is that the data set consists of many e-mails that are 
sent "TO" "Employee"s from "Director"s, but this is the only 
situation where the Employee FORWARDed the e-mail onto 
another “Employee”, who was not privy to the original e-
mail.  Specifically, the e-mail started with Hyatt (director) 
regarding "Oasis Dairy Farms Judgement", who sent it to 
Watson (employee), who then forwarded it to Blair 
(employee).  In addition, applying GBAD to the graph of e-
mails originating from personnel with the title of “Trader” 
produces two anomalous instances.  In the first anomalous 
instance, from an e-mail entitled "Financial Disclosure of 
$1.2 Billion Equity Adjustment", out of only four e-mails 
sent to a CEO, this was the only example of an e-mail being 
sent TO a CEO - the other 3 e-mails are CCed to the CEO.  
In the case of the second anomalous instance, an e-mail 
entitled "Fastow Rumor", this was the only time that an e-
mail was sent by a Trader to a President. 

B. Business Processes 
In order to demonstrate the potential effectiveness of GBAD 
for detecting insider threats in business processes, we 
simulated a passport processing scenario that was motivated 
by two real-world sources of information. One source is the 
incidents reported in the CERT Insider Threat documents 
[23][24][25] that involve privacy violations in a government 
identification card processing organization and fraud in an 
insurance claim processing organization. The other model 
we used is based on the process flow associated with a 
passport application [26]. The outline of this process flow, 
depicted in Figure 3, is as follows: 

 
Figure 3.  Information flow in application scenario. 
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1. The applicant submits a request to the frontline staff 
of the organization. 

2. The frontline staff creates a case in the organization’s 
database and then submits the case to the approval 
officer. 

3. The approval officer reviews the case in the database 
and then assigns the case to one of the case officers. 
By default, there are three case officers in this 
organization. 

4. The assigned case officer reviews the case. The 
assigned case officer may request additional 
information from the applicant, which is submitted to 
the frontline staff and then forwarded to the assigned 
case officer. The assigned case officer updates the 
case in the database based on this new information. 
The assigned case officer may also discuss the case 
with one or more of the other case officers, who may 
review the case in the database in order to comment 
on the case. Ultimately, the assigned case officer will 
recommend to accept or reject the case. This 
recommendation is recorded in the database and sent 
to the approval officer. 

5. Upon receiving the recommendation from the 
assigned case officer, the approval officer will make a 
final decision to accept or reject the case. This 
decision is recorded in the database and sent to both 
the frontline staff and the applicant. 

6. Finally, upon receiving the final decision, the 
frontline staff archives the case in the database. 

 
There are several scenarios where potential insider threat 
anomalies might occur, including: 
 

1. Frontline staff performing a Review Case on the 
database (e.g., invasion of privacy). 

2. Frontline staff submits case directly to a case officer 
(bypassing the approval officer). 

3. Frontline staff recommends or decides case. 
4. Approval officer overrides accept/reject 

recommendation from assigned case officer. 
5. Unassigned case officer updates or recommends case. 
6. Applicant communicates with the approval officer or 

a case officer. 
7. Unassigned case officer communicates with applicant. 
8. Database access from an external source or after 

hours. 
 
Representing the processing of 1,000 passport applications, 
we generated a graph of approximately 5,000 vertices and 
13,000 edges, and proceeded to replicate the scenarios 
described above. 

For scenarios 1, 3 and 6, while the GBAD-MDL and GBAD-
MPS algorithms do not discover any anomalous structures, 
GBAD-P is able to successfully discover the single 
anomalous cases out of 1,000 where staff is violating the 
process.  For scenario 2, the GBAD-MPS algorithm 
successfully discovers all three instances where the frontline 

staffer did not submit the case to the approval officer.  

