
Incremental Anomaly Detection in Graphs

William Eberle
Department of Computer Science

Tennessee Technological University
Cookeville, TN USA
weberle@tntech.edu

Lawrence Holder
School of Electrical Engineering and Computer Science

Washington State University
Pullman, WA USA

holder@wsu.edu

Abstract— The advantage of graph-based anomaly detection
is that the relationships between elements can be analyzed for
structural oddities that could represent activities such as fraud,
network intrusions, or suspicious associations in a social network.
However, current approaches to detecting anomalies in graphs
are computationally expensive and do not scale to large graphs.
For instance, in the case of computer network traffic, a graph
representation of the traffic might consist of nodes representing
computers and edges representing communications between the
corresponding computers. However, computer network traffic is
typically voluminous, or acquired in real-time as a stream of
information. In this work, we describe methods for graph-based
anomaly detection via graph partitioning and windowing, and
demonstrate their ability to efficiently detect anomalies in data
represented as a graph.

Keywords- Anomaly detection, graph mining, dynamic graphs.

I. INTRODUCTION
Recent research efforts have involved the representation of

complex data as a graph, in order to analyze the relational
structure in the data. This research has touched on a wide
range of graph-theoretic approaches that have been applied to
a wide variety of domains. While some successes have been
demonstrated, they have either been specific to a particular
data set, a particular type of graph, or a particular graph
algorithm. More importantly, they have not dealt with the
scalability issues associated with “big data” when attempting
to learn patterns and anomalies in data represented as a graph.
For instance, in the case of computer network traffic, a graph
representation of the traffic might consist of nodes
representing computers, and edges representing
communications between the corresponding computers. In
addition, other potential data sources for aiding in the analysis
of the network traffic could include details about the
individual users, location of the computer nodes, or even
switch information. Adding these heterogeneous data sets to
the network traffic, represented as a graph, could provide the
basis for discovering interesting structural patterns and
anomalies, which may alert a security analyst to the potential
threat in the form of a network intrusion attempt, denial-of-
service attack, or worms. However, computer network traffic
is typically voluminous, or acquired in real-time as a stream of
information. For example, CAIDA (www.caida.org) provides
a data repository to the research community for the analysis of
internet traffic [1]. In one example of network traffic collected
by CAIDA, representing a dynamic denial-of-service (DDOS)
attack at a single location, every second produced an average

of 3,992 transactions, for a total of 2,395,234 transactions over
a 10 minute span.

To lay the foundation for this effort, we hypothesize that a
real-world, meaningful definition of a graph-based anomaly is
an unexpected deviation to a normative pattern. Such
anomalies are associated with illicit activity that tries to mimic
normal behavior. In a previous approach to graph-based
anomaly detection, called GBAD [2], we used a compression-
based measure to find normative patterns, and then analyzed
the close matches to the normative patterns to determine if
they meet the above definition of an anomaly. However, while
this approach has demonstrated its effectiveness in a variety of
domains [3], the issue of scalability has limited this approach
when dealing with domains containing millions of nodes and
edges. Furthermore, many graphs of interest are dynamic, i.e.,
changes to the graph are streaming in over time. This further
complicates the analysis, because we cannot just analyze a
static graph, but would need to analyze snapshots of the graph
over time. However, this streaming graph scenario also offers
an opportunity for methods that can update the current set of
patterns and anomalies based on only the changes to the graph,
rather than repeated analyses on the large graph snapshots. We
have developed such a method for pattern learning and
anomaly detection in streams (PLADS) depicted in Figure 1.
In this paper we describe the PLADS approach and
demonstrate its effectiveness and scalability for large datasets.

II. GRAPH-BASED ANOMALY DETECTION
A graph is a set of nodes and a set of edges, where each

edge connects either two nodes or a node to itself. More
formally, we use the following definition.

Figure 1. Network monitoring scenario for PLADS. Information about
entities and relationships streams in over time, and PLADS maintains a

current set of normative patterns and anomalies.

2013 IEEE 13th International Conference on Data Mining Workshops

978-0-7695-5109-8/13 $31.00 © 2013 IEEE

DOI 10.1109/ICDMW.2013.93

521

Definition: A labeled graph G = (V,E,L) consists of the set V
of vertices (or nodes), the set E of edges (or links) between the
vertices, and the set L of string labels assigned to each of the
elements of V and E.

Much work has been done using graph-based representations
of data. Using vertices to represent entities such as people,
places and things, and edges to represent the relationships
between the entities, such as friend, lives-in and owns, allows
for a much richer expression of data than is present in the
standard textual or tabular representation of information.
Representing various data sets like telecommunications call
records, financial information and social networks in a graph
form allow us to discover structural properties in data that are
not evident using traditional data mining methods.

