
Streaming Data Analytics for Anomalies in Graphs

William Eberle

Tennessee Technological University

Box 5101, Cookeville, TN 38505

931-372-3278 (phone)

931-372-3686 (fax)

weberle@tntech.edu

Lawrence Holder

Washington State University

Box 642752, Pullman, WA 99164-2752

509-335-6138 (phone)

509-335-3818 (fax)

holder@wsu.edu

Abstract— Protecting our nation’s infrastructure and securing

sensitive information are critical challenges for both industry and

government. Due to the complex and diverse nature of the

environments which can expose attacks or terrorism activity, one

must not only be able to deal with attacks that are dynamic, or

constantly changing, but also take into account the structural

aspects of the networks and the relationships among

communication events. However, analyzing a massive, ever-

growing graph will quickly overwhelm currently-available

computing resources. One potential solution to the issue of

handling very large graphs is to handle data as a “stream”. In

this work, we present an approach to processing a stream of

changes to the graph in order to efficiently identify any changes

in the normative patterns and any changes in the anomalies to

these normative patterns without processing all previous data.

The overall framework of our approach is called PLADS for

Pattern Learning and Anomaly Detection in Streams. We

evaluate our approach on a dataset that represents people

movements and actions, as well as a scalable, streaming data

generator that represents social network behaviors, in order to

assess the ability to efficiently detect known anomalies.

Keywords- Graph-based, knowledge discovery, anomaly

detection, streaming data

I. INTRODUCTION

Detecting potential attacks to our nation’s infrastructure,
whether it is via insider threats or social threats to the
populace are critical challenges for industry as well as our
government. With the plethora of information that is
transmitted in all aspects of today’s culture, physical as well as
environmental attacks pose serious consequences to
individuals, corporations, governments, and society as a
whole. A good example is the spread of the Ebola virus, where
the potential spread due to contact is becoming exponentially
difficult to follow, and could potentially become difficult to
manage both organizationally as well as financially [1].

In order to address the issue of analyzing complex
networks for patterns and anomalies, one must provide
methods of monitoring and rapidly detecting pattern changes
and any associated anomalies. However, due to the complex
and diverse nature of these networked environments, one must
not only be able to deal with threats that are dynamic, but also
take into account the structural aspects of the networks and
the relationships among communication events.

In previous work, we represented networks and various
security related information using a graph and developed the
graph-based anomaly detection (GBAD) approach that was

able to detect anomalies with high accuracy and low false
positive rates. However, the GBAD approach required the
analysis of a graph containing all information up to a current
point in time. Analyzing a massive, ever-growing graph will
quickly overwhelm currently-available computing resources.
One potential solution to the issue of handling very large
graphs, and one we explore in this work, is to handle data as a
“stream”. Instead of processing an entire graph, which
represents a complete set of data (or at least a very large
portion of the data), one can process the graph a few edges at a
time. Recent work in this area has focused on finding patterns
in streams of small, independent graph transactions or on
outliers in global graph properties. In this work, we present an
approach to processing a stream of changes to the graph in
order to efficiently identify any changes in the normative
patterns and any changes in the anomalies to these normative
patterns without processing all previous data.

The overall framework of our approach is called PLADS
for Pattern Learning and Anomaly Detection in Streams. We
evaluate our approach on two different synthetic data sets.
The first represents the movements and actions of employees
at an embassy where an insider threat activity is occurring.
We will use this dataset to present our approach on
heterogeneous data where there is anomaly ground-truth, and
partition the data so as to simulate a streaming approach. The
second data source is a streaming social network generator.
The generator will allow us to scale the amount of posts, likes,
etc. for users that are static (i.e., do not change), and social
network activity that is dynamic (i.e., streaming). These data
sources will not only allow us to evaluate the accuracy of
detecting anomalies, but also, because of the data volume, the
scalability of our methods. In addition, using these diverse
data sets will allow us to demonstrate a general approach to
structural anomaly detection that could be applied to a wide
array of relevant security threat scenarios.

