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Abstract—In this paper we present graph-based approaches 
to mining for anomalies in domains where the anomalies 
consist of unexpected entity/relationship alterations that closely 
resemble non-anomalous behavior. We introduce three novel 
algorithms for the purpose of detecting anomalies in all 
possible types of graph changes.  Each of our algorithms 
focuses on a specific graph change and uses the minimum 
description length principle to discover those substructure 
instances that contain anomalous entities and relationships.  
Using synthetic and real-world data, we evaluate the 
effectiveness of each of these algorithms in terms of each of the 
types of anomalies.    Each of these algorithms demonstrates 
the usefulness of examining a graph-based representation of 
data for the purposes of detecting fraud. 

I. INTRODUCTION 
ecently there has been an impetus towards analyzing 
multi-relational data using graph theoretic methods.  

Not to be confused with the mechanisms for analyzing 
“spatial” data, graph-based data mining approaches are an 
attempt at analyzing data that can be represented as a graph 
(i.e., vertices and edges).  Yet, while there has been much 
written as it pertains to graph-based data mining for 
intrusion detection [13], very little research has been 
accomplished in the area of graph-based anomaly detection. 

Using information theoretic, probabilistic and maximum 
partial substructure approaches, we have developed three 
novel algorithms for analyzing graph substructures for the 
purpose of uncovering all three types of graph-based 
anomalies:  modifications, insertions and deletions.  In this 
paper, we define what we consider to be an anomaly as it 
relates to graphs.  Then, we present the algorithms along 
with some examples, followed by our results using 
randomly-generated synthetic graphs two real-world data 
sets.  Finally, we conclude with some related work, 
conclusions and future work. 

II. RELATED WORK 
Lin and Chalupsky [8] applied what they called rarity 

measurements to the discovery of unusual links within a 
graph.  Using various metrics to define the commonality of 
paths between nodes, the user was able to determine whether 
a path between two nodes were interesting or not, without 
having any preconceived notions of meaningful patterns.  

One of the disadvantages of this approach was that while it 
was domain independent, it assumed that the user was 
querying the system to find interesting relationships 
regarding certain nodes. 

 
William Eberle is with the Department of Computer Science and 

Engineering, University of Texas at Arlington, Arlington, TX 76019 USA. 
(e-mail: eberle@cse.uta.edu). 

Lawrence Holder is with the School of Electrical Engineering and 
Computer Science, Washington State University, Pullman, WA 99164 USA. 
(e-mail: holder@wsu.edu). 

The AutoPart system presented a non-parametric 
approach to finding outliers in graph-based data [1].  Part of 
this approach was to look for outliers by analyzing how 
edges that were removed from the overall structure affected 
the minimum descriptive length (MDL) of the graph [11].  
Representing the graph as an adjacency matrix, and using a 
compression technique to encode node groupings of the 
graph, he looked for the groups that reduced the 
compression cost as much as possible.  However, with this 
approach, only the effect of edge removals on a graph’s 
structure are examined.   

In 2005, the idea of entropy was also used by Shetty and 
Adibi [12] in their analysis of a real-world data set: the 
famous Enron scandal.  They used what they called “event 
based graph entropy” to find the most interesting people in 
an Enron e-mail data set.  Using a measure similar to what 
[9] had proposed, they hypothesized that the important 
nodes (or people) were the ones who had the greatest effect 
on the entropy of the graph when they were removed.  
However, in this approach, the idea of important nodes did 
not necessarily mean that they were anomalous. 

In the 2005 SIGKDD Explorations, a couple of different 
approaches to graph-based anomaly detection were 
presented.  Using just bipartite graphs, Sun et al. [14] 
presented a model for scoring the normality of nodes as they 
relate to the other nodes.  Again, using an adjacency matrix, 
they assigned what they called a “relevance score” such that 
every node x had a relevance score to every node y, whereby 
the higher the score the more related the two nodes.  
Rattigan and Jensen [10] also went after anomalous links, 
this time via a statistical approach.  Using a Katz 
measurement, they used the link structure to statistically 
predict the likelihood of a link.  While it worked on a small 
dataset of author-paper pairs, their single measurement just 
analyzed the links in a graph. 