The idea behind the GBAD approach to graph-based
anomaly detection is to find anomalies in graph-based data
where the anomalous substructure (or subgraph) in a graph is
part of (or attached to or missing from) a normative pattern.
We assume a measure d(G1,G2) of the distance between two
graphs G1 and G2. Several such measures have been
developed, but we focus on a graph edit distance measure that
computes the cost (number of additions, deletions and changes
of a node, edge or label) of transforming G1 into a graph that is
isomorphic to G2.

Definition: A substructure SA is anomalous in graph G if (0 <
d(SA,S) < TD) and (P(SA|S,G) < TP), where S is a normative
pattern in G, TD bounds the maximum distance an anomaly SA
can be from the normative pattern S, and TP bounds the
maximum probability of SA.

Definition: The anomalous score of an anomalous
substructure SA based on the normative substructure S in
graph G is d(SA,S) * P(SA|S,G), where the smaller the score,
the more anomalous the substructure.

The distance between two graphs can be due to the addition,
removal or modification of structure from one graph to the
other. The probability of SA given S and G is based on the
frequency of SA among all graphs within distance TD of S.
Therefore, the more anomalous substructure is that which is
closer to the normative pattern and appears with lower
probability. The importance of this definition lies in its
relationship to any deceptive practices that are intended to
obtain or hide information. The United Nations Office on
Drugs and Crime states the first fundamental law of money
laundering as “The more successful a money-laundering
apparatus is in imitating the patterns and behavior of
legitimate transactions, the less the likelihood of it being
exposed” [4].

The advantage of graph-based anomaly detection is that the
relationships between entities can be analyzed for structural
oddities in what could be a rich set of information, as opposed
to just the entities’ attributes. However, graph-based
approaches have been prohibitive due to computational
constraints. Because graph-based approaches typically perform
subgraph isomorphisms, a known NP-complete problem, most

approaches use some type of heuristic to arrive at an
approximate solution. However, this is still problematic, and in
order to use graph-based anomaly detection techniques in a
real-world environment, we need to take advantage of the
structural/relational aspects found in dynamic, streaming data
sets.

III. GBAD
The PLADS approach is based on previous work on static

graph-based anomaly detection (GBAD) [2]. Here we briefly
review the GBAD approach. There are three general
categories of anomalies in a graph: insertions, modifications
and deletions. Insertions would constitute the presence of an
unexpected vertex or edge. Modifications would consist of an
unexpected label on a vertex or edge. Deletions would
constitute the unexpected absence of a vertex or edge. GBAD
discovers each of these types of anomalies. Using a greedy
beam search and a minimum description length (MDL)
heuristic, GBAD first discovers the best substructure, or
normative pattern, in an input graph. The minimum
description length (MDL) approach is used to determine the
best substructure(s) as the one that minimizes the following:

)()|(),(SDLSGDLGSM +=

where G is the entire graph, S is the substructure, DL(G|S) is
the description length of G after compressing it using S, and
DL(S) is the description length of the substructure.

The GBAD approach is based on the exploitation of
structure in data represented as a graph. Previous work found
that a structural representation of such data can improve one’s
ability to detect anomalies in the behaviors of entities being
tracked [6]. GBAD discovers anomalous instances of
structural patterns in data that represent entities, relationships
and actions. GBAD uncovers the relational nature of the
problem, rather than solely the traditional statistical deviation
of individual data attributes. Attribute deviations are evaluated
in the context of the relationships between structurally similar
entities. In addition, most anomaly detection methods use a
supervised approach, requiring labeled data in advance (e.g.,
illicit versus legitimate) in order to train their system. GBAD
is an unsupervised approach, which does not require any
baseline information about relevant or known anomalies. In
summary, GBAD looks for those activities that appear to
match normal/legitimate/expected transactions, but in fact are
structurally different.

Once GBAD finds a normative pattern and anomalies in a
graph, it can then iterate to find additional anomalies. First,
GBAD compresses the graph using the normative pattern, i.e.,
replacing each instance of the normative pattern with a newly-
labeled node. Then, GBAD is executed on this compressed
graph to again find normative patterns and anomalies. This
process can continue for multiple iterations to find more and
more normative patterns, and anomalies to them, throughout
the graph, and at different levels of abstraction as the graph is
further compressed.

For more details regarding the GBAD algorithms, the
reader can refer to [2].