II. GRAPH-BASED ANOMALY DETECTION

A graph is a set of nodes and a set of links, where each link
connects either two nodes or a node to itself. More formally,
we use the following definition.

Definition: A labeled graph G = (V,E,L) consists of the set V
of vertices (or nodes), the set E of edges (or links) between the
vertices, and the set L of string labels assigned to each of the
elements of V and E.

978-1-4799-1737-2/15/$31.00 ©2015 IEEE

Much work has been done using graph-based representations
of data. Using vertices to represent entities such as people,
places and things, and edges to represent the relationships
between the entities, such as friend, lives-in and owns, allows
for a much richer expression of data than is present in the
standard textual or tabular representation of information.
Representing various data sets like telecommunications call
records, GPS movements and social networks in a graph form
allow us to discover structural properties in data that are not
evident using traditional data mining methods. The idea
behind our approach to graph-based anomaly detection is to
find anomalies in graph-based data where the
anomalous substructure (or subgraph) in a graph is part of (or
attached to or missing from) a normative pattern.

Definition: A substructure SA is anomalous in graph G if (0 <
d(SA,S) < TD) and (P(SA|S,G) < TP), where S is a normative
pattern in G, TD bounds the maximum distance an anomaly SA
can be from the normative pattern S, and TP bounds the
maximum probability of SA.
Definition: The anomalous score of an anomalous
substructure SA based on the normative substructure S in
graph G as d(SA,S) * P(SA|S,G), where the smaller the score,
the more anomalous the substructure.

The distance between two graphs can be due to a difference in
structure from one graph to the other. The probability of SA
given S and G is based on the frequency of SA among all
graphs within distance TD of S. Therefore, the more anomalous
substructure is that which is closer to the normative pattern
and appears with lower probability.

The advantage of graph-based anomaly detection is that the
relationships between entities can be analyzed for structural
oddities in what could be a rich set of information. For
instance, take the example situation that occurred at the Enron
Corporation [2]. Using anomaly detection on graphs that
represent e-mail correspondences (Figure 1), such as those
between executives at Enron, might help in the prevention of
lost revenues, pensions, and jobs. However, graph-based
approaches have been prohibitive due to computational
constraints. Because graph-based approaches typically perform
subgraph isomorphisms, in order to address this issue, most
approaches use some type of heuristic to arrive at an
approximate solution. However, this is still problematic, and in
order to use graph-based anomaly detection techniques in a
real-world environment, we need to take advantage of the
structural/relational aspects found in dynamic, streaming data.

Figure 1. Example partial graph of Enron e-mail correspondences.

III. GBAD

The PLADS approach is based on our previous work on
static graph-based anomaly detection (GBAD) [3]. Here we
briefly review the GBAD approach. There are three general
categories of anomalies in a graph: insertions, modifications
and deletions. Insertions would constitute the presence of an
unexpected vertex or edge. Modifications would consist of an
unexpected label on a vertex or edge. Deletions would
constitute the unexpected absence of a vertex or edge. GBAD
discovers each of these types of anomalies. Using a greedy
beam search and a minimum description length (MDL)
heuristic, GBAD first discovers the best substructure, or
normative pattern, in an input graph. The minimum
description length (MDL) approach is used to determine the
best substructure(s) (i.e., normative pattern) as the one that
minimizes the following:

)()|(),(SDLSGDLGSM

where G is the entire graph, S is the substructure, DL(G|S) is
the description length of G after compressing it using S, and
DL(S) is the description length of the substructure. Using a
beam search (a limited length queue of the best few patterns
that have been found so far), the algorithm grows patterns one
edge at a time, continually discovering what substructures best
compress the description length of the input graph. The
strategy implemented is that after extending each substructure
by one edge, it evaluates each extended substructure based
upon its compression value (the higher the better). A list is
maintained of the best substructures, and this process is
continually repeated until either there are no more
substructures to consider or a user-specified limit is reached.

