
Mining for Insider Threats in Business Transactions and Processes
William Eberle and Lawrence Holder, Members, IEEE

Abstract—Protecting and securing sensitive
information are critical challenges for businesses.
Deliberate and intended actions such as malicious
exploitation, theft or destruction of data, are not only
harmful and difficult to detect, but frequently these
threats are propagated by an insider. Unfortunately,
current efforts to identify unauthorized access to
information such as what is found in document control
and management systems are limited in scope and
capabilities. This paper presents an approach to
detecting anomalies in business transactions and
processes using a graph representation. In our graph-
based anomaly detection (GBAD) approach, anomalous
instances of structural patterns are discovered in data
that represent entities, relationships and actions. A
definition of graph-based anomalies and a brief
description of the GBAD algorithms are presented,
followed by empirical results using a discrete-event
simulation of real-world business transactions and
processes.

I. INTRODUCTION
 very day there are reports of insider threats that affect
an IT organization’s network, systems and information.

Recent reports have indicated that approximately 6% of
revenues are lost due to fraud, and almost 60% of those
fraud cases involve employees [10]. The Identity Theft
Resource Center recently reported that 15.8 percent of
security breaches so far in 2008 have come from insiders, up
from 6 percent in 2007 [5]. Various insider activities such as
violations of system security policy by an authorized user,
deliberate and intended actions such as malicious
exploitation, theft, or destruction of data, the compromise of
networks, communications, or other IT resources, and the
difficulty in differentiating suspected malicious behavior
from normal behavior, have hampered business activities. IT
organizations, responsible for the protection of their
company’s valuable resources, require the ability to mine
and detect internal transactions for possible insider threats.

Yet, most organizations spend considerable resources
protecting their networks and information from the outside
world, with little effort being applied to the threats from
within.

This material is based upon work supported by the Department of

Homeland Security under Contract No. N66001-08-C-2030. Any opinions,
findings and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the
Department of Homeland Security.

W. Eberle is with the Department of Computer Science, Tennessee
Technological University, Cookeville, TN 38505 USA (e-mail:
weberle@tntech.edu).

L. Holder is with the School of Electrical Engineering and Computer
Science, Washington State University, Pullman, WA 99164 USA (e-mail:
holder@wsu.edu).

For years, companies have been analyzing their business
processes for the purposes of streamlining operations,
discovering wasteful overhead, overcoming inefficiencies in
production, etc. However, there have also been several
efforts applied towards analyzing business processes for
fraud detection, which has led to an increase in pertinent
data mining activity. Most of these approaches have dealt
with the visualization of business processes, such as
VisImpact [12]. Some approaches have used data/audit logs
that are collected by a company, in order to generate fraud
alerts in near real-time. In addition, the ability to mine
relational data has become important for detecting structural
patterns. Recently there has been an impetus towards
analyzing relational data using graph theoretic methods [2].
Graph-based data mining approaches analyze data that can
be represented as a graph (i.e., vertices and edges). While
there are approaches for using graph-based data mining for
intrusion detection [3], little work has been done in the area
of graph-based anomaly detection, especially for application
to business processes, such as in document control and
management systems.

In this paper, we present such an approach called Graph-
Based Anomaly Detection (GBAD) [4]. GBAD discovers
anomalous instances of structural patterns in data that
represent entities, relationships and actions. Input to GBAD
is a labeled graph in which entities are represented by
labeled vertices and relationships or actions are represented
by labeled edges between entities. Using the minimum
description length (MDL) principle to identify the normative
pattern that minimizes the number of bits needed to describe
the input graph after being compressed by the pattern,
GBAD uses algorithms for identifying the three possible
changes to a graph: modifications, insertions and deletions.
Each algorithm discovers those substructures that match the
closest to the normative pattern without matching exactly.
As a result, GBAD is looking for those activities that appear
to match normal (or legitimate) transactions, but in fact are
structurally different. This is a promising novel approach to
discovering anomalies as most anomaly detection
approaches use profiles based on non-structural attributes,
and then search for outliers to those profiles [18].