522

IV. INITIAL OBSERVATIONS
Take the example of a cyber-security threat where there is

the leaking of information by employees with access to
confidential and sensitive information. One of the Visual
Analytics Science and Technology (VAST) 2009 mini-
challenges involved various aspects of a fictional insider threat
scenario where someone is leaking information [7]. The goal
of these challenges is to allow contestants to apply various
visual analysis techniques to discover the spy and their
associated actions. The VAST data set consists of the activities
(card swipes and network traffic) of 60 employees at an
embassy over the month of January in 2008.

Starting with a graph of embassy employee activity data on
January 29, 2008, consisting of 180 transactions (5,058
vertices and 4,878 edges), we randomly inserted an extra edge
and vertex into the graph, representing a potentially
anomalous insertion. We then ran GBAD on the entire graph,
targeting anomalous insertions. This results in the targeted
anomaly being discovered in 2,364 seconds with no false
positives. The normative pattern (shown in Figure 2) consists
of 8 vertices and 7 edges. We then divided the graph into 10
graph partitions, where each partition consists of 18
transactions, and ran GBAD on each partition individually.
This results in a much shorter running time, with the longest
running partition taking only 215 seconds. However, while the
targeted anomaly is discovered, it also results in 189 false
positives being reported.

In these experiments, the normative pattern is the same
across all partitions. This leads us to make three observations.
First, if we know the total number of instances of the best
substructure, the targeted anomalous substructure would have a
similar anomalous score as the reported most anomalous
substructure. Second, and even more important, if we know the
numbers of instances of each anomalous substructure across all
of the partitions, our targeted anomalous substructure would
come out on top by itself. And third, if we keep track of the
best/most anomalous score across the partitions, we would be
able to remove some false positives.

In short, if we can effectively detect anomalies across
multiple graphs, we can more efficiently handle not only very
large graphs that are static (by partitioning them into multiple
smaller graphs), but also graphs that represent a continuous
stream of information.

V. RELATED WORK
Early work by Cook and Noble [8] on anomaly detection

in one large graph defined anomalies as structural outliers, i.e.,
after compressing the graph based on normative patterns, the
remaining structure was considered anomalous. More recent
work by Akoglu et al. [9] also addressed anomaly detection in
one large graph, but their target was to identify only
anomalous nodes. Both of the above approaches assumed a
static graph.

One potential solution to handling very large graphs is to
view the graph as a “stream” and processing the graph one, or
a few edges, at a time. Previous work in this area has provided
a few different approaches to handle graph streams. One
approach is to use what is called a semi-streaming model as a

way of studying massive graphs whose edge sets cannot be
stored in memory. For example, Feigenbaum et al.’s work
presents semi-streaming constant approximation algorithms
for un-weighted as well as weighted matching problems, as
well as an improvement for handling bipartite graphs [10]. By
considering a set of classical graph problems in their semi-
streaming model, they were able to demonstrate that certain
approximations to the problems can be achieved. Other work
has generalized this approach to different graph problems,
such as the shortest paths in directed graphs, and used
intermediate temporary streams as a means of resolving the
space issues [11][12][13]. Basically, these approaches propose
a tradeoff between the available internal memory and the
number of passes it requires.

Another approach is to examine the problem of clustering
massive graph streams and use a technique for creating hash-
compressed micro-clusters from graph streams [14].
Addressing the issues with large disk-resident graphs, the
compressed micro-clusters are designed using a hash-based
compression of the edges onto a smaller domain space.

Recently, others have attempted to mine frequent closed
subgraphs in non-stationary data streams. One such approach
called AdaGraphMiner, maintains only the current frequent
closed graphs, utilizing estimation techniques with theoretical
guarantees [15]. Empirical experiments have demonstrated the
effectiveness of this approach on graph streams representing
chemical molecules and structural representations of cancer
data. In addition, there have been recent attempts to discover
outliers in massive network streams. Using what is called a
structural connectivity model, some researchers have
attempted to handle the issue of sparseness in massive
networks by dynamically partitioning the network [16]. Using
techniques such as reservoir sampling methods that compress
a graph stream, one can search for structural summaries of the
underlying network. The goal of this type of outlier detection
is to identify graph objects which contain unusual bridging
edges, or edges between regions of a graph that rarely occur
together.

However, all of the approaches so far have not addressed
the issue of scalability associated with performing graph-based
anomaly detection. While some approaches have detected
outliers in graph streams, their objective is to identify unusual
clusters of subgraphs in the graph by analyzing the statistical
nature of the existence of edges, as opposed to discovering
anomalies in the structure of a graph, or graph stream. In
addition, while some work has attempted to discover
anomalous subgraphs using an ensemble-based approach [17]
based on the GBAD approach [2], that type of approach does
not address the issue of scalability.