The GBAD approach is based on the exploitation of
structure in data represented as a graph. We have found that a
structural representation of such data can improve our ability
to detect anomalies in the behaviors of entities being tracked
[6]. GBAD discovers anomalous instances of structural
patterns in data that represent entities, relationships and
actions. GBAD uncovers the relational nature of the problem,
rather than solely the traditional statistical deviation of
individual data attributes. Attribute deviations are evaluated in
the context of the relationships between structurally similar
entities. In addition, most anomaly detection methods use a
supervised approach, requiring labeled data in advance (e.g.,
illicit versus legitimate) in order to train their system. GBAD
is an unsupervised approach, which does not require any
baseline information about relevant or known anomalies. In
summary, GBAD looks for those activities that appear to
match normal/legitimate/expected transactions, but in fact are
structurally different.

For more information regarding the GBAD algorithms, the
readers should refer to [3].

IV. RELATED WORK

One potential solution to handling very large graphs is to view
the graph as a “stream” and processing the graph one, or a few
edges, at a time. Previous work in this area has provided a
few different approaches to handle streaming graphs. One
approach is to use what is called a semi-streaming model as a

978-1-4799-1737-2/15/$31.00 ©2015 IEEE

way of studying massive graphs whose edge sets cannot be
stored in memory. For example, Feigenbaum et al.’s work
presents semi-streaming constant approximation algorithms
for un-weighted as well as weighted matching problems, as
well as an improvement for handling bipartite graphs [4].
Other work has evaluated approaches to different graph
properties, such as shortest paths in directed graphs [7],
counting triangles [5][6], or finding the maximum clique [16].
In the work by Jha et al., they propose a single-pass streaming
algorithm that maintains a real-time estimate of the number of
triangles of a graph, by storing only a fraction of edges [5].
Pavan et al. present a novel space-efficient algorithm for
counting and sampling triangles in a massive graph whose
edges arrive as a stream [6]. Another approach is to examine
the problem of clustering massive graph streams and use a
technique for creating hash-compressed micro-clusters from
graph streams [8].

Recently, others have attempted to mine frequent closed
subgraphs in non-stationary data streams. One such approach
called AdaGraphMiner, maintains only the current frequent
closed graph, utilizing estimation techniques with theoretical
guarantees [9]. Empirical experiments have demonstrated the
effectiveness of this approach on graph streams representing
chemical molecules and structural representations of cancer
data. In addition, there have been recent attempts to discover
outliers in massive network streams by dynamically
partitioning the network [10]. Using techniques such as
reservoir sampling methods that compress a graph stream, one
can search for structural summaries of the underlying network.
The goal of this type of outlier detection is to identify graph
objects which contain unusual bridging edges, or edges
between regions of a graph that rarely occur together. Other
non-outlier detection approaches have involved sampling
schemes to sample from the stream of graph edges. In the
work by Ahmed et al., they use sampling techniques to
primarily deal with estimating certain graph properties, like
triangle counts [14].

However, all of the approaches so far have not addressed
the issue of scalability associated with performing graph-based
anomaly detection. While some approaches have detected
outliers in graph streams, their objective is to identify unusual
clusters of subgraphs in the graph by analyzing the statistical
nature of the existence of edges, as opposed to discovering
anomalies in the structure of a graph, or graph stream. In
addition, while some work has attempted to discover
anomalous subgraphs using an ensemble-based approach [11]
based on the GBAD approach [3], that type of approach does
not address the issue of scalability.

V. A STREAMING PARTITIONED APPROACH TO GRAPH-

BASED ANOMALY DETECTION

The advantages associated with graph-based anomaly
detection are well-documented, providing a myriad of
approaches for discovering structural and relational anomalies.
However, they have been limited to static domains, or data
sets that are relatively small in size – certainly nothing on the
order of what we would call “big data”. What our experiments
have shown us is that we can devise an approach whereby if
we take into account smaller, individual partitions (i.e., a

segment of the data that is processed individually, in parallel
with other partitions) in terms of what we know about other
partitions, we can not only provide similar accuracy but do it
in a fraction of the time.

