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Abstract. An important area of data mining is anomaly detection, particularly for fraud. However, little work has been
done in terms of detecting anomalies in data that is represented as a graph. In this paper we present graph-based approaches
to uncovering anomalies in domains where the anomalies consist of unexpected entity/relationship alterations that closely
resemble non-anomalous behavior. We have developed three algorithms for the purpose of detecting anomalies in all three
types of possible graph changes: label modifications, vertex/edge insertions and vertex/edge deletions. Each of our algorithms
focuses on one of these anomalous types, using the minimum description length principle to first discover the normative pattern.
Once the common pattern is known, each algorithm then uses a different approach to discover particular anomalous types. In
this paper, we validate all three approaches using synthetic data, verifying that each of the algorithms on graphs and anomalies
of varying sizes, are able to detect the anomalies with very high detection rates and minimal false positives. We then further
validate the algorithms using real-world cargo data and actual fraud scenarios injected into the data set with 100% accuracy and
no false positives. Each of these algorithms demonstrates the usefulness of examining a graph-based representation of data for
the purposes of detecting fraud.
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1. Introduction

Detecting anomalies in various data sets is an important endeavor in data mining. Using statistical
approaches has led to various successes in environments such as intrusion detection. Recent research
in graph-based anomaly detection has paved the way for new approaches that not only compliment the
non-graph-based methods, but also provide mechanisms for handling data that cannot be easily analyzed
with traditional data mining approaches. Using information theoretic, probabilistic and maximum partial
substructure approaches, we have developed three novel algorithms for analyzing graph substructures
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for the purpose of uncovering all three types of graph-based anomalies: modifications, insertions and
deletions.

The key to the algorithms presented in this paper lies in our definition of an anomaly. Basing our
definition on the assumption that an anomaly is not random, for instance in the case of committing fraud,
we believe that this type of anomaly should only be a minor deviation from the normal pattern. Because
anyone who is attempting to commit fraud or hide devious activities would not want to be caught, it
only makes sense that they would want their activities to look as real as possible. For example, the
United Nations Office on Drugs and Crime states the first fundamental law of money laundering as
“The more successful money-laundering apparatus is in imitating the patterns and behavior of legitimate
transactions, the less the likelihood of it being exposed.” [6]. Thus, if some set of data is represented as
a graph, any nefarious activities should be identifiable by small modifications, insertions or deletions to
the normative patterns within the graph.

Our first algorithm uses theminimum description length principle [10] to determine the normative
pattern, and from that pattern, find patterns that while structurally similar, have some relational deviation
that is within an acceptable level of change. By determining what substructure minimizes the description
length of the graph, we are able to calculate the cost of transformation for instances within the graph
that do not exactly match the discovered normative pattern, and as such, are indicative of an unexpected
change.

Our second algorithm again determines the normative pattern as the one that minimizes the description
length of a graph, but instead of looking at changes to this pattern we examine theprobability of extensions
to the pattern. If the normative pattern does not completely compress the graph, meaning there are other
vertices and edges connected to the normative pattern, we examine each of these extensions in terms of
the probability of their existence. If the probability of existence is low enough, we mark the instance as
anomalous. We can then compress the graph by this anomalous instance, and repeat the process until
there are no more extensions to the anomalous substructure.

Our third algorithm uses a trail of pattern expansion to discover the instances that are structurally
deficient from the normative pattern. When we attempt to discover the pattern that minimizes the
description length of the graph, we maintain a parental relationship between the structures. Once we
have discovered the normative pattern, we traverse these relationships to find the instance that is the
maximum partial substructure. In this case, we are looking for patterns that are unable to extend to
the normative pattern, and are a maximal representation of that normative pattern. In other words, the
maximum partial substructure is found in the instance that requires the fewest additions (IF they would
have existed) for transforming the instance into an instance consisting of the normative structure.

Up until now, graph-based approaches to fraud detection have been limited to specific anomaly types
and certain domains. Taking into account the “mind of the fraudster”, we have developed algorithms
that can discover any of three types of anomalous changes where the illegitimate actions consist of minor
changes to a normal set of activities.