III. GRAPH-BASED ANOMALIES 
Setting up fraudulent web-sites, “phishing” for credit 

cards, stealing calling cards, and creating bogus bank 
accounts are just some of the countless examples of scams 
that have succumb everyone from the individual investor to 
large corporations.  In every case, the fraudster has 
attempted to swindle their victim and hide their dealings 
within a morass of data that has become proverbially known 
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as the “needle in the haystack”.  Yet, even when the data is 
not relatively large in size, the ability to discover the 
nefarious actions is still ultimately difficult due to the 
mimicry of the perpetrator. 

The idea behind the approach presented in this paper is to 
find anomalies in graph-based data where the 
anomalous substructure in a graph is part of (or attached to 
or missing from) a normative substructure.  This definition 
of an anomaly is unique in the arena of graph-based 
anomaly detection, as well as non-graph-based anomaly 
detection.  The concept of finding a pattern that is "similar" 
to frequent, or good, patterns, is different from most 
approaches that are looking for unusual or “bad” 
patterns.  While other non-graph-based data mining 
approaches may aide in this respect, there does not appear to 
be any existing approaches that deal with this scenario.  

 Definition:  Given a graph G with a normative substructure 
S, a substructure S’ is considered anomalous if the difference 
d between S and S’ satisfies 0 < d <= X, where X is a user-
defined threshold and d is a measure of the unexpected 
structural difference between two sub-graphs of a graph. 

The importance of this definition lies in its relationship to 
fraud detection (i.e., deceptive practices that are intended to 
illegally obtain or hide information).  If a person or entity is 
attempting to commit fraud, they will do all they can to hide 
their illicit behavior.  To that end, their approach would be 
to convey their actions as close to legitimate actions as 
possible.  The United Nations Office on Drugs and Crime 
states the first fundamental law of money laundering as “The 
more successful money-laundering apparatus is in imitating 
the patterns and behavior of legitimate transactions, the less 
the likelihood of it being exposed.” [6]. 

A. Anomaly Types 
For a graph-based anomaly, there are several situations 

that might occur: 
1. A vertex exists that is unexpected. 
2. An edge exists that is unexpected. 
3. The label on vertex is different than was expected. 
4. The label on edge is different than was expected. 
5. An expected vertex is absent. 
6. An expected edge between two vertices is absent. 
In essence, there are three general categories of anomalies: 
insertions, modifications and deletions.  Insertions would 
constitute the first two situations; modifications would 
consist of the third and fourth situation; and deletions would 
categorize the last two situations. 

B. Assumptions 
Many of the graph-based anomaly detection approaches 

up to now have assumed that the data exhibits a power-law 
distribution.  The advantage of the approaches presented in 
this paper is that it does not assume the data consists of a 
power-law behavior.  In fact, no standard distribution model 
is assumed to exist.  All that is required is that the data is 

regular, which in general means that the data is 
“predictable”. While there are many data sets that are not 
regular in nature, many of the real-world data sets that are 
examined for fraudulent activity consist of user transactions 
that exhibit regular patterns of behavior. 

In order to address our definition of an anomaly, we make 
the following assumptions about the data. 

Assumption 1:  The majority of a graph consists of a 
normative pattern, and no more than X% of the normative 
pattern is altered in the case of an anomaly. 
Since our definition implies that an anomaly constitutes a 
minor change to the prevalent substructure, we chose a small 
percentage (e.g., 10%) to represent the most a substructure 
would be changed in a fraudulent action. 
Assumption 2:  The graph is regular. 
If a graph were irregular, the ability to distinguish between 
anomalies and noise would be prohibitive. 
Assumption 3:  Anomalies consist of one or more 
modifications, insertions or deletions. 
As was described earlier, there are only three types of 
changes that can be made to a graph.  Therefore, anomalies 
that consist of structural changes to a graph must consist of 
one of these types. 
Assumption 4:  The normative pattern is connected. 
In a real-world scenario, we would apply this approach to 
data such as cargo shipments, telecommunication traffic, 
financial transactions or terrorist networks.  In all cases, the 
data consists of a series of nodes and links that share 
common nodes and links.  Certainly, graphs could contain 
potential anomalies across disconnected substructures, but at 
this point, we are constraining our research to only 
connected anomalies. 