In order to formalize our approach, we propose the
following algorithm. PLADS accepts as input a set of N graph
partitions either by partitioning a static graph, or fed in over
time.

PLADS (input graph partitions)
1. Process N partitions in parallel

a. Each partition discovers top M normative patterns.
b. Each partition waits for all partitions to discover their

normative patterns.
2. Determine best normative pattern P among NM

possibilities.
3. Each partition discovers anomalous substructures based

upon P.
4. Evaluate anomalous substructures across partitions and

report most anomalous substructure(s).
5. Process new partition

a. If oldest partition(s) has exceeded a threshold T (based
upon criteria such as the number of available partitions
or the time-stamped-age of the partition), remove
partition(s) from further processing.

b. Determine top M normative patterns from new
partition.

c. Determine best normative pattern P’ among all active
partitions.

d. If (P’ ≠ P), each partition discovers new anomalous
substructures based upon P’.

e. Else, only new partition discovers anomalous
substructure(s).

f. Evaluate anomalous substructures across partitions and
report most anomalous substructure(s).

g. Repeat.

This is a generic algorithm for applying graph-based anomaly
detection methods to streaming data. The user can apply any
normative pattern discovery techniques and any graph-based
anomaly detection algorithms with this approach. For the
purpose of demonstrating the PLADS approach, we use
GBAD (defined earlier) for determining what are the
normative patterns and what are the anomalous substructures.

The parameters to the PLADS algorithm are defined as
follows:

N – number of partitions in the sliding window. This will be
the initial number of graph partitions processed in parallel, and
the number of partitions considered for determining the
normative pattern and the substructures that are anomalous as
each subsequent partition is processed.

M – number of normative patterns to retain. This will be the
number of normative patterns saved from each graph partition
to compare against other graph partitions.

978-1-4799-1737-2/15/$31.00 ©2015 IEEE

It should be mentioned that the size of each partition (i.e.,
number of vertices and edges) is not necessarily the same. For
instance, with the first data set representing employee
movements and actions at an embassy, we will partition the
graph down to the day level (~2000 edges per partition), where
each partition presents a day at the embassy. Then, for the
second data set, we will experiment with partitions that
represent not only a day, but also partitions down to the hour
and minutes level. In previous work, we analyzed the effect
that varying the values of M and N has on the running-times as
well as accuracy [12].

A. Experiments Using Insider Threat Example

Take the example of a cyber-security threat where there is
the leaking of information by employees with access to
confidential and sensitive information. One of the Visual
Analytics Science and Technology (VAST) 2009 mini-
challenges involved various aspects of a fictional insider threat
scenario where someone is leaking information [13]. The goal
of these challenges is to allow contestants to apply various
visual analysis techniques to discover the spy and their
associated actions. The VAST data set consists of the activities
(card swipes and network traffic) of 60 employees at an
embassy over the month of January in 2008.

1) GBAD
As input to GBAD, the entire data set is represented as a

graph, composed of 39,331 vertices and 38,052 edges, where
movement, building, and type of room are depicted as vertices
and edges indicating direction and movement between rooms.
The normative pattern for this graph is depicted in Figure 2.
After running GBAD on the entire graph, two anomalous
substructures are discovered (one of the substructures is shown
in Figure 3, where it shows that an employee somehow got
into the classified area without ever badging in). However, it
took 14,347 seconds to discover the anomalous substructure
when analyzing the entire graph.

Figure 2. Normative pattern of movements and transactions (left).

Figure 3. Anomalous substructure of movement/transactions (right).

2) PLADS
In order to demonstrate the potential effectiveness of the

PLADS approach, we applied the algorithm to the same
dataset that represents cyber-threat activity, following the
steps outlined in the algorithm:

1. Process N partitions in parallel.

We arbitrarily chose to initially process the first 5 (N)
partitions of the graph. Running them in parallel, all of
the partitions finish processing in 293 seconds, each
producing 3 (M) normative patterns.