For Scenario 4, we randomly modified three examples by 
changing the recommendation that the “CaseOfficer” sends 
to the “ApprovalOfficer”.  This scenario tests GBAD’s 
ability to handle multiple normative patterns.  Potentially, 
there are two types of prevalent patterns in this type of data:  
(1) The ApprovalOfficer and CaseOfficer both accept a 
passport application, and (2) The ApprovalOfficer and 
CaseOfficer both reject an application.  Therefore, 
potentially anomalous scenarios could exist where the 
ApprovalOfficer overrides the accept/reject recommendation 
from the assigned CaseOfficer. We generated a graph 
consisting of these two normative patterns, although these 
patterns were not among the top-ranked most normative 
substructures.  We then randomly inserted an anomalous 
instance of the first type (case officer accepts, approval 
officer rejects) and two anomalous instances of the second 
type (case officer rejects, approval officer accepts). 
Configuring the GBAD-P algorithm to analyze the top N 
normative patterns, where N is set arbitrarily to 20, all three 
anomalous examples are reported as the most anomalous.  
Other experiments showed that the size of N was not 
important.  For instance, in this example, when we increase 
N to 100, the top three anomalies reported are still the same 
ones.  In addition, no other substructures are reported as 
anomalous along with these top three anomalies (i.e., no 
false positives). 

For scenario 5, we randomly inserted into two examples the 
situation where a “CaseOfficer” recommends to accept a 
case for which they were not assigned.  In this scenario, 
GBAD-MDL does not report any anomalies, while both 
GBAD-MPS and GBAD-P each discover both anomalous 
instances.  GBAD-MPS discovers the anomalies because the 
“CaseOfficer” has assigned himself to the case without any 
corresponding recommendation back to the 
“ApprovalOfficer” or “Database”, while GBAD-P uncovers 
the extra “CaseOfficer” and his unauthorized assignment to 
the case.  Figure 4 shows the normative pattern and the 
anomalous structures from one of these examples.  Also, 
while not shown, this same structural anomaly can be found 
in scenario 7.  Scenario 7 consists of an extra edge going 
from the unauthorized “CaseOfficer” node to the “Customer” 
node, and as such is only different from Scenario 5 by the 
label on the edge and the targeted node. 
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Figure 4.  Scenario showing unauthorized CaseOfficer’s handling of case. 

Finally, for scenario 8, we represented time in the graph as 
the number of hours since midnight, and we enhanced 
GBAD to use a simple statistical analysis of numerical 
attributes as part of its evaluation of the graph structure.  In 
this case, we randomly inserted two anomalies into the 
graph, and the GBAD-P algorithm was able to successfully 
discover both anomalies where access to the company 
database was during unexpected hours, with no false 
positives reported.  While the structure was the same, the 
time information (represented as a number), provides extra 
information that aides in the insider threat detection.  Also, it 
is important to note that no false positives are reported with 
this scenario. 

C. Cybercrime 
Another example of insider threat is the leaking of 
information by employees with access to confidential and 
sensitive information.  For example, in April of 2010, a 
federal grand jury indicted a former senior NSA executive 
for leaking classified information to a reporter [27]. As part 
of the 2009 IEEE Symposium on Visual Analytics Science 
and Technology (VAST 2009), we applied our approaches to 
one of their mini challenges that involved various aspects of 
a fictional insider threat scenario where someone is leaking 
information [28]. The goal of these challenges is to allow 
contestants to apply various visual analysis techniques so as 
to discover the spy and their associated actions. While our 
GBAD approaches are not “visually based”, we chose to 
apply our algorithms to the mini-challenge that consists of 
badge and network IP traffic. The data set is comprised of 
employee “badge swipes” during the month of January in 
2008, and the IP log consists of all network activity to and 
from the facility. One of the goals of this mini-challenge was 
to determine which computers the “spy” used to send the 
sensitive information. 

We can separate the cybercrime discovery process into three 
separate tasks: 

1. Discover the anomalous network activity, 
2. Create targeted graphs for just those days and people 

that might be involved in the anomalous activity, 
and 

3. Use GBAD to discover which employees participate 
in anomalous activity. 

The first stage of this process is to discover the network 
activity that is unusual – or the source of illegal 
transmissions.  Rather than apply a graph-based approach to 
the discovery of what would be numerical/statistical 
anomalies (i.e., non-structural anomalies), we can do a 
simple analysis of the actual records.   Sorting the IP logs by 
amount of traffic, one discovers that the top five 
transmissions are all to the same destination IP, 
100.59.151.133 on port 8080: 
… 
Synthetic Data 37.170.100.31 2008-01-15T17:03 100.59.151.133 8080   9513313   14324 
Synthetic Data 37.170.100.20 2008-01-24T17:07 100.59.151.133 8080   9732417   42347 
Synthetic Data 37.170.100.13 2008-01-22T08:50 100.59.151.133 8080   9984318   42231 
Synthetic Data 37.170.100.56 2008-01-29T15:41 100.59.151.133 8080 10024754   29565 
Synthetic Data 37.170.100.8 2008-01-31T16:02 100.59.151.133 8080 13687307 485421 