VI. AN APPROACH TO GRAPH-BASED ANOMALY
DETECTION ON PARTITIONS

The advantages associated with graph-based anomaly
detection are well-documented, providing a myriad of
approaches for discovering structural and relational anomalies.
However, they have been limited to static domains, or data
sets that are relatively small in size – certainly nothing on the
order of what we would call “big data”. Our preliminary
experiments have shown that we can devise an approach

523

whereby if we take into account smaller, individual partitions
(i.e., a segment of the data that is processed individually, in
parallel with other partitions) in terms of what we know about
other partitions, we can not only provide similar accuracy but
do it in a fraction of the time. In order to formalize our
approach, we propose the PLADS algorithm, which accepts as
input a set of N graph partitions either by partitioning a static
graph, or fed in over time.

PLADS (input graph partitions)
1. Process N partitions in parallel

a. Each partition discovers top M normative patterns.
b. Each partition waits for all partitions to discover their

normative patterns.
2. Determine best normative pattern P among NM

possibilities.
3. Each partition discovers anomalous substructures based

upon P.
4. Evaluate anomalous substructures across partitions and

report most anomalous substructure(s).
5. Process new partition

a. If oldest partition(s) has exceeded a threshold T (based
upon criteria such as the number of available partitions
or the time-stamped-age of the partition), remove
partition(s) from further processing.

b. Determine top M normative patterns from new
partition.

c. Determine best normative pattern P’ among all active
partitions.

d. If (P’ ≠ P), each partition discovers new anomalous
substructures based upon P’.

e. Else, only new partition discovers anomalous
substructure(s).

f. Evaluate anomalous substructures across partitions and
report most anomalous substructure(s).

g. Repeat.

This is a generic algorithm for applying graph-based anomaly
detection methods to streaming data. The user can apply any
normative pattern discovery techniques and any graph-based
anomaly detection algorithms with this approach.

A. Experiments Using Cyber-Security Example
First, we will show the PLADS algorithm applied to a

subset of the cyber-security insider threat data presented
earlier. In this experiment, we analyze just the movements of
the employees throughout the embassy over the specified
month of January in 2008. This set consists of card swipes as
employees enter various rooms in the embassy.

1) GBAD
As input to GBAD, the data is represented as a graph,

composed of 39,331 vertices and 38,052 edges, where
movement, building, and type of room are depicted as vertices
and edges indicating direction and movement between rooms.
The normative pattern for this graph is depicted in Figure 2.
After running GBAD on the entire graph, two anomalous
substructures are discovered (one of the substructures is shown

in Figure 2). However, it took 14,347 seconds to discover the
anomalous substructure when analyzing the entire graph.

Figure 2. Normative pattern (top) and anomalous substructure (bottom)

discovered in the VAST embassy insider challenge dataset.

2) PLADS
We applied the PLADS approach to the same dataset,

divided into ten equal-sized partitions. We arbitrarily chose to
initially process the first 5 (N) partitions of the graph. Running
them in parallel, all of the partitions finish processing in 293
seconds, each producing 3 (M) normative patterns. We then
examine all of the partitions’ normative patterns, searching for
the best normative substructure among them (i.e., the
substructure that maximizes the value of size * frequency).
The result is a normative pattern P identical to the normative
pattern shown in Figure 2. Next, each partition discovers
anomalous substructures based upon P. Only 1 substructure is
reported as anomalous across all of the partitions, with the
longest running partition taking 328 seconds. Since there is
only one anomalous substructure reported, evaluation is
trivial. (It should also be noted that this is one of the targeted

location

location

building

location classified

location network building

move
s

state move
s

send
s

state move
s

state

movement

outside

network building classified

movement network building

51

42

move
s

start end send
s

traffic_count

traffic_count

start end send
s

524

anomalous substructures discovered when the graph was
processed in its entirety.)

Processing data as streams can be handled in two ways.
Either we can always remove the oldest partition, or we can
remove any partitions that are older than some time threshold
T (i.e., a sliding window). For this example, we will do the
former, removing the oldest partition and processing a new
partition (e.g., removing partition 1 and processing partition
6). We then discover the best substructure in the new partition,
so that we can determine the best normative pattern among all
of the remaining partitions. However, while the reported
normative pattern in partition 6 is different, it is not better than
the best substructure reported by the other five partitions. So,
we use the same best substructure on partition 6, and no
anomalous substructures are discovered (in 106 seconds).
Also, since we are using the best substructure from a previous
iteration, we do not have to re-discover any anomalous
substructures in the older partitions.