2. Determine best normative pattern, P, among NM
possibilities.

We then examine all of the partitions’ normative patterns,
searching for the best normative substructure among them
(i.e., the substructure that maximizes the value of size *
frequency). The result is a normative pattern that is
identical to the normative pattern shown in Figure 2.

3. Each partition discovers anomalous substructures based
upon P.

Based upon the best substructure from among all of the
partitions (previous step), we then search for all
anomalous substructures related to that normative pattern.
The result is that only 1 substructure is reported as
anomalous across all of the partitions, with the longest
running partition taking 328 seconds.

4. Evaluate anomalous substructures across partitions and
report most anomalous substructure.

For this example, since there is only one anomalous
substructure reported, evaluation is trivial. (It should be
noted that this is one of the anomalous substructures
discovered when the graph was processed in its entirety.)

5. Process new partition.

Processing data as streams can be handled in two ways.
Either we can always remove the oldest partition, or we
can remove any partitions that are older than some time
threshold T (i.e., a sliding window). For this example, we
will do the former, removing the oldest partition and
processing a new partition (e.g., removing partition 1 and
processing partition 6). We then discover the best
substructure on the new partition, so that we can
determine the best normative pattern among all of the
remaining partitions. However, while the reported
normative pattern in partition 6 is different, it is not better
than the best substructure reported by the other four
partitions. So, we use the best substructure on partition 6,
and no anomalous substructures are discovered (in 106
seconds). Also, since we are using the best substructure
from a previous iteration, we do not have to re-discover
any anomalous substructures in the older partitions.

At the next iteration (e.g., partition 2 is removed and
partition 7 is added), we discover that the normative
pattern has not changed (i.e., it is still the best
substructure across all of the active partitions). Again,
only the new partition needs to be analyzed for any
anomalous substructures, as the anomalies would not
change for the already processed partitions. Analysis of
the results from the new partition (partition 7) yields (in a
total of 257 seconds) no anomalous substructures.

This same behavior continues over partitions 8 and 9, in
207 and 301 seconds respectively. However, on partition
10, the same best substructure is reported, but a new

978-1-4799-1737-2/15/$31.00 ©2015 IEEE

anomalous substructure is reported of equal
“anomalousness” (in 501 seconds) to the substructure
discovered in partition 3. This happens to be the second
anomalous substructure discovered when the entire, non-
partitioned graph was processed.

So, we are able to implement a graph-based anomaly
detection approach on data that represents movements of
people, and successfully discover the same two anomalous
substructures (with no false positives) within a streaming-like
approach in a fraction of the time (1,993 seconds) it took to
process the entire graph (14,347 seconds). However, this
graph is rather sparse (i.e., few edges compared to the number
of vertices), and not very large. So, now we will examine
results on denser graphs that actually represent streaming data.

B. Experiments Using Social Network Genrator

The Linked Stream Benchmark (LSBench) data generator
allows one to generate data that represents users as the static
data, and their actions as a data stream, including gps locations,
posts, and photo albums, as well as “like”s and “know”s
(https://code.google.com/p/lsbench/). Using the provided
sibgenerator tool, we can generate RDF triplets of varying
sizes and periods of time, that contain user information, and
their associated locations, devices used, postings, photos, likes,
and whom they know. Figure 4 shows the schema of the data
as shown on the LSBench web-site.

Figure 4. Logical schema of the stream data.

person

<name>

<name>

<location>

firstName
lastName

based_near

<year>

class_year

<organization>

organization

<gender>

gender

user

<status>

status

subscriber_of **

user ...

knows **

<interest>

interest **

forum

moderator_of **

account_of **

group

group_membership

member_of_membership **

group_of_membership **

subscriber_of

has_member **

<name> <tag>

name tag **

<browser>

browser

Initiated_friendship**

Figure 5. Graph topology of user information.

photo

<location>

<agent>

location

agent

photo_album<title> title

user ...

creator_of **

container_of **

user ...

like **

usertag **

gps

trackedAt **

<location>

trackedLocation

<browser>

browser

postcreator_of **

forum

container_of **

<agent>

agent
<browser>

browser

<hashtag>

hashtag

Figure 6. Graph topology of streaming data.