2. Previous work

Recently there has been an impetus towards analyzing data using graph theoretical methods. Not to
be confused with the mechanisms for analyzing “spatial” data, graph-based data mining approaches are
an attempt at analyzing data that can be represented as a graph (i.e., vertices and edges). Yet, while
there has been much written as it pertains to graph-based data mining [12], very little research has been
accomplished in the area of graph-based anomaly detection.
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In 2003, Noble and Cook used the SUBDUE application to look at the problem of anomaly detection
from both the anomalous substructure and anomalous sub-graph perspective [9]. They were able to
provide measurements of anomalous behavior as it applied to graphs from two different perspectives.
Anomalous substructure detection dealt with the unusual substructures that were found in an entire graph.
In order to distinguish an anomalous substructure from the other substructures, they created a simple
measurement whereby the value associated with a substructure indicated a degree of anomaly. They also
presented the idea ofanomalous sub-graph detection which dealt with how anomalous a sub-graph (i.e.,
a substructure that is part of a larger graph) was to other sub-graphs. The idea was that sub-graphs that
contained many common substructures were generally less anomalous than sub-graphs that contained
few common substructures. In addition, they also explored the idea of conditional entropy and data
regularity using network intrusion data as well as some artificially created data.

Lin and Chalupsky took a different approach and applied what they called rarity measurements to the
discovery of unusual links within a graph [8]. Using various metrics to define the commonality of paths
between nodes, the user was able to determine whether a path between two nodes were interesting or
not, without having any preconceived notions of meaningful patterns. One of the disadvantages of this
approach was that while it was domain independent, it assumed that the user was querying the system
to find interesting relationships regarding certain nodes. In other words, the unusual patterns had to
originate or terminate from a user-specified node.

The AutoPart system presented a non-parametric approach to finding outliers in graph-based data [1].
Part of Chakrabarti’s approach was to look for outliers by analyzing how edges that were removed from
the overall structure affected the minimum descriptive length (MDL) of the graph. Representing the
graph as an adjacency matrix, and using a compression technique to encode node groupings of the graph,
he looked for the groups that reduced the compression cost as much as possible. Nodes were put into
groups based upon their entropy.

In 2005, the idea of entropy was also used by Shetty and Adibi in their analysis of a real-world data
set: the famous Enron scandal [12]. They used what they called “event based graph entropy” to find the
most interesting people in an Enron e-mail data set. Using a measure similar to what Noble and Cook
had proposed [9], they hypothesized that the important nodes (or people) were the ones who had the
greatest effect on the entropy of the graph when they were removed. Thus, the most interesting node
was the one that brought about the maximum change to the graph’s entropy. However, in this approach,
the idea of important nodes did not necessarily mean that they were anomalous.

In the 2005 SIGKDD Explorations, a couple of different approaches to graph-based anomaly detection
were presented. Using just bipartite graphs, Sun et al. presented a model for scoring the normality of
nodes as they relate to the other nodes [14]. Again, using an adjacency matrix, they assigned what they
called a “relevance score” such that every nodex had a relevance score to every nodey, whereby the
higher the score the more related the two nodes. The idea was that the nodes with the lower normality
score tox were the more anomalous ones to that node. The two drawbacks with this approach were
that it only dealt with bipartite graphs and it only found anomalous nodes, rather than what could be
anomalous substructures. Rattigan and Jensen also went after anomalous links, this time via a statistical
approach [10]. Using a Katz measurement, they used the link structure to statistically predict the
likelihood of a link. While it worked on a small dataset of author-paper pairs, their single measurement
just analyzed the links in a graph.
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3. Graph-based anomalies

The idea behind the approach presented in this work is to find anomalies in graph-based data where the
anomalous substructure (at least one edge or vertex) in a graph is part of (or attached to or missing from)
a non-anomalous substructure, or thenormative pattern. This definition of an anomaly is unique in the
arena of graph-based anomaly detection, as well as non-graph-based anomaly detection. The concept of
finding a pattern that is “similar” to frequent, or good, patterns, is different from most approaches that
are looking for unusual or “bad” patterns. While other non-graph-based approaches may aide in this
respect, there does not appear to be any existing approaches that directly deal with this scenario.