At the next iteration (partition 2 is removed and partition 7
is added), we discover that the normative pattern has not
changed (i.e., it is still the best substructure across all of the
active partitions). Again, only the new partition needs to be
analyzed for any anomalous substructures, as the anomalies
would not change for the already processed partitions.
Analysis of the results from the new partition (partition 7)
yields (in 257 seconds) no anomalous substructures. This same
behavior continues over partitions 8 and 9, using 207 and 301
seconds respectively. However, on partition 10, the same best
substructure is reported, but a new anomalous substructure is
reported of equal “anomalousness” (in 501 seconds) to the
substructure discovered in partition 3. This happens to be the
second anomalous substructure discovered when the entire,
non-partitioned graph was processed.

So, we are able to implement a graph-based anomaly
detection approach on data that represents movements of
people, and successfully discover the same two anomalous
substructures (with no false positives) within a streaming
approach in a fraction of the time (1,993 seconds) it took to
process the entire graph (14,347 seconds). However, this
graph is rather sparse (i.e., few edges compared to the number
of vertices). Next we will examine results on a denser graph
that also represents data that can be streamed.

B. Experiments Using Network Traffic Data
The Cooperative Association for Internet Data Analysis

(CAIDA) is a publicly available resource for the analysis of IP
traffic. Through a variety of workshops, publications, tools, and
projects, CAIDA provides a forum for the dissemination of
information regarding the interconnections on the internet. One
of the core missions of CAIDA is to provide a data repository
to the research community that will allow for the analysis of
internet traffic and its performance (www.caida.org/data/).
Using GBAD, we analyzed the CAIDA AS (Autonomous
Systems) data set for normative patterns and possible
anomalies [1]. The AS data set represents the topology of the
internet as the composition of various Autonomous Systems.
Each of the AS units represents routing points through the
internet.

1) GBAD
We represent the data as a graph composed of 24,013

vertices and 98,664 edges, with each AS depicted as a vertex,
and an edge indicating a peering relationship between the AS
nodes. Figure 3 shows a portion of the AS graph, where the
rectangle indicates the normative pattern and the emboldened
edge indicates the anomalous structure found by GBAD.

This example shows the advantage of using a graph-based
approach on a complex structure. While the data indicates
many provider/customer relationships, of which the norm is a
particular AS being the provider to three different customers,
the anomaly indicates an unusual connection between two
ASes. Such an inconspicuous structure would probably be
missed by a human analyst, and shows the potential of an
approach like GBAD to find these anomalies in network
traffic data. However, GBAD took 59,743 seconds to discover
the anomaly.

AS

AS AS

customerprovider

customer

provider

AS
customer

provider

AS

AS AS

customer
provider

customer

provider

AS

customer
provider

siblings

AS

AS AS

customerprovider

customer

provider

AS
customer

provider

AS

AS AS

customer
provider

customer

provider

AS

customer
provider

siblings

peers

AS

AS AS

customerprovider

customer

provider

AS
customer

provider

AS

AS AS

customer
provider

customer

provider

AS

customer
provider

siblings

provider

AS

AS AS

customerprovider

customer

provider

AS
customer

provider

AS

AS AS

customer
provider

customer

provider

AS

customer
provider

siblings

AS

AS AS

customerprovider

customer

provider

AS

customer
provider

AS

AS AS

customer
provider

customer

provider

AS

customer
provider

siblings

peers

AS

AS AS

customerprovider

customer

provider

AS
customer

provider

AS

AS AS

customer
provider

customer

provider

AS

customer
provider

siblings

provider

provider

Figure 3. Normative pattern (square) and anomaly (bold) discovered in the

CAIDA dataset.

2) PLADS
In order to demonstrate the potential effectiveness of an

incremental approach to graph-based anomaly detection, we
apply the PLADS algorithm to this same CAIDA data set
divided into ten equal-sized partitions. We again arbitrarily
chose to initially process the first 5 (N) partitions of the graph.
Running them in parallel, all of the partitions finish processing
in 210 seconds, each with 3 (M) normative patterns. We then
examine all of the partitions’ normative patterns, searching for
the best normative substructure among them. The result is the
normative pattern shown in Figure 4, which is smaller than the
normative pattern found when running on the entire graph (see
Figure 3). Based upon the best substructure from among all of
the partitions, we then search for all anomalous substructures
related to that normative pattern. The result is that 166
substructures are reported as anomalous across all of the
partitions, with the longest running partition taking 112
seconds. We then examine all of the reported anomalous
substructures across the partitions, and the result is that 2
substructures are reported as equally anomalous. However, at
this point, neither of the substructures are the targeted
anomalous substructures.