 Take for instance the document flow scenario of an order
processing system, as shown in Figure 1. This example
would consist of individual transactions where personnel

E

978-1-4244-2765-9/09/$25.00 ©2009 IEEE

Authorized licensed use limited to: Washington State University. Downloaded on January 13, 2010 at 15:53 from IEEE Xplore. Restrictions apply.

receive, process and possibly pass on documents to other
personnel or departments. However, when this information
is represented as a graph, possible anomalous actions can be
considered “additional structure” within the graph that was
an unexpected deviation from the normal pattern of
document flow. For example, the Sales department might
also pass the Order Acknowledgement to another customer,
providing “inside information.”

Figure 1. Order processing scenario.
This example will be discussed in more detail later in this
paper.

In the following section, we present a definition of what is
a graph-based anomaly, some assumptions that we have
made, and a brief introduction to the three graph-based
detection algorithms embodied in GBAD [6]. The primary
contribution of this work is the applicability of these
algorithms to the detection of insider threats in business
transactions and processes. In this paper we present the
flow of information associated with application processing,
and evaluate GBAD’s ability to discover deviations that
could indicate attempted abuse. We then conclude with
some discussion of future work.

II. GRAPH-BASED ANOMALY DETECTION

A. Definition
The idea behind the approach presented in this paper is to

find anomalies in graph-based data where the
anomalous substructure in a graph is part of (or attached to
or missing from) a normative substructure.

Definition: A graph substructure S’ is anomalous if it is not
isomorphic to the graph’s normative substructure S, but is
isomorphic to S within X%.

X signifies the percentage of vertices and edges that would
need to be changed in order for S’ to be isomorphic to S.
The importance of this definition lies in its relationship to
any deceptive practices that are intended to illegally obtain
or hide information. The United Nations Office on Drugs
and Crime states the first fundamental law of money
laundering as “The more successful money-laundering
apparatus is in imitating the patterns and behavior of

legitimate transactions, the less the likelihood of it being
exposed” [1].

For a structural graph-based anomaly, there are several
situations that might occur:

1. A vertex exists that is unexpected.
2. An edge exists that is unexpected.
3. The label on vertex is different than was expected.
4. The label on edge is different than was expected.
5. An expected vertex is absent.
6. An expected edge between two vertices is absent.

In essence, there are three general categories of anomalies:
insertions, modifications and deletions. Insertions would
constitute the first two situations; modifications would
consist of the third and fourth situation; and deletions would
categorize the last two situations.

B. Assumptions
Many of the graph-based anomaly detection approaches

up to now have assumed that the data exhibits a power-law
distribution [13]. The advantage of the approaches
presented in this paper is that it does not assume the data
consists of a power-law behavior. In fact, no standard
distribution model is assumed to exist. All that is required is
that the data is regular, which in general means that the data
is “predictable”. While there are many data sets that are not
regular in nature, in general, business processes consist of
transactions that would exhibit regular patterns of behavior.
After all, that is why companies set up processes in the first
place – to establish rules and guidelines for normal business
activity.

In order to address our definition of an anomaly, we make
the following assumptions about the data.

Assumption 1: The majority of a graph consists of a
normative pattern, and no more than X% of the normative
pattern is altered in the case of an anomaly.
Since our definition implies that an anomaly constitutes a
minor change to the prevalent substructure, we would chose
a small percentage (e.g., 10%) to represent the most a
substructure would be changed in a fraudulent action.
Assumption 2: Anomalies consist of one or more
modifications, insertions or deletions.
As was mentioned earlier, there are only three types of
changes that can be made to a graph. Therefore, anomalies
that consist of structural changes to a graph must consist of
one of these types.
Assumption 3: The normative pattern is connected.
In the real-world scenarios of business transactions and
processes, the entities are typically linked to each other in
some way. Certainly, graphs could contain potential
anomalies across disconnected substructures, but at this
point, we are constraining our research to only connected
anomalies.