 
In the IP log file, the first column is the type of data, the 
second column is the source IP, the third column is the date 
and time, the fourth column is the destination IP, the fifth 
column is the destination port, the sixth column is the size of 
the transmission, and the last column is the size of the 
response record.  In fact, 17 of the 32 highest-transmission 
records have this same destination IP - clearly an unusual 
volume of traffic to a single, external destination.  In 
addition, with our graph-based approach, we can verify the 
anomalousness of the traffic based upon the relationship of 
the activity within the graph.  For example, knowing that 
employee 31’s computer is one of the computers that sent the 
supposedly illegal transmissions (see the top record above), 
we can analyze the subgraph of that employee’s activity on 
that day.  

In order to discover an insider committing this form of 
cybercrime, we can make two assumptions: 

1. The insider never uses their own computer (for fear 
of their actions being traced back to them), and 

2. The insider only uses someone else’s computer when 
they are in the classified area (as that is the only 
time we know that they are not in their office). 

 

Using these two assumptions (which were correct 
assumptions made by others as part of this competition), we 
can then focus on the generation of graphs that (1) exclude 
people whose computer was compromised from being 
considered as suspects, and (2) reduce the graph search 
space to only those days where the illicit transmissions took 
place.  In this data set, 10 employees are removed from 
being considered as suspects, and only the activity of other 
employees during the anomalous network activity are 
represented in the graph.  This will enable us to analyze 
abnormal structure in the graph during the times of the 
crimes. 

So first we create graphs consisting of subgraphs that 
represent employee movements for each targeted day (i.e., 
the days when the illicit transmissions took place), as well as 
graphs that represent the movements for each employee over 
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all of the targeted days. Each subgraph will contain a 
“backbone” of movement vertices. Attached to the 
movement vertices will be two vertices representing where 
the person was before entering the current location and the 
current location (i.e., outside, building, classified). The edges 
will be labeled start and end, respectively. Then, if network 
traffic is sent before the person moves again, a network 
vertex will be created and linked to the movement vertex via 
a sends edge. The network vertex will also be linked to a 
vertex with a numerical label, representing how many 
messages are sent before the next movement occurs.  The 
result is a graph topological representation as shown in 
Figure 5. 

 

Figure 5.  Graph topology of movement and activity. 

In the partial example shown in Figure 6, a person enters 
from the outside, transfers some data across the network, and 
then moves into the classified area. 

 

 

Figure 6.  Example movement and activity (partial graph shown). 

We created a tool to process the comma-delimited proxy log 
and IP log files and output graph files for use with GBAD.  
Once the graph files are created, GBAD can then be used to 
obtain (1) the normative pattern discovered in the specified 
graph input file and (2) the top-N most anomalous patterns. 

Using this graph representation, GBAD discovers the 
normative pattern shown in Figure 7. 

 

Figure 7.  Normative pattern. 

After uncovering the normative pattern, GBAD can then use 
its three algorithms to discover all of the possible structural 
changes that can exist in a graph (i.e., modification, 
deletions, and insertions). 

The VAST data set consists of the activities of 60 employees 
at an embassy over the month of January in 2008.  As stated 
earlier, there are 17 transmissions to the suspect IP.  Based 
upon our first assumption, we can remove 10 employees 
from the list of suspects (some employees’ computers were 
compromised more than once).  We can also reduce our data 
set down to just the days where the anomalous transmissions 
took place, which consists of 8 of the 31 available days 
worth of information.  This subset of the data is then the 
baseline for our GBAD analysis. 

Using these targeted graphs (8 day graphs and 50 people 
graphs), we ran the GBAD algorithms using default 
parameter settings, where it would report only the most 
anomalous instances, rather than the top-K instances.  On the 
graphs that represent individual people and their movements 
and network activities across all targeted days, the GBAD-
MDL algorithm discovers 12 employees as having 
anomalous movements and activities, and the GBAD-MPS 
algorithm reports 8 employees as anomalous.  On the graphs 
that represent all movements and activities for each targeted 
day, GBAD-MDL reports 6 employees as anomalous while 
GBAD-MPS reports 2 employees.  However, there is an 
interesting commonality across all four experiments.  If you 
take the overlap (intersection) between them, in other words 
which employees are reported in ALL of the experiments, 
one discovers that there are only 2 employees that are very 
suspicious: employee 49 and employee 30. 