525

Similar to the previous example, we handle the data
incrementally by removing the oldest partition and processing
a new partition. We then discover the best substructure on the
new partition, so that we can determine the best normative
pattern among all of the remaining partitions. The result is the
discovery of the normative pattern shown in Figure 3 (i.e., the
same normative pattern from processing the entire graph) in
92 seconds. Since the normative pattern has changed since the
last iteration, we have each partition re-discover any
anomalous substructures based upon the new normative
pattern. Examining all of the reported anomalous substructures
across the partitions, we discover that the most anomalous
substructure (found in partition 5) is the one that was
identified when we ran GBAD on the entire graph.

At the next iteration (partition 2 is removed and partition 7
is added), we discover in 45 seconds that the normative pattern
has not changed (i.e., it is still the best substructure across all
of the active partitions). In this case, only the new partition
needs to be analyzed for any anomalous substructures, as the
anomalies would not change for the already processed
partitions. Analysis of the results from the new partition
(partition 7) yields (in 58 seconds) no substructures more
anomalous than what were already discovered.

Taking this scenario one more iteration (partition 3 is
removed and partition 8 is added), we discover that the best
normative pattern across all of the partitions is different from
the previous iteration (see Figure 4). So, similar to two
iterations back, all of the active partitions need to be re-
evaluated based upon this new best substructure. The result is
two new anomalous substructures. However, if you compare
their “anomalousness” to the one reported earlier (shown in
Figure 3), one can see that there are more instances of this
newly reported anomalous substructure, so the anomalous
substructure discovered earlier would still be the most
anomalous.

After two more iterations of adding and removing
partitions (i.e., processing all of the partitions that represented
the single graph), the new normative pattern stays the same,
and the anomalousness of reported substructures lessens (i.e.,
becomes more common), still leaving us with the targeted
anomalous instance.

Figure 4. Normative pattern early (left) and later (right) in the “stream”.

So, we are able to implement a graph-based anomaly
detection approach on network data that is able to successfully
discover the same anomalous substructure within an
incremental approach in a fraction of the time (642 seconds) it
took to process the entire graph (59,743 seconds). Even the
overhead associated with comparing normative patterns and
anomalous substructures across partitions is negligible, as the
number of substructures to evaluate from each partition is
minimal.

C. Experiments Using Larger Synthetic Graphs
While the previous real-world data set experiments analyze

some interesting scenarios, the data sets are relatively small
and the ability to control the anomalies is limited. So, in order
to validate our approach on larger graphs and vary the
substructures, we used a synthetic graph generator to generate
a sparse graph of ~2M vertices and edges. While not on the
order of what most would define as “big data” [18], where
graphs consist of billions of nodes, processing partitions of
this size using the PLADS approach could quickly add up to
this scale.

1) GBAD
The graph consists of a specified normative subgraph of 10

vertices and 9 edges, with random substructures of varying
levels of anomalousness (i.e., frequency of their existence)
injected into the graph. After running GBAD on the complete
graph, the anomalous substructure, consisting of an
unexpected edge and vertex, is discovered as shown in Figure
5 (attached to the normative pattern). However, the normative
pattern and anomalous substructure are discovered in 276,873
seconds (i.e., over 3 days) - hardly useful in a real-world
environment.

Figure 5. Normative pattern and anomalous substructure in synthetic graph.

AS

provider

AS

AS

provider provider

provider

AS

customer

AS

AS

provider provider

customer

eX1

vX1

v5

v2 v6

v1 v4

v9

v8
v7

v3 v10

e1

e2

e3

e4
e5

e6 e7

e8

e9

526

2) Streaming GBAD
Again, to demonstrate the potential effectiveness of a

partition-based incremental streaming approach to graph-
based anomaly detection, we apply the PLADS algorithm to
this same synthetic graph. For this example, we have divided
the original graph into 100 partitions, where each partition
consists of approximately 19,000 vertices and edges. We
initially process the first 20 (N) partitions of the graph. The
choice of an initial 20 partitions is somewhat arbitrary, as our
goal is to just get a representative sample with which to start
analyzing. Running them in parallel, all of the partitions finish
processing in 9 seconds, each with 3 (M) normative patterns. It
should be noted that even if the partitions are not processed in
parallel, it only takes 136 seconds to process the 20 partitions
serially. However, we will also use T=20 as the size of our
processing window (i.e., partitions retained in memory).

We then examine all of the partitions’ normative patterns,
searching for the best normative substructure among them.
The result is the normative pattern shown in Figure 5, which is
the same (targeted) normative pattern found when running on
the entire graph. Based upon the best substructure from among
all of the partitions (previous step), we then search for all
anomalous substructures related to that normative pattern. The
result is that only 2 anomalous instances (from partition 17)
are reported as anomalous across all of the partitions. At this
point, the anomalous substructure is not the targeted
anomalous substructure.