Authorized licensed use limited to: Washington State University. Downloaded on January 13, 2010 at 15:53 from IEEE Xplore. Restrictions apply.

C. Approach
Most anomaly detection methods use a supervised

approach, which requires some sort of baseline of
information from which comparisons or training can be
performed. In general, if one has an idea what is normal
behavior, deviations from that behavior could constitute an
anomaly. However, the issue with those approaches is that
one has to have the data in advance in order to train the
system, and the data has to already be labeled (e.g., normal
employee transaction versus threatening insider activity).

GBAD (Graph-based Anomaly Detection) [6] is an
unsupervised approach, based upon the SUBDUE graph-
based knowledge discovery method [7]. Using a greedy
beam search and Minimum Description Length (MDL)
heuristic [8], each of the three anomaly detection algorithms
in GBAD uses SUBDUE to provide the top substructure, or
normative pattern, in an input graph. In our implementation,
the MDL approach is used to determine the best
substructure(s) as the one that minimizes the following:

)()|(),(SDLSGDLGSM +=

where G is the entire graph, S is the substructure, DL(G|S) is
the description length of G after compressing it using S, and
DL(S) is the description length of the substructure.

We have developed three separate algorithms: GBAD-
MDL, GBAD-P and GBAD-MPS. Each of these
approaches is intended to discover all of the possible graph-
based anomaly types as set forth earlier. The following is a
brief summary of each of the algorithms, along with some
simple business process examples to help explain their
usage. The reader should refer to [6] for a more detailed
description of the actual algorithms.

Information Theoretic Algorithm (GBAD-MDL)

The GBAD-MDL algorithm uses a Minimum Description
Length (MDL) heuristic to discover the best substructure in
a graph, and then subsequently examines all of the instances
of that substructure that “look similar” to that pattern – or
more precisely, are modifications to the normative pattern.
In Noble and Cook’s work on graph-based anomaly
detection [9], they presented a similarly structured example
(albeit with different labels) to the one shown in Figure 2.

In this example, the normal business process involves
Sales sending an order to the Dispatcher, the Dispatcher
verifying the order and sending in onto the Warehouse, and
the Warehouse confirming the fulfillment of the order with
Sales. When applying the GBAD-MDL algorithm to this
example, the circled substructure in Figure 2 is reported as
being anomalous. In this case, there are three entities
communicating for each order, but Accounts is handling the
order instead of Sales - going outside the normal process.
With Noble and Cook’s approach, the “Accounts” vertex
would have correctly been shown to be the anomaly, but the
importance of this new approach is that a larger picture is

provided regarding its associated substructure. In other
words, not only are we providing the anomaly, but we are
also presenting the context of that anomaly within the graph
(the individual anomaly within the instance is in bold.)

Figure 2. Example with anomalous instance circled.

Probabilistic Algorithm (GBAD-P)

The GBAD-P algorithm uses the MDL evaluation
technique to discover the best substructure in a graph, but
instead of examining all instances for similarity, this
approach examines all extensions (or insertions) to the
normative substructure with the lowest probability. The
difference between the algorithms is that GBAD-MDL is
looking at instances of substructures with the same
characteristics (e.g., size), whereas GBAD-P is examining
the probability of extensions to the normative pattern to
determine if there is an instance that includes edges and
vertices that are probabilistically less likely than other
possible extensions. Taking the business process example
again, Figure 3 shows the process flow between a
warehouse (W), dispatcher (D), accounting (A) and the
customer (C).

Figure 3. Example with instance of normative pattern

boxed and anomaly circled

In this example, the normal process involves a

communication chain between Sales, Warehouse and
Dispatcher, with the order confirmation being conveyed by
the Dispatcher to the Customer. After the first iteration of
the GBAD-P algorithm, the boxed instance in Figure 3 is

Authorized licensed use limited to: Washington State University. Downloaded on January 13, 2010 at 15:53 from IEEE Xplore. Restrictions apply.

one of the instances of the best substructure. Then, on the
second iteration, extensions are evaluated, and the circled
instance is the resulting anomalous substructure. In this
example, the Dispatcher is communicating with Accounts
when it should have been the Customer. Again, the edge
and vertex (shown in bold) are labeled as the actual
anomaly, but the entire anomalous substructure is output to
provide additional context for possible analysis.