We can further distinguish a difference between these two 
employees by analyzing the graphs and GBAD results.  From 
the GBAD results, employee 30 is reported as the most 
anomalous (score-wise) on 6 of the 8 days, with employee 49 
being the most anomalous on the other 2.  Also, employee 30 
is the only employee with the structural anomaly shown in 
Figure 8. 
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Figure 8.  Anomalous structure (in the graph). 

In Figure 8 (only the parts of the graph necessary for this 
observation are shown), one will notice that the employee 
initially moves from the outside into the building.  However, 
their next move is from the classified area into the building – 
with no movement into the classified area before that.  This 
is called “piggybacking”, where an employee does not use 
their badge, but instead follows on the heels of another 
employee.  Employee 30 is not only the only employee to 
piggyback into the classified area, but they do it several 
times.  Perhaps their intent is to gather classified information 
without a trace of ever entering the area.  Unfortunately (for 
them), they had to badge-out of the area – resulting in a 
structural anomaly in their movement. 

D. Tests and Performance 
We have also performed a variety of synthetic tests on each 
of the algorithms using graphs of various sizes and 
connectivity. In each experiment, we randomly modified, 
inserted or deleted (as well as a combination of multiple 
changes) vertices and edges. We measured GBAD’s ability 
to correctly identify the intended anomalies (true positives) 
versus reporting anomalies we did not introduce into the data 
(false positives). The overall results were that GBAD never 
found less than 95% of the anomalies, with minimal (none in 
most cases) false positives reported.  

The average running times of the algorithms is anywhere 
from < 1 second to ~45 minutes, depending upon the size of 
the graphs. The larger the graph, as well as the number of 
subgraphs one wants to analyze for anomalous structure, the 
greater the runtime for the algorithms. In general, the running 
time of GBAD is polynomial in the size of the graph and the 
parameters of the algorithm. Figure 9 shows the performance 
of the GBAD algorithms on our synthetic experiments as a 
linear log-log plot. 

The ability to discover the anomalies is sometimes limited by 
the resources allocated to the algorithm. Given a graph 
where the anomalous substructure consists of the minimal 
deviation from the normative pattern, if a sufficient amount 
of processing time and memory is provided, all of these 
algorithms will discover the anomalous substructure with no 
false positives.  However, the ability to discover anomalies 
(per our definition) is also hampered by the amount of noise 
present in the graph. The issue is that if noise is a smaller 

deviation from the normative pattern than the actual 
anomaly, it may score higher than the targeted anomaly 
(depending upon the frequency of the noise).  

The reader should refer to [22] for more information 
regarding the experimental results and analysis of GBAD. 

V. FUTURE WORK 

A. Data Changing Over Time 
So far, GBAD has only been applied to static graphs. 
However, many domains in which we desire to detect 
anomalies are dynamic; that is, the information is changing 
over time. One solution to this scenario is to collect data 
over a time window, build a graph from this data that may or 
may not explicitly represent time, and then apply GBAD to 
the graph. While this solution will find anomalies to patterns 
within the time window, any dynamic component to the 
patterns and anomalies will rely on a proper representation 
of time and a sufficiently long time window in which to 
observe the patterns’ regularity. 

One approach to detecting patterns of structural change in a 
dynamic graph, which has been successfully applied to the 
domain of biological networks [29], is called DynGRL [30]. 
In this approach, DynGRL first learns how one graph is 
structurally transformed into another using graph rewriting 
rules, and then abstracts these rules into patterns that 
represent the dynamics of a sequence of graphs. The goal of 
DynGRL is to describe how the graphs change over time, not 
merely whether they change or by how much. 

Graph rewriting rules represent topological changes between 
two sequential versions of the graph, and transformation 
rules abstract the graph rewriting rules into the repeated 
patterns that represent the dynamics of the graph. Figure 10 
shows the framework of this approach. The dynamic graph 
contains a sequence of graphs that are generated by sampling 
snapshots from a continuously-changing graph. First, the 
approach learns graph rewriting rules including removals 
(Ri) and additions (Ai+1) between two sequential graphs Gi 
and Gi+1 (Figure 10 (B)), and generates a list of all graph 

Figure 9.  GBAD running times on synthetic graphs. 
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rewriting rules (Figure 10 (C)). The final step is to learn the 
transformation rules to abstract the structural change of the 
dynamic graph based on the repeated patterns in the graph 
rewriting rules. If some structural changes are repeated in the 
dynamic graph, there exist common subgraphs in the R’s and 
A’s. 