IV. GRAPH-BASED ANOMALY DETECTION ALGORITHMS 
Most anomaly detection methods use a supervised 

approach, which requires some sort of baseline of 
information from which comparisons or training can be 
performed.  In general, if one has an idea what is normal 
behavior, deviations from that behavior could constitute an 
anomaly.  However, the issue with those approaches is that 
one has to have the data in advance in order to train the 
system, and the data has to already be labeled (i.e., 
fraudulent versus legitimate). 

Our work has resulted in the development of three 
algorithms, which we have implemented using a tool called 
GBAD (Graph-based Anomaly Detection).  GBAD is an 
unsupervised approach, based upon the SUBDUE graph-
based knowledge discovery system [2].  SUBDUE is a 
graph-based knowledge discovery system that finds 
structural, relational patterns in data representing entities 
and relationships.  Using a greedy beam search and 
Minimum Description Length (MDL) heuristic, each of the 
three anomaly detection algorithms uses SUBDUE to 



 
 

 

provide the top substructure, or normative pattern, in an 
input graph.  In our implementation, the MDL approach is 
used to determine the best substructure(s) as the one that 
minimizes the following: 

)()|(),( SDLSGDLGSM +=  

where G is the entire graph, S is the substructure, DL(G|S) is 
the description length of G after compressing it using S, and 
DL(S) is the description length of the substructure.   

Using GBAD as the tool for our implementation, we have 
developed three separate algorithms:  GBAD-MDL, GBAD-
P and GBAD-MPS.  Each of these approaches is intended to 
discover all of the possible graph-based anomaly types as set 
forth earlier. 

A. Information Theoretic Algorithm (GBAD-MDL) 
In order to implement the GBAD-MDL algorithm, we 

first use SUBDUE to discover the best substructure.  In 
addition to providing the normative pattern using an MDL 
evaluation, SUBDUE also provides two other features: the 
ability to specify inexact matching as a percentage of the 
normative substructure, and a list of all instances that match 
the best substructure.  SUBDUE terminates processing when 
there are no more extensions to candidate substructures, 
whereas the GBAD-MDL algorithm continues processing 
the best substructure, analyzing its instances for the one that 
is closest in transformation cost to the normative pattern.   

First, the algorithm modifies the best substructure list by 
determining which substructure is actually the true 
normative pattern.  Since an inexact matching was used, it is 
possible that the top substructure specified in SUBDUE (i.e., 
the best substructure), may not be the true normative pattern.  
So, a search is performed on the list of instances, finding the 
pattern that is the most frequent, and replacing the 
previously specified best substructure with its structure.   

Second, the new list of instances is compared to the new 
best substructure, and each instance is given an anomalous 
score equal to its cost of transformation (for transforming 
the instance into the normative pattern).  Then, for each 
instance in the list that matches this instance (i.e., 
isomorphic), the anomalous score is increased by the value 
of the cost of transformation, where the score is equal to the 
cost of transformation times frequency. 

For the last step, our GBAD-MDL implementation finds 
the anomalous instance (or instances, if their anomalous 
scores match), and flags the individual vertices and edges 
that are anomalous.  This is accomplished by comparing the 
structure of the anomalous instance with the normative 
substructure, and for each vertex and edge in the anomalous 
instance that does not have a match in the normative pattern, 
a flag is set.  So, in the end, when the anomalous instance is 
output by this implementation, there is an indicator next to 
each individual anomaly. 

The following is a simple example of results obtained 
using our implementation of the GBAD-MDL algorithm 

described above. 
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C B  
Fig. 1.  Simple graph for GBAD-MDL example. 

Running the GBAD-MDL algorithm, the anomalous 
substructure, as shown in Fig. 2, is: 

A

D B  
Fig. 2.  Anomalous substructure from simple graph using GBAD-MDL. 

which is exactly the desired result.  (The individual anomaly 
is in bold.)  It should also be noted that no other 
substructures are reported as anomalous.  The above is 
similar to the example that was presented in the paper by 
Noble and Cook [9]. In their work they used the SUBDUE 
application to look at the problem of anomaly detection from 
the anomalous substructure and sub-graph perspective.     