Maximum Partial Substructure (GBAD-MPS)

The GBAD-MPS algorithm again uses the MDL approach

to discover the best substructure in a graph, then it examines
all of the instances of parent (or ancestral) substructures that
are missing various edges and vertices (i.e., deletions). The
value associated with the parent instances represents the cost
of transformation (i.e., how much change would have to take
place for the instance to match the best substructure). Thus,
the instance with the lowest cost transformation is
considered the anomaly, as it is closest (maximum) to the
best substructure without being included on the best
substructure’s instance list. If more than one instance have
the same value, the frequency of the instance’s structure will
be used to break the tie if possible. Consider the slightly
more complex graph of a business process, involving
multiple transactions that are linked together by common
entities, as shown in Figure 4.

Figure 4. Example with instance of normative pattern
boxed and anomaly circled.

In this example, the normative pattern in the process is a
Sales person communicating with the Warehouse and a
Customer, and the Warehouse corresponding with a
Dispatcher. Suppose we take one of the instances of the
normative pattern (shown in the box), and remove an edge
and its associated vertex (shown in the circle). When
applying GBAD-MPS to that modified graph, an anomalous
substructure, similar to the normative pattern, is discovered,
where the Customer entity is missing along with the “note”
link from Sales.

Tests and Performance

In order to systematically test each of the algorithms, we

created synthetic graphs of various sizes and connectivity.
We then repeated experiments, each time randomly
modifying, inserting or deleting (and sometimes a
combination of all types) vertices and edges. We measured
GBAD’s ability to not only correctly identify the created
anomalies (true positives versus false positives), but also its
ability to not miss the anomaly. The overall results were that
GBAD never found less than 95% of the anomalies, with
minimal (none in most cases) false positives reported.

The average running times of the algorithms is anywhere
from < 1 second to ~45 minutes, depending upon the size of
the graphs. The larger the graph, as well as the number of
subgraphs one wants to analyze for anomalous structure, the
greater the runtime for the algorithms. In general, the
running time of GBAD is polynomial in the size of the
graph and the parameters of the algorithm. The ability to
discover the anomalies is sometimes limited by the
resources allocated to the algorithm. Given a graph where
the anomalous substructure consists of the minimal
deviation from the normative pattern, if a sufficient amount
of processing time and memory is provided, all of these
algorithms will discover the anomalous substructure with no
false positives. However, the ability to discover anomalies
(per our definition) is also hampered by the amount of noise
present in the graph. The issue is that if noise is a smaller
deviation from the normative pattern than the actual
anomaly, it may score higher than the targeted anomaly
(depending upon the frequency of the noise).

The reader should refer to [6] for more information
regarding the experimental results and analysis of GBAD,
including experiments on two diverse real-world data sets:
cargo shipments and network traffic.

III. INTEGRATION OF GBAD AND OMNET++
In order to perform a systematic evaluation of the Graph-

Based Anomaly Detection (GBAD) approach for identifying
anomalies, or insider threats, in business transactions or
processes, we used the OMNeT++ discrete event simulator
[14] to model transactions and processes, generate
transaction and process data, represent the data in graph
form, and then analyze the graphs using GBAD. This
process has two main benefits. First, we can model many
different types of transactions with known structure and
known anomalies, which allows us to easily verify GBAD’s
ability to detect these anomalies. Second, the OMNeT++
framework can be used to model real business processes to
further evaluate the real-world applicability of the GBAD
approach. Here we give a brief introduction of this process
on a simple business transaction example, followed by a
more complex example representing a known business
process.

Authorized licensed use limited to: Washington State University. Downloaded on January 13, 2010 at 15:53 from IEEE Xplore. Restrictions apply.