 

Figure 10.  Framework of dynamic graph analysis. 

In order to detect anomalies in the change of dynamic 
graphs, we must first learn how one graph is structurally 
transformed into another, and then abstract patterns that 
represent the dynamics of a sequence of graphs. In order to 
detect anomalies, the goal is to describe how the graphs 
change over time, and discover those changes that are 
structurally anomalous. Specifically, we want to (1) look for 
structural modifications, insertions and deletions to nearby 
instances of the transformation rules as potential anomalies 
to the normative pattern, and (2) detect anomalies in the 
temporal application of the transformation rules, e.g., when 
in some cases the structure does not appear exactly four 
times after it was last removed.  

Using this approach, we coupled DynGRL with GBAD to 
produce a system for discovering anomalies in dynamic 
graphs which we call DynGBAD. First, DynGBAD produces 
a sequence of difference graphs for each pair of graphs in the 
time-slice sequence, searching for recurring patterns in these 
difference graphs. DynGBAD then analyzes these difference 
graphs using the normative recurring patterns discovered by 
the relational learner (DynGRL) and identifies anomalies to 
these patterns (GBAD). A dynamic anomaly may be a 
change in the pattern at some point in time (similar to what 
GBAD already does), but also may consist of a change in the 
period of recurrence of the pattern. Our hypothesis is that a 
representation that links the difference graphs together will 
allow DynGBAD to detect such anomalies.  

B. Speed and Efficiency 
While the GBAD approach has been effective on various 
datasets, its use of the computationally complex graph 
matching operations hinders its application to large datasets. 
One graph-based knowledge discovery approach that has 
shown to be expedient without losing any accuracy can be 
found in the many frequent subgraph miners. Existing 
approaches such as GASTON [31], gSpan [32], GBI [33] 
and Grew [34] use canonical graph representations to 
efficiently return frequent substructures in a database that are 
represented as a graph. In addition, each of these approaches 
has demonstrated significant improvements in processing 
time when applied to complex data sets. 

In order to demonstrate the potential effectiveness of 
implementing anomaly detection algorithms into a frequent 
subgraph mining approach, we have initially tried to 
implement the GBAD-MDL algorithm into GASTON. The 
way GASTON works is that embeddings (substructures) are 
analyzed for potential refinements, where the refinement (or 
extension) could lead to a potentially frequent substructure. 
The advantage lies in its Apriori approach whereby prior 
knowledge of frequent itemset properties is used to discover 
those substructures that are frequent [35]. This well-known 
property provides a reduction in the search space, which can 
then be used to improve the performance for determining 
which substructures have an anomalous match. 

To test the potential of such an approach, we used actual 
cargo shipping manifest data from the Customs and Border 
Protection agency [36].  Taking a sampling of shipments 
received at the port in Norfolk, Virginia, three graphs of 
~10,000 vertices and edges were generated: one with an 
anomalous vertex, one with an anomalous edge, and one with 
both an anomalous vertex and an anomalous edge.  For all 
three graphs, GASTON-GBAD, with a threshold of 0.1 (i.e., 
anomalies that consist in less than 10% of the substructure), 
was able to correctly identify the anomalous instance, with 
no false positives, and in less than ~7 minutes.  Even though 
no algorithmic improvements were made to the baseline 
GASTON algorithm, this still was a significant improvement 
over the SUBDUE-GBAD implementation which required 
~54 minutes to discover these same anomalies. 

VI. CONCLUSIONS 
Results from running the GBAD algorithms on e-mails, 
business processes and movement activities show how these 
graph-theoretic approaches can be used to identify insider 
threats. While we have been able to achieve some minimal 
successes when applying graph-theoretic algorithms to 
dynamic graphs that change over time, clearly we have only 
begun to scratch the surface. In addition, initial results from 
implementing GBAD algorithms in frequent subgraph miners 
have demonstrated a potential for a significant speed-up in 
performance. 
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