Definition 1. A graph substructure S’ is anomalous if it is not isomorphic to the graph’s normative
substructure S, but is isomorphic to S within X%.

X signifies the percentage of vertices and edges that would need to be changed in order for S’ to be
isomorphic to S. The importance of this definition lies in its relationship to fraud detection (i.e., any sort
of deceptive practices that are intended to illegally obtain or hide information). If a person or entity is
attempting to commit fraud, they will do all they can to hide their illicit behavior. To that end, their
approach would be to convey their actions as close to legitimate actions as possible. That makes this
definition of an anomaly extremely relevant.

3.1. Types

For a graph-based anomaly, there are several possible changes in a graph that might occur:

1. A vertex exists that is unexpected.
2. An edge exists that is unexpected.
3. The label on a vertex is different than was expected.
4. The label on an edge is different than was expected.
5. An expected vertex is absent.
6. An expected edge between two vertices is absent.

It is also evident that these same situations can be applied to a substructure (i.e., multiple vertices
and edges), and will be addressed as such. In essence, there are three generalcategories of anomalies:
insertions, modifications and deletions. Insertions would constitute the first two situations; modifications
would consist of the third and fourth situation; and deletions would categorize the last two situations.

3.2. Assumptions

Many of the graph-based anomaly detection (or intrusion detection) approaches up to now have
assumed that the data exhibits a power-law distribution. For example, much of the data that has been
used in previous analysis has used items like the world-wide web, social networks, or other sources that
convey a power-law behavior [5]. The advantage of the approaches presented in this work is that it does
not assume the data consists of a power-law behavior. In fact, no standard distribution model is assumed
to exist. All that is required is that the data isregular, which is typical of most production data, such as
telecommunications call traffic, financial transactions, and shipping manifests.

In order to address our definition of an anomaly, we make the following assumptions about the data:
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Assumption 1. The majority of a graph consists of a normative pattern, and no more than X% of the
normative pattern is altered in the case of an anomaly.

Since our definition implies that an anomaly constitutes a minor change to the prevalent substructure,
we can chose a small percentage (e.g., 10%) to represent the most a substructure would be changed in a
fraudulent action.

Assumption 2. The graph is regular.

If a graph were irregular, the ability to distinguish between anomalies and noise would be prohibitive.

Assumption 3. Anomalies consist of one or more modifications, insertions or deletions.

As was described in Section 3.1, there are only three types of changes that can be made to a graph.
Therefore, anomalies that consist of structural changes to a graph must consist of one of these types.

Assumption 4. The normative pattern is connected.

In a real-world scenario, we would apply this approach to data such as cargo shipments, telecommu-
nication traffic, financial transactions or terrorist networks. In all cases, the data consists of a series of
nodes and links that share common nodes and links. Certainly, graphs could contain potential anomalies
across disconnected substructures, but at this point, we are constraining our research to only connected
anomalies.

Assumption 5. Expected deviations in the graph are well represented so as to be distinguishable from
anomalous deviations.

We base our algorithms on the presence of a normative pattern, and we are looking for unexpected
deviations to that normative pattern. Thus, if we do not have enough examples that clearly distinguish
a normative pattern, and the unexpected deviations from the expected deviations, our algorithms will be
unable to discover the anomaly.

4. Graph-based anomaly detection algorithms

Most anomaly detection methods use a supervised approach, which requires some sort of baseline of
information from which comparisons or training can be performed. In general, if we have an idea what
is normal behavior, deviations from that behavior could constitute an anomaly. However, the issue with
these approaches is that one has to have the data in advance in order to train the system, and the data has
to already be labeled (i.e., fraudulent versus legitimate).

Our work has resulted in the development of three algorithms, which we have implemented using a
tool called GBAD (Graph-Based Anomaly Detection). GBAD is anunsupervised approach, based upon
the SUBDUE graph-based knowledge discovery system [2]. Using a breadth-first search and Minimum
Description Length (MDL) heuristic, each of the three anomaly detection algorithms uses GBAD to
provide the normative pattern in an input graph. In our implementation, the MDL approach is used to
determine the best substructure(s) as the one that minimizes the following:

M(S,G) = DL(G|S) + DL(S)
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whereG is the entire graph,S is the substructure,DL(G|) is the description length ofG after compressing
it usingS, andDL(S) is the description length of the substructure.