B. Probabilistic Algorithm (GBAD-P) 
In order to implement the GBAD-P algorithm, we again 

used SUBDUE to discover the best substructure.  In 
addition, we also used two other features provided by 
SUBDUE: maintaining a list of all instances that match the 
best substructure; iterating multiple times, compressing the 
graph by the best substructure at each iteration.  When 
enough iterations are specified, SUBDUE terminates 
processing when any more attempts at compressing the 
graph would not result in a further reduction in its MDL.  
After the first iteration, where the graph is compressed by 
the normative pattern, the GBAD-P algorithm analyzes 
extensions from each instance of the best substructure at 
each iteration, looking for the ones with the lowest 
probability of occurring.   

First, SUBDUE’s logic for extensions is modified to only 
extend one edge at each iteration.  While the first iteration 
works as-is in terms of performing extensions in order to 
find the best substructure, subsequent iterations only process 
single edge extensions from the newly compressed 
substructure.  This allows the GBAD-P algorithm to 
eventually evaluate the probability of individual extensions. 

Second, the algorithm modifies the list of best 
substructure list by finding the best substructure that 
contains the compressed normative pattern from the first 
iteration.  This is done to ensure that at each iteration we are 
still working from the normative pattern.  The first 
substructure in the list that contains the compressed 
normative pattern is moved to the top of the list as the best 
substructure (since the list is already in order by value).   

Third, for the newly defined best substructure, all of its 
instances are evaluated in terms of their probability amongst 
themselves.  For each instance, a simple evaluation is 
calculated where the probability of the instance is the 
number of matching instances divided by the total number of 
instances, all within the list of instances for the best 



 
 

 

substructure. This value is then set as the anomalous score 
for the corresponding instance. 

After each iteration, our GBAD-P implementation prints 
the anomalous instance (or instances, if their anomalous 
scores match).  The output is similar to what is produced by 
the GBAD-MDL algorithm, except that the score is a value 
from 0.0-1.0, and it is done after each iteration (except for 
the first).  By doing this over each iteration, it allows one to 
view the growth of the anomaly, one edge at a time. 

The following is a simple example of results obtained 
using our implementation of the GBAD-P algorithm on a 
network-looking structure, as shown in Fig. 3. 
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Fig. 3.  Network-type graph. 

In Fig. 3, there is a central node (labeled X) with four 
connected identical star structures (each with a center node 
labeled Y).  Each of these star structures has an identical 
smaller substructure (made up of vertices labeled I, J and K) 
connected to it.  However, one of the star structures has the 
IJK substructure connected to its vertex labeled E, while the 
others have it connected to their vertex labeled G. 

Running the GBAD-P algorithm on this graph results in 
the following three structures labeled as anomalous, as 
shown in Fig. 4 (after the second iteration). 

Y
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Fig. 4.  Anomalous structures when limit increased on GBAD-P example. 

So, in essence, while it did report the anomaly as three 
different substructures (all equal in probability), the 
complete anomaly is discovered.  It should also be noted that 
on subsequent iterations, no more anomalous substructures 
are found.  (All of the subsequent candidates have a 
probability of 100%.)  This is because on the following 
iteration, the instances of the best substructure are 
compressed to a single vertex, and the other vertices (I, J 
and K), are linked to that single vertex, with no former 
knowledge of where they linked (i.e., whether they linked to 
E or G).  Possible future work could include a modification 
to this approach to keep track of the original connections for 
further evaluation. 

C. Max Partial Substructure Algorithm (GBAD-MPS) 
In order to implement the GBAD-MPS algorithm, again 

we used SUBDUE to discover the best substructure.  In 
addition, we also used another feature provided by 
SUBDUE: specifying the beam width of the search.  By 
default, SUBDUE uses a beam width of 4 which signifies 
that it will only keep the top 4 substructures after evaluating 
each extension.  While this heuristic has proven to be 
successful in SUBDUE’s ability to discover the normative 
pattern, in order to be able to analyze substructures that 
never extended to the normative pattern, which is necessary 
for this algorithm, we need to extend the beam width so that 
other substructures can be evaluated for anomalies.  This 
allows for us to keep track of those instances that are not 
direct ancestors of the normative pattern.  In the end, 
SUBDUE terminates processing when there are no more 
extensions to candidate substructures, while the GBAD-
MPS algorithm continues processing all of the ancestral 
substructures, looking for the one that is closest in 
transformation cost to the normative pattern   

First, a list of substructures is maintained that consists of 
substructures (and their instances) that at some point during 
SUBDUE processing were used in evaluating their potential 
for being the normative pattern.  Even if a substructure fails 
to make the “best” list at some point, it is still maintained on 
this list as a possible anomalous substructure.  While this list 
can be rather large (and deserves some future memory-
saving analysis), since the normative pattern is not known at 
this point, it has to be maintained until the final evaluation. 