Processing partitions 21-33 results in no new normative
patterns or anomalies, at a total processing time of 92 seconds.
Processing partition 34 does not report a new normative
pattern, but 2 instances of an anomalous substructure are
discovered. The new anomalous substructure is evaluated
against the current best anomalous substructure, and it is
discovered to be the same anomalous substructure (albeit, still
not the targeted anomaly at this point). Thus, we now have 4
instances of the current best anomalous substructure. This step
takes 8 seconds.

Processing partitions 35-57 results in no new normative
patterns or anomalies, at a total processing time of 165
seconds. Processing partition 58 does not report a new
normative pattern, but 3 instances of a new anomalous
substructure are discovered. The anomalous substructure is
evaluated against the current best anomalous substructure, and
is found to be different and more anomalous. Thus, this new
substructure becomes the current best anomalous substructure.
This step takes 7 seconds, and is still not the targeted anomaly.

Processing partitions 59-78 results in no new normative
patterns or anomalies, at a total processing time of 141
seconds. Processing partition 79 does not report a new
normative pattern, but 3 instances of an anomalous
substructure are discovered. The anomalous substructure is
evaluated against the current best anomalous substructure, and
it is discovered to be the same anomalous substructure. Thus,
we now have 6 instances of the current best anomalous
substructure. This step takes 7 seconds. It is also interesting to
note that in terms of “global anomalousness”, our visibility is

limited to the partitions that are retained in memory. If we
could compare the current best anomalous substructure to the
one discovered in partition 17 (as well as partition 34), the
older substructures would be more anomalous.

Processing partitions 80-84 results in no new normative
patterns or anomalies, at a total processing time of 35 seconds.
Processing partition 85 does not report a new normative
pattern, but 1 instance of an anomalous substructure is
discovered. The anomalous substructure is evaluated against
the current best anomalous substructure, and is found to be
different and more anomalous. Thus, this new substructure,
which is the targeted anomaly discovered when analyzing the
entire graph (shown in Figure 5), becomes the current best
anomalous substructure. This step takes 7 seconds. Processing
partitions 86-100 results in no new normative patterns or
anomalies, at a total processing time of 103 seconds.

Again, we are able to implement a graph-based anomaly
detection approach on a larger graph that is able to
successfully discover the same targeted anomalous
substructure within a streaming approach in a fraction of the
time (574 seconds) it took to process the entire graph (276,873
seconds). Timings for each partition are shown in Figure 6,
with partitions containing anomalous substructures shown in
red at the top. As noted earlier, the size of the window (i.e., the
number of partitions retained in memory) does affect what
anomalous substructures are discovered. At the end of
processing all 100 partitions, the targeted anomalous
substructure is reported as the best. However, if the targeted
anomalous substructure was in an early partition, a later
partition may report a less anomalous substructure (as opposed
to when we process the non-partitioned graph), because the
targeted anomalous substructure will have fallen out of the
window when T=20.This fits into the idea of concept drift
when handling data as a stream, whereby subgraphs that are
reported as anomalous may lessen in their “anomalousness” as
new information is received.

Running this same experiment using different values for T
(the initial number of partitions, N, is set to the same value),
we discover that:

• T=1: the newest partition always has the current best
anomalous substructure (if any).

• T=5: due to the scarcity of injected anomalous
substructures, only one partition in the window contains an
anomalous substructure, leaving the newest partition to
always have the current best anomalous substructure.

• T=10: when the targeted anomalous substructure is
discovered at partition 85, within the window is the
previous best anomalous substructure, which would be
replaced by the targeted anomalous substructure because it
is more anomalous (score wise). (Same results for T=15.)

In addition to accuracy, the running times are also slightly
affected by the change in T, as shown in Figure 7. We see that
total running time decreases as the window size T increases
due to the increased ability to exploit parallelism across

527

partitions in the window. Thus, T (and N) is bound by the
number of processors available. While there is some overhead
associated with having to compare substructures across
partitions, it is minimal from a run-time perspective as well as
system resources. Also, the value chosen for M (number of
normative patterns) can be increased with minimal impact to
performance. From a user perspective, one must determine
how truly “normative” is a pattern that is not in the top M.