We then converted the sibgenerator output into a graph
format, representing the LSBench objects as vertices, and
actions as edges. Figure 5 presents the graph topology of the
static user information - information that is repeated in a
partition where an action takes place. Figure 6 presents the
graph topology of the streaming data. It should also be noted
that a quick analysis of data from the generator shows that
values created for the firstName, lastName, organization, and
based_near fields (associated with a user) are highly unique.
Table 1 shows an example from a generation of 500 users.

Table 1. Number of unique values.

Field name Entity Num unique values/total values

firstName user 431/500

lastName user 413/500

organization user 416/500

based_near user 236/500

Because there is such a high diversity amongst these values
with a uniform probability, and from an anomaly detection
perspective we are not interested in discovering the differences
between these values, we will remove these particular fields
from the final generated input graphs.

Varying the number of users from anywhere between 500
and 10,000 users results in between 5,000 and up to 150,000
edges per graph input file (i.e., partition), depending upon the
time period of the captured data, which is anywhere from every
15 minutes to every day. We quickly discover that the
generator is consistent in its generation of patterns, and despite
us also varying the number of minutes, hours and days, as well
as the probabilities of occurrence of values (as much as the
generator will allow us), the normative pattern is fairly
consistent.

To demonstrate the potential of this approach to
discovering anomalies in a social network, we will take the
example of a network generated for 500 users using the default
sibgenerator settings. We will generate graph partitions that
are composed of all activity broken down to the hour (i.e.,
midnight-00:59AM, 1:00AM-1:59AM, etc.) on February 28

th
.

(This is just one arbitrary example to show the potential of this
approach, but we observe similar results throughout many
different configurations.) Using PLADS, we discover the
normative pattern shown in Figure 7.

978-1-4799-1737-2/15/$31.00 ©2015 IEEE

Figure 7. Normative pattern.

The substructure shown in Figure 7 indicates that the
normative pattern is a user that moderates/subscribes to at
least two forums. Starting at 6:00AM, PLADS reports two
users showing an interest in (i.e., are a fan of) “Cyndi Lauper”,
despite the fact that there are 34 other users that are “Lauper”
fans throughout the entire day. What makes this interesting is
that starting at 7:00AM, PLADS then reports a single instance
of a user – one of the “Lauper” users reported previously - that
belongs to a Japanese group called “Andrea Bocelli”. This is
interesting because this is the only user (out of 10) that does
not fit the pattern for users in this group, as all of the other
members of the group do not moderate or subscribe to any
forums. In short, PLADS discovers a user that fits the
normative pattern, but is interested in “Cyndi Lauper” while
also belonging to a group devoted to “Andrea Bocelli” – a
group that seems solely devoted to the Italian tenor, as none of
its others members moderate or subscribe to any forums –
unlike this lone “Lauper” fan. While somewhat
inconspicuous, this scenario can be mapped to more serious
situations in which a clandestine group attempts to remain
inconspicuous by acting like other groups.

In these experiments, PLADS discovers all of the targeted
anomalies. As reported in our previous work [12], when we
handle the data as a stream, whereby a partition only has
knowledge about its current partition as well as previous
partitions, we achieve a false positive rate of 14%. However,
if we evaluate all the partitions individually, and compare their
discoveries once all the partitions have been processed, the
result is a false positive rate of 6%. With these experiments
using the social network generator data, we observe a similar
false positive rate, and we achieve a slightly better processing
average of 222 edges/second. The improved edge processing
rate can probably be attributed to the diversity of values
produced by the lsbench data generator, which reduces the
possible candidates during beam generation. In regards to the
high FP rate, if we were to increase the size of the processing
window, we would be able to reduce the number of false
positives by observing more repetitions of the incorrectly-
identified anomalous substructures (i.e., noise), and thus
excluding them from being considered as anomalies of
interest, albeit at the sacrifice of speed.