Second, the algorithm takes this list of substructures and 
compares each substructure to the normative pattern.  If a 
substructure matches within the user specified anomalous 
threshold (cost of transformation), each of its instances is 
compared to the instances of the normative pattern.  If an 
instance overlaps one of the normative pattern’s instances 
(i.e., all of its edges and vertices are found in one of the 
normative instances), the instance is thrown out because it 
could eventually extend to the normative pattern. 

Third, each instance in the candidate list of instances is 
given an anomalous score equal to its cost of transformation 
(for transforming the instance into the normative pattern).  
Then, for each instance in the list that is isomorphic to 
another instance in the list, its anomalous score is increased 
by the value of its cost of transformation (i.e., cost of 
transformation * frequency). 

In the end, our GBAD-MPS implementation prints the 
anomalous instance (or instances, if their anomalous scores 
match).  This output is a little different from the other two 
algorithms in that no anomalous vertices and edges are 
indicated, just the entire anomalous instance.  Since what is 
anomalous is the lack of structure, a comparison of the 
normative pattern to the anomalous substructure yields the 
anomalous differences. 

The following is a simple example of results obtained 
using our implementation of the GBAD-MPS algorithm 



 
 

 

described above. 
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Fig.5.  Simple graph for GBAD-MPS example. 

The normative pattern from this graph is shown in Fig. 6. 

B
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Fig. 6.  Normative pattern from simple graph for GBAD-MPS example. 

Now, suppose we remove one of the edges and its associated 
vertex, from one of the instances of this normative pattern, 
creating the graph shown in Fig. 7. 

D
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Fig. 7.  Simple graph for GBAD-MPS with deleted vertex and edge. 

In other words, we removed one of the D vertices and its 
associated edge.  Running the maximum partial substructure 
approach on this modified graph, results in the anomalous 
instance shown in Fig. 8. 

B

C A  
Fig. 8.  Anomalous instance from deletion example using GBAD-MPS. 

However, this pattern is common to all of the normative 
instances.  So, for usefulness, we report the actual 
anomalous graph instance specified in the input graph file. 

V. SYNTHETIC EXPERIMENTS 
For our synthetic experiments, we created graphs using a 

tool called subgen [3] that generates graphs based upon 
user-specified parameters, including: 

• total number of vertices and edges 
• list of possible vertex and edge labels and their 

probabilities 
• substructure pattern 
• amount of connectivity 

Using these parameters, subgen computes the number of 
instances that need to be generated by calculating the size of 
the graph and dividing by the size of the substructure pattern 
(i.e., what we want to be the normative pattern).  After the 
graph is built from these instances, randomly-labeled 
vertices (based upon their probabilities) are added in order 
to achieve the desired graph size.  Then randomly-labeled 
edges (again based upon their probabilities) are added in 
order to achieve the specified connectivity level.  Finally, 
any additional edges are added in order to achieve the 

desired graph size. 
In order to be consistent across all experiments, we chose 

a star-cluster pattern as our normative pattern (i.e., a node 
with connections to several other nodes, and each of those 
nodes with several connections to other nodes).  The choice 
of this pattern was somewhat arbitrary, but it also resembles 
many types of real-world data, such as networks, calling 
trees, and financial transactions.  Each synthetic graph 
consisted of substructures containing a normative pattern (V 
number of vertices and E number of edges), connected to 
each other by one or more random connections, and each 
test consisted of AV number of anomalous vertices and AE 
number of anomalous edges. 

Fig. 9 shows the effectiveness of the GBAD-MDL 
approach.  For graphs of varying sizes, from 100 
vertices/edges to 10,000 vertices/edges, with a normative 
pattern consisting of 10 vertices/9 edges, the results were 
identical across the spectrum.  In this figure, the X axis 
represents the thresholds, the Y axis is the percentage of 
anomalies discovered, and the Z axis indicates the sizes of 
the anomalies.  
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Fig. 9.  GBAD-MDL runs where all anomalies discovered 

As expected, when the threshold is increased to 
accommodate the size of the anomaly with respect to the 
normative pattern, the anomalies are discovered 100% of the 
time.  The drawback is that as the threshold is increased, so 
is the running time of the algorithm, and false positives, like 
noise, will increase (i.e., the size of the reported anomaly is 
equal to or smaller than that of the true anomaly). 