VII. CONCLUSIONS AND FUTURE WORK
Handling large or streaming graphs provides the

opportunity to handle complex data sets that are well-suited
for graph-based approaches. We have proposed a method for
analyzing graphs using a parallel partitioning approach that
can discover anomalous substructures. We have also
demonstrated the scalability of our approach with an order-of-
magnitude improvement in the running-times of a graph-based
anomaly detection approach. Using real-world data from a
cyber-threat scenario, and actual network traffic between
autonomous systems, we are able to discover the anomalies
with minimal false-positives using a parallel partitioning
approach to processing segments of the entire graph. While
there are several different approaches to graph-based
knowledge discovery and anomaly detection, the algorithm
presented is not dependent on a single approach. In future
work, we will examine the scalability of such an approach to
“big data” sizes as well as high-speed streams. In addition, we
would like to further examine this approach in a variety of
other real-world domains, such as social networks.

ACKNOWLEDGMENT
Support for CAIDA’s Internet Traces is provided by the

National Science Foundation, the US Department of Homeland
Security, and CAIDA Members.

REFERENCES
[1] The CAIDA AS Relationships Dataset,

http://www.caida.org/data/active/as-relationships .
[2] W. Eberle and L. Holder, “Anomaly Detection in Data Represented as

Graphs,” Intelligent Data Analysis, 2007, Vol. 11, No. 6.
[3] W. Eberle, L. Holder, and J. Graves, “Insider Threat Detection Using a

Graph-based Approach,” Journal of Applied Security Research, Volume
6, Issue 1, pp. 32-81, January 2011.

[4] M. Hampton and M. Levi, “Fast spinning into oblivion? Recent
developments in money-laundering policies and offshore finance
centres,” Third World Quarterly, 1999, Vol. 20, Num. 3, p. 645-656.

[5] B. McLean and P. Elkind, “The Smartest Guys in the Room: The
Amazing Rise and Scandalous Fall of Enron,” Portfolio Trade
Publishing, 2004.

[6] W. Eberle, L. Holder and D. Cook, “Identifying Threats Using Graph-
Based Anomaly Detection,” Machine Learning in Cyber-Trust, J. Tsai
and P. Yu (Editors), Springer, May 2009.

[7] W. Eberle, L. Holder and J. Graves, “Detecting Employee Leaks Using
Badge and Network IP Traffic,” IEEE Symposium on Visual Analytics
Science and Technology, October 2009.

[8] C. Noble and D. Cook, “Graph-Based Anomaly Detection,” SIGKDD,
2003.

[9] L. Akoglu, M. McGlhon, and C. Faloustsos, “OddBall: Spotting
Anomalies in Weighted Graphs,” PAKDD, 2010.

[10] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang, “On
Graph Problems in a Semi-Streaming Model,” Theoretical Computer
Science, 2005.

[11] C. Demetrescu, I. Finocchi, and A. Ribichini, “Trading Off Space for
Passes in Graph Streaming Problems,” Proceedings of the 17th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2006.

[12] G. Aggarwal, M. Datar, S. Rajagopalan, and Ruhl, M., “On the
streaming model augmented with a sorting primitive,” Proceedings of
the 45th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), 2004.

[13] A. Sarma, S. Gollapudi, and R. Panigrahy, “Estimating PageRank on
Graph Streams,” AMC PODS, 2008.

[14] C. Aggarwal, Y. Zhao, and P. Yu., “On Clustering Graph Streams,”
SIAM, 2010.

[15] Z A. Bifet, G. Holmes, B. Pfahringer and R. Gavaldà, “Mining frequent
closed graphs on evolving data streams,” Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data
mining (KDD '11), 2011.

[16] C. Aggarwal, Y. Zhao and P. Yu, “Outlier Detection in Graph Streams,”
ICDE, 2011.

[17] P. Parveen, J. Evans, B. Thuraisingham, K. Hamlen, L. Khan, “Insider
Threat Detection Using Stream Mining and Graph Mining,” Privacy,
Security, Risk and Trust (PASSAT), 2011 IEEE Third International
Conference on Social Computing (SocialCom) ,2011, pp.1102-1110

[18] U. Kang and C. Faloutsos (2012). Big Graph Mining: Algorithms and
Discoveries. ACM SIGKDD Explorations, 14(2):29-36.

5	

6	

7	

8	

9	
1	 4	 7	 10
	

13
	

16
	

19
	

22
	

25
	

28
	

31
	

34
	

37
	

40
	

43
	

46
	

49
	

52
	

55
	

58
	

61
	

64
	

67
	

70
	

73
	

76
	

79
	

82
	

85
	

88
	

91
	

94
	

97
	

10
0	

se
co
nd

s	

par++on	

400	

600	

800	

1	 5	 10	 15	 20	

se
co
nd

s	

T	 (window	 size)	

Figure 7. Running times on synthetic graph based upon window size (T).

Figure 6. Partition timings, where highlighted partitions indicate newly-discovered anomalies.

528