Figure 5. Depiction of an order fulfillment process;
dashed arrow indicates a low-probability anomaly.

IV. BUSINESS TRANSACTIONS
Consider the order-fulfillment process depicted in Figure

5. The process is initiated by the Customer placing an
Order, which is sent to the Sales department. The Sales
department sends an Order Acknowledgement back to the
Customer and sends an Internal Order to the Warehouse.
Once the Warehouse ships the order, they send a Delivery
Note to the Customer. One possible anomaly in this process
is when someone in the Sales department copies the Order to
an Unknown entity, perhaps to leak insider information to a
competitor about the order.

Figure 6. The orderprocess.net file describes the
different modules and how they interconnect.

First, we will see how this order-fulfillment process is
defined within OMNeT++. Figure 6 shows the definition
for this process using the NED (Network Description)
language. Each node in the process is defined as a module
in NED. Modules (like OrderProcess) can consist of sub-
modules and their interconnections. The actual function of
each module (how it processes messages) is defined in C++.
The Utility module provides utility functions accessible by
the other modules. After receiving an Order message, the
Sales module waits 10-60 seconds and then sends an Order
Acknowledgement message to the Customer module, sends
an Internal Order message to the Warehouse module, and
with a Bernoulli probability of 0.001 (as defined in the
omnetpp.ini file) sends an Order message to the Unknown
module.

The OMNeT++ user’s manual describes the procedure for
making and executing the simulation. Figure 7 shows a
portion of the output from the order fulfillment simulation.
In addition to the logging information produced by
OMNeT++, the figure also shows the GBAD-related
messages printed from each module describing order-related
messages as they are sent and received by the modules. It is
this information we will use to construct graphs of the
ordering process. A utility program called “o2g” converts
the GBAD-enhanced OMNeT++ simulation output into a
Subdue-formatted graph. simple Customer

 parameters:
 maxOrders: numeric const;
 gates:
 in: fromSales, fromWarehouse;
 out: toSales;
endsimple

simple Sales
 parameters:
 probAnomaly: numeric const;
 gates:
 in: fromCustomer;
 out: toCustomer, toWarehouse, toUnknown;
endsimple

simple Warehouse
 gates:
 in: fromSales;
 out: toCustomer;
endsimple

simple Unknown
 gates:
 in: fromSales;
endsimple

simple Utility
endsimple

module OrderProcess
 submodules:
 customer: Customer;
 sales: Sales;
 warehouse: Warehouse;
 unknown: Unknown;
 utility: Utility;
 connections:
 customer.toSales --> sales.fromCustomer;

sales toCustomer --> customer fromSales;

For the experiment depicted in Figure 5, representing the
processing flow of 1,000 orders, we generated a graph of
approximately 3,000 vertices and 4,000 edges. From this
graph, GBAD is able to successfully discover, with no false-
positives, the anomaly shown with dotted lines and a larger
font in Figure 8.

OMNeT++/OMNEST Discrete Event Simulation (C)
1992-2005 Andras Varga
Release: 3.3, edition: Academic Public
License.
See the license for distribution terms and
warranty disclaimer
Setting up Cmdenv...

Preparing for Run #1...
Setting up network `orderprocess'...
Initializing...

Running simulation...
** Event #0 T=0.0000000 (0.00s). (Customer)
orderprocess.customer (id=2)
[GBAD] 1 Order: Customer -> Sales (0)
** Event #1 T=0.0000000 (0.00s). (Sales)
orderprocess.sales (id=3)
** Event #2 T= 30.8511 (30.85s). (Sales)
orderprocess.sales (id=3)
[GBAD] 1 InternalOrder: Sales -> Warehouse
(30.8511)
[GBAD] 1 OrderAcknowledgement: Sales ->
Customer (30.8511)
** Event #3 T= 30.8511 (30.85s). (Warehouse)
orderprocess.warehouse (id=4)

Figure 7. Partial OmNet++ simulation output.