Without changing any parameters, experiments using 
GBAD-P and GBAD-MPS resulted in less than a 100% 
discovery rate across all tests.  However, when we increased 
SUBDUE’s beam width parameter so that GBAD could be 
provided a larger set of substructure instances to evaluate, 
the result was a 100% discovery rate.  The reason that the 
number of substructures to evaluate has to be increased is 
that as the size of the anomaly grows (i.e., the number of 
vertices and edges inserted or deleted increases), the further 
away the cost of transformation for the anomalous instance 
is from the normative pattern.  In addition, unlike with the 
GBAD-MDL tests, there were no false positives reported 
from any of the GBAD-P or GBAD-MPS synthetic tests.  
Using varying sizes of normative patterns and anomalies, 



 
 

 

each approach has shown to be useful at discovering a 
specific type of anomaly.  While the algorithms do not 
appear to be useful outside of their intended targets, no 
graphs of any size or any anomaly went undetected by all 
three approaches. 

One of the advantages of these algorithms is that they do 
not just return the pattern of the anomaly – they also return 
the actual anomalous instances within the data.  In a real-
world scenario, that can be invaluable to an analyst who may 
need to act upon a fraud situation before the losses are too 
great.  The disadvantage of these algorithms is that they are 
focused on specific anomalies: modifications, insertions or 
deletions.  Thus, in a real-world scenario, it would require 
that all three algorithms be used in conjunction, as the type 
of anomaly would most likely be unknown. 

VI. REAL-WORLD EXPERIMENTS 

A. Cargo Shipments 
One area that has garnered much attention recently is the 

analysis and search of imports into the United States.  The 
largest number of imports into the U.S. arrive via ships at 
ports of entry along the coasts.  Thousands of suspicious 
cargo, whether illegal or dangerous, are examined by port 
authorities every day.  Due to the volume, strategic decisions 
must be made as to which cargo should be inspected, and 
which cargo will pass customs without incident.  A daunting 
task that requires advanced analytical capabilities to 
maximize effectiveness and minimize false searches. 

Using shipping data obtained from the CBP 
(http://www.cbp.gov/), we are able to create a graph-based 
representation of the cargo information where row/column 
entries are represented as vertices, and labels convey their 
relationships as edges.  Fig. 10 shows a portion of the actual 
graph that we will use in our anomalous detection 
experiments.  While we were not given any labeled data 
from the CBP (i.e., which shipments were illegal, or 
anomalous, and which ones were not), we can draw some 
results from random changes and from simulations of 
publicized incidents. 
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Fig. 10  Example of cargo data represented as a graph. 

In [5], real-world cargo shipment occurrences were 
generated so as to show how graph properties can be used to 
determine structural anomalies in graphs. While that 
approach was successful in discovering graphs that 
contained anomalies, the exact anomalies were not part of 
the output.  Using the GBAD algorithms on these same data 
sets, we can display the actual anomalies. 

One example is from a press release issued by the U.S. 
Customs Service.  The situation is that almost a ton of 
marijuana is seized at a port in Florida [15].  In this drug 
smuggling scenario, the perpetrators attempt to smuggle 
contraband into the U.S. without disclosing some financial 
information about the shipment.  In addition, an extra port is 
traversed by the vessel during the voyage.  For the most 
part, the shipment looks like it contains a cargo of toys, food 
and bicycles from Jamaica.  When we run all three 
algorithms on this graph, GBAD-MDL is unable to find any 
anomalies, which makes sense considering none of the 
anomalies are modifications.  When the graph contains the 
anomalous insertion of the extra traversed port, the GBAD-P 
algorithm is able to successfully discover the anomaly.  
Similarly, when the shipment instance in the graph is 
missing some financial information, GBAD-MPS reports the 
instance as anomalous. 