VI. CONCLUSIONS AND FUTURE WORK

Detecting potential attacks, whether it is via insider threats
or social threats to the populace are critical challenges for
industry as well as our government. In order to address the
issue of analyzing complex networks for patterns and
anomalies, one must provide methods of monitoring and
rapidly detecting anomalies. In previous work, we represented
networks and various security related information using a graph
and developed the graph-based anomaly detection (GBAD)

approach that was able to detect anomalies with high accuracy
and low false positive rates. In this work we present our
streaming approach called PLADS for Pattern Learning and
Anomaly Detection in Streams. We then evaluated the
relevance of our approach on two different synthetic data sets:
one representing an insider threat scenario, and the other
demonstrating a social network scenario. PLADS allows us to
process information that is represented in data streams,
discovering patterns and anomalies with minimal false-
positives, with an order-of-magnitude speed-up over the
traditional GBAD approach. Next, we will develop an
incremental approach that processes only the stream of graph
changes over time, where normative patterns and anomalies are
updated only as necessary based on the impact of the changes.
Going to a purely streaming approach will allow us to remove
the “boundary issues” associated with anomalous substructures
that could span graph partitions. We will also develop parallel
implementations of these approaches to take advantage of high-
performance computing platforms and further improve the
scalability of the PLADS framework.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant Nos. 1318913 and 1318957.

REFERENCES

[1] A. Sorkin, “Calculating the Grim Economic Costs of Ebola Outbreak,”
N.Y. Times, October 13, 2014.

[2] B. McLean and P. Elkind, “The Smartest Guys in the Room: The
Amazing Rise and Scandalous Fall of Enron,” Portfolio Trade
Publishing, 2004.

[3] W. Eberle and L. Holder, “Anomaly Detection in Data Represented as
Graphs,” Intelligent Data Analysis, 2007, Vol. 11, No. 6.

[4] J. Feigenbaum, S. Kannan, S., McGregor, A., Suri, S. and Zhang, J.
2005. On Graph Problems in a Semi-Streaming Model. Theoretical
Computer Science.

[5] M. Jha, C. Seshadhri, and A. Pinar, “A space efficient streaming
algorithm for triangle counting using the birthday paradox,” KDD, 2013,
pp. 589-597.

[6] A. Pavan, K. Tangwongsan, S. Tirthapura, and K. L. Wu, “Counting and
sampling triangles from a graph stream,” VLDB 6, 14, 2013, pp. 1870-
1881.

[7] A. Sarma, S. Gollapudi, and R. Panigrahy, “Estimating PageRank on
Graph Streams,” AMC PODS, 2008.

[8] C. Aggarwal, Y. Zhao, and P. Yu, “On Clustering Graph Streams,”
SIAM, 2010.

[9] A. Bifet, G. Holmes, B. Pfahringer, and R. Gavaldà, “Mining frequent
closed graphs on evolving data streams,” KDD, 2011.

[10] C. Aggarwal, Y. Zhao, and P. Yu, “Outlier Detection in Graph Streams,”
ICDE, 2011.

[11] P. Parveen, J. Evans, B. Thuraisingham, K. Hamlen, L. Khan, “Insider
Threat Detection Using Stream Mining and Graph Mining,” Privacy,
Security, Risk and Trust (PASSAT), IEEE International Conf. on Social
Computing (SocialCom), pp.1102-1110, 2011

[12] W. Eberle and L. Holder, “A Partitioning Approach to Scaling Anomaly
Detection in Graph Streams,” First International Workshop on High
Performance Big Graph Data Management, Analysis, and Mining
(BigGraphs), IEEE BigData Conference, October 2014.

[13] W. Eberle, L. Holder, and J. Graves, “Detecting Employee Leaks Using
Badge and Network IP Traffic,” IEEE Symposium on Visual Analytics
Science and Technology, 2009.

[14] N. Ahmed, J. Neville, and R. Kompella, “Network sampling: from static
to streaming graphs”, TKDD, 2013.

978-1-4799-1737-2/15/$31.00 ©2015 IEEE