Authorized licensed use limited to: Washington State University. Downloaded on January 13, 2010 at 15:53 from IEEE Xplore. Restrictions apply.

Figure 8. Subdue-formatted (partial) graph produced
from GBAD-enhanced OmNet++ simulation output.

V. BUSINESS PROCESSES
Next, we simulated a document processing scenario that

was motivated by two real-world sources of information.
One source is the incidents reported in the CERT Insider
Threat documents [15][16][17] that involve privacy
violations in a government identification card processing
organization and fraud in an insurance claim processing
organization. Another source, for which our model directly
simulates, is based on the process flow associated with a
passport application [11]. The outline of this process flow,
depicted in Figure 9, is as follows:

1. The applicant submits a request to the frontline staff

of the organization.
2. The frontline staff creates a case in the organization’s

database and then submits the case to the approval
officer.

3. The approval officer reviews the case in the database
and then assigns the case to one of the case officers.
By default, there are three case officers in the
organization.

4. The assigned case officer reviews the case. The
assigned case officer may request additional
information from the applicant, which is submitted to
the frontline staff and then forwarded to the assigned
case officer. The assigned case officer updates the
case in the database based on this new information.
The assigned case officer may also discuss the case
with one or more of the other case officers, who may
review the case in the database in order to comment
on the case. Ultimately, the assigned case officer will
recommend to accept or reject the case. This
recommendation is recorded in the database and sent
to the approval officer.

5. Upon receiving the recommendation from the
assigned case officer, the approval officer will make
a final decision to accept or reject the case. This
decision is recorded in the database and sent to both
the frontline staff and the applicant.

6. Finally, upon receiving the final decision, the
frontline staff archives the case in the database.

There are several scenarios where potential insider threat

anomalies might occur, including:

Figure 9. Information flow in request/claim approval
scenario.

1. Frontline staff performing a Review Case on the

database (e.g., invasion of privacy).
2. Frontline staff submits case directly to a case officer

(bypassing the approval officer).
3. Frontline staff recommends or decides case.
4. Approval officer overrides accept/reject

recommendation from assigned case officer.
5. Unassigned case officer updates or recommends case.
6. Applicant communicates with the approval officer or

a case officer.
7. Unassigned case officer communicates with

applicant.
8. Database access from an external source or after

hours.

Representing the processing of 1,000 passport applications,
we generated a graph of approximately 5,000 vertices and
13,000 edges, and proceeded to replicate some of the
scenarios described above.

First, we randomly inserted an example that represents
Scenario 1. While the GBAD-MDL and GBAD-MPS
algorithms do not discover any anomalous structures,
GBAD-P is able to successfully discover the one case out of
1,000 where a frontline staffer was performing a review of a
case – a clear violation of their duties. Figure 10 shows the
normative pattern and the anomalous edge “ReviewCase”
between the “FrontlineStaff” node and the “Database” node.

Figure 10. Scenario 1 normative pattern and anomaly.

Authorized licensed use limited to: Washington State University. Downloaded on January 13, 2010 at 15:53 from IEEE Xplore. Restrictions apply.

The actual anomaly in Figure 10 is shown with a bolded
edge and larger label font. Also, while not shown here, this
same structural anomaly can be found in scenarios 3 and 6.
Scenario 3 consists of an extra edge
(“RecommendAcceptCase”) going from the “FrontlineStaff”
node to the “Database” node, and as such is only different
from Scenario 1 by the label on the edge. Scenario 6
consists of an extra edge between the “Applicant” node and
the “ApprovalOfficer” (or “CaseOfficer”) node, which is
structurally identical to the other two scenarios – an
unexpected edge between two expected vertices.

For Scenario 2, we randomly inserted three examples
where a frontline staffer submitted a case directly to a case
officer, instead of sending it to the approval officer. In this
case, GBAD-P and GBAD-MDL do not uncover any
anomalous structures, whereas GBAD-MPS is able to
successfully discover all three instances where the frontline
staffer did not submit the case to the approval officer.
Figure 11 shows the normative pattern and the missing
“SubmitCase” edge between “FrontlineStaff” and
“ApprovalOfficer”, the missing “ReviewCase” edge
between “ApprovalOfficer” and “Database”, and the
missing “AssignCase” edge between “ApprovalOfficer” and
“CaseOfficer”.