According to CBP, an estimated $2 billion in illegal 
textiles enter the U.S. every year [4].  One of the more 
common methods of eluding authorities is accomplished 
using what is called transshipment.  The CBP defines 
transshipment as “A false declaration or information given 
in order to circumvent existing trade laws for the purpose of 
avoiding quotas, embargoes or prohibitions, or to obtain 
preferential duty treatment.”  In order to circumvent quotas, 
the fraudster will change the country of origin of their 
goods.  For example, they may ship the goods into Canada 
or Mexico, change the country-of-origin, and ship into the 
U.S. free from tariffs under the North American Free Trade 
Agreement (NAFTA). 

In order to simulate this real-world example, we randomly 
changed the country of origin on one of the shipments to 
“CANADA”.  While the GBAD-P and GBAD-MPS 
algorithms were unsuccessful in discovering this anomaly 
(as was expected), the GBAD-MDL algorithm was able to 
clearly mark the instance that contained the anomaly.  At 
first it was surprising that just a change in the country of 
origin would have that effect, and given perhaps a different 
set of data, this would not have been as effective.  But, in 
this case, all of the shipments had a normative pattern that 
included Asian ports of origin.  So, by altering the 
originating country to Canada, the GBAD-MDL was able to 
clearly notice the structural oddity.   

B. Network Intrusions 
One of the more applied areas of research when it comes 

to anomaly detection can be found in the multiple 
approaches to intrusion detection.  The reasons for this are 
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its relevance to the real world problem of networks and 
systems being attacked, and the ability of researchers to 
gather actual data for testing their models.  Perhaps the most 
used data set for this area of research and experimentation is 
the 1999 KDD Cup network intrusion dataset [7].   

The KDD Cup data consists of connection records, where 
a connection is a sequence of TCP packets.  Each 
connection record is labeled as either “normal”, or one of 37 
different attack types.  Each record consists of 31 different 
features (or fields), with features being either continuous 
(real values) or discrete.  In the 1999 competition, the data 
was split into two parts: one for training and the other for 
testing.  Groups were then allowed to train their solutions 
using the training data, and were then judged based upon 
their performance on the test data.  

Since the GBAD approach uses unsupervised learning, 
we will run the algorithms on the test data so that we can 
judge our performance versus other approaches.  Also, 
because we do not know the possible structural graph 
changes associated with network intrusions, we will have to 
run all three algorithms to determine which algorithms are 
most effective for this type of data.  Each test contains 50 
essentially random records, where 49 are normal records and 
1 is an attack record, where the only controlled aspect of the 
test is that there is only one attack record per data set.  This 
is done because the test data is comprised of mostly attack 
records, which does not fit our definition of an anomaly, 
where we are assuming that anomalous substructures are 
rare.  Fortunately, this again is a reasonable assumption, as 
attacks would be uncommon in most networks. 

Not surprisingly, each of the algorithms has a different 
level of effectiveness when it comes to discovering 
anomalies in intrusion data.  Using GBAD-MDL, our ability 
to discover attacks is relatively successful.  Across all data 
sets, 100% of the attacks are discovered.  However, all but 
the apache2 and worm attacks produce some false positives.  
42.2% of the test runs do not produce any false positives, 
while runs containing snmpgetattack, snmpguess, teardrop 
and udpstorm attacks contribute the most false positives.  
False positives are even higher for the GBAD-P algorithm, 
and the discovery rate of actual attacks decreases to 55.8%.  
GBAD-MPS shows a similarly bad false positive rate at 
67.2%, and a lower discovery rate at 47.8%. 

It is not surprising that GBAD-MDL is the most effective 
of the algorithms, as the data consists of TCP packets that 
are structurally similar in size across all records.  Thus, the 
inclusion of additional structure, or the removal of structure, 
is not as relevant for this type of data, and any structural 
changes, if they exist, would consist of value modifications.  

VII. CONCLUSION 
The three algorithms presented in this paper are able to 

discover an anomaly when it consists of a small change to 
the normative pattern.  Using the minimum description 
length principle and probabilistic approaches, we have been 

able to successfully discover anomalies in graphs and 
normative patterns of varying sizes with minimal to no false 
positives.  Results from both synthetic and real-world data 
demonstrate the effectiveness of the approaches.  We are 
pursuing experiments on other domains that can be 
represented as graphs, including citation and social 
networks.  While our results are effective in detecting 
anomalies in a security area such as cargo shipments, other 
possible applications of these approaches include post-9/11 
terrorist networks and the Enron e-mail datasets (e.g., 
detecting anomalies in e-mail patterns among executives).   
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