Figure 11. Graph of Scenario 2, showing the normative
pattern and missing edges.

The actual anomalies in Figure 11 are shown with a larger
label font and a dashed edge, indicating their absence from
the graph.

For Scenario 4, we randomly modified three examples by
changing the recommendation that the “CaseOfficer” sends
to the “ApprovalOfficer”. In one example, the
“CaseOfficer” recommends to accept the case, and the
recommendation from the “ApprovalOfficer” is changed to
rejecting the case, and in the other two examples the reverse
is implemented. For this example, GBAD-MDL and
GBAD-MPS do not find any anomalies, and GBAD-P only
discovers one of the anomalous examples (where the
“CaseOfficer” recommends to reject the case but the
“ApprovalOfficer” decides to accept the case. Figure 12
shows the normative pattern and the anomalous structures
from this example.

Figure 12. Graph of Scenario 4, showing the normative
pattern and unexpected edge labels.

When we have GBAD report on the top two most
anomalous substructures, instances of that type (reject
changed to accept) are discovered, but we are still missing
the first anomalous example (accept changed to reject). The
issue is that we are dealing with multiple normative patterns
(i.e., multiple substructures that can be considered normative
in the entire graph.) In this case, there are two basic
normative patterns – one where the “ApprovalOfficer” and
“CaseOfficer” both accept a case, and one where the
“ApprovalOfficer” and “CaseOfficer” both reject a case.
However, when we modified the GBAD-P algorithm to
analyze the top N normative patterns, both of the examples
where the “CaseOfficer” recommends rejecting the case but
the “ApprovalOfficer” accepts the case, are reported as the
most anomalous examples, and the next most anomalous
instance reported is the other anomalous example. Also, no
other substructures were reported as anomalous along with
these top three anomalies (i.e., no false positives).

For Scenario 5, we randomly inserted into two examples
the situation where a “CaseOfficer” recommends to accept a
case for which they were not assigned. In this scenario,
GBAD-MDL does not report any anomalies, while both
GBAD-MPS and GBAD-P each discover both anomalous
instances. GBAD-MPS discovers the anomalies because the
“CaseOfficer” has assigned himself to the case without any
corresponding recommendation back to the
“ApprovalOfficer” or “Database”, while GBAD-P uncovers
the extra “CaseOfficer” and his unauthorized assignment to
the case. Figure 13 shows the normative pattern and the
anomalous structures from one of these examples. Also,
while not shown, this same structural anomaly can be found
in scenario 7. Scenario 7 consists of an extra edge going
from the unauthorized “CaseOfficer” node to the
“Customer” node, and as such is only different from
Scenario 5 by the label on the edge and the targeted node.

With the added aspect of time, found in Scenario 8, we
are currently investigating the analysis of numerical
attributes and how to incorporate them into the graph
structure. Our initial analysis of discrete values is not
included in this paper, and is being addressed in future
work. It should also

Authorized licensed use limited to: Washington State University. Downloaded on January 13, 2010 at 15:53 from IEEE Xplore. Restrictions apply.

[2] L. Holder and D. Cook. Mining Graph Data. John
Wiley and Sons, 2007.

[3] S. Staniford-Chen et al.., ”GrIDS – A Graph Based
Intrusion Detection System for Large Network,”
Proceedings of the 19th National Information Systems
Security Conference, 1996.

[4] W. Eberle and L. Holder, “Mining for Structural
Anomalies in Graph-Based Data,” International
Conference on Data Mining. June, 2007.

[5] L. Foley, “ITRC Beach Meter Reaches 342, to Date”,
Reuters, June 30, 2008.

[6] W. Eberle and L. Holder, “Anomaly Detection in Data
Represented as Graphs,” Intelligent Data Analysis, An
International Journal, Volume 11(6), 2007. Figure 13. Scenario 5, unauthorized handling of a case.

[7] D. Cook and L. Holder, “Graph-based data mining,”
IEEE Intelligent Systems 15(2), 32-41, 1998.

be noted that the above process flows do not include the
possible actions of a case officer requesting further
information from the customer, or having a discussion with
other case officers. That would involve further analysis of
multiple normative patterns, and is something we will also
be addressing in the future.

[8] J. Rissanen, Stochastic Complexity in Statistical
Inquiry, World Scientific Publishing Company, 1989.

All of the above scenario graphs were rendered using the
AT&T graph visualization program GraphViz
(http://www.graphviz.org/).

[9] C. Noble and D. Cook, “Graph-Based Anomaly
Detection,” Proceedings of the 9th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, 631-636, 2003.

[10] 2006 AFCE Report to the Nation on Occupational
Fraud & Abuse, Association of Certified Fraud
Examiners, 2006.

VI. CONCLUSIONS AND FUTURE WORK
The three algorithms presented in this paper are able to

discover an anomaly when it consists of a small change to
the normative pattern. Using the minimum description
length principle and probabilistic approaches, we have been
able to successfully discover anomalies in graphs and
patterns of varying sizes with minimal to no false positives.
Results from running the GBAD algorithms on simulated
business transactions and processes have demonstrated the
usefulness of applying these graph theoretic approaches.
Some future directions that we are exploring include the
incorporation of traditional data mining approaches as
additional quantifiers to determining anomalousness, as well
as applying graph theoretic algorithms to dynamic graphs
that are changing over time. In addition, using the
OMNeT++ example presented in this paper, we can create
limitless numbers and varieties of simulations modeling
business processes. These can then be used to evaluate
GBAD both systematically and on models of real-world
processes. The importance to this technology lies in the
necessity of being able to detect insider threats before
damage has been done. Organizations need advanced tools
to detect insider threats, and they need to be able act in a
timely fashion.

[11] A. Chun. “An AI framework for the automatic
assessment of e-government forms,” AI Magazine,
Volume 29, Spring 2008.

[12] M. Hao, D. Keim, U. Dayal and J. Schneidewind.
“Business process impact visualization and anomaly
detection,” Information Visualization, Volume 5, Issue
1, March 2006.

[13] M. Faloutsos, P. Faloutsos and C. Faloutsos. “On
Power-law Relationships of the Internet Topology,”
Proceedings of the conference on applications,
technologies, architectures, and protocols for computer
communications, SIGCOMM, pp. 251-262, 1999.

[14] OMNeT++. http://www.omnetpp.org/.
[15] M. Randazzo, M. Keeney, E. Kowalski, D. Cappelli and

A. Moore. “Insider Threat Study: Illicit Cyber Activity
in the Banking and Finance Sector,”
http://www.cert.org/insider_threat/, 2004.

[16] E. Kowalski, D. Cappelli and A. Moore. “Insider
Threat Study: Illicit Cyber Activity in the Information
Technology and Telecommunications Sector,”
http://www.cert.org/insider_threat/, 2008.

[17] E. Kowalski, T. Conway, S. Keverline, M. Williams, D.
Cappelli and A. Moore. “Insider Threat Study: Illicit
Cyber Activity in the Government Sector,”
http://www.cert.org/insider_threat/, 2008

[18] V. Chandola, A. Banerjee and V. Kumar. “Anomaly
Detection: A Survey,” Technical Report, TR 07-017,
University of Minnesota, August 15, 2007.

REFERENCES
[1] M. Hampton and M. Levi, “Fast spinning into oblivion?

Recent developments in money-laundering policies and
offshore finance centres,” Third World Quarterly,
Volume 20, Number 3, June 1999, pp. 645-656, 1999.

Authorized licensed use limited to: Washington State University. Downloaded on January 13, 2010 at 15:53 from IEEE Xplore. Restrictions apply.