Using GBAD as the tool for our implementation, we have developed three separate algorithms: GBAD-
MDL, GBAD-P and GBAD-MPS. Each of these approaches is intended to discover all of the possible
graph-based anomaly types as set forth earlier.

4.1. Information theoretic algorithm (GBAD-MDL)

The GBAD-MDL algorithm uses the Minimum Description Length (MDL) approach to discover the
best substructure in a graph, and then subsequently examines all of the instances of that substructure that
“look similar” to that pattern. The high-level approach for the GBAD-MDL algorithm is, for a graphG:

– Find the best substructureS that minimizes the description length ofG.
– Find all instancesIn, whose cost of transformation is less than a specified threshold, where the

threshold is a user-defined parameter.
– Output allIn whose (cost * frequency) is minimum.

“Cost of transformation” is the cost of transforming graph A into an isomorphism of graph B. We
calculate this by adding 1.0 for every vertex, edge and label that would need to be changed in order
to make A isomorphic to B. The result will be those instances that are the “closest” (without matching
exactly) in structure to the best substructure (i.e., compresses the graph the most), where there is a tradeoff
in the cost of transforming the instance to match the structure, as well as the frequency with which the
instance occurs. Since cost of transformation and frequency are independent variables, multiplying their
values together results in a combinatory value: the lower the value, the more anomalous the structure.

4.1.1. Algorithm
The detailed GBAD-MDL algorithm is as follows. For a graphG :

1. Find the top-k substructuresSi, where

M(Si, G) = DL(G|Si) + DL(Si)

is the MDL value ofSi, andM(Si, G) � M(Sj , G) for all j, whereSi, Sj ⊆ G.
2. Find all instances ofSi such thatC(Ij , Si) > 0, whereC(Ij, Si) is the cost of transforming the

graph structure ofIj to match the graph structure ofSi.
3. For eachIj

a. Determine the substructure definitionSj .
b. Find all matching instances ofSjsuch that

F (Ij) = I(Sj)

whereI(Sj) is the number ofexact matching instances ofSj in the list of instances forSi.
Another way to state this, is the valueF (Ij) = I(Sj)is the number, orfrequency, of instances
that matchIj .

c. Determine theanomalousness value such that

A(Ij) = F (Ij) ∗ C(Ij, Si)

where the lower the value, the more anomalous the instance.

4. Output allIi whereA(Ii) � A(Ij) for all j, whereIi, Ij ⊆ Si.
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Fig. 1. Simple graph for GBAD-MDL example.
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Fig. 2. Anomalous substructure from simple graph using GBAD-MDL.

The value of substructureS will include the instances that do not match exactly. It is these inexact
matching instances that will be analyzed for anomalousness. It should also be noted that we are only
interested in the top substructure (i.e., the one that minimizes the description length of the graph), sok
will always be 1. However, for extensibility, thek can be adjusted if it is felt that anomalous behavior is
not found in the top normative pattern.

Throughout this work, whenever we indicate a relationship between substructures asx ⊆ y, we are
referring to the fact thatx is asub-graph of y, rather thanx is a subset ofy.

4.1.2. Example
The following is a simple example of results obtained using our implementation of the GBAD-MDL

algorithm described above. Take the fairly regular example shown in Fig. 1. Running the GBAD-MDL
algorithm, the anomalous substructure, as shown in Fig. 2, is exactly the desired result. (The individual
anomaly is inbold.) It should also be noted that no other substructures were reported as anomalous.

4.2. Probabilistic algorithm (GBAD-P)

The GBAD-P algorithm also uses the MDL evaluation technique to discover the best substructure
in a graph, but instead of examining all instances for similarity, this approach examines all extensions
to the normative substructure (pattern), looking for extensions with the lowest probability. The subtle
difference between the two algorithms is that GBAD-MDL is looking at instances of substructures
with the same characteristics (i.e., size, degree, etc.), whereas GBAD-P is examining the probability of
extensions to the normative pattern to determine if there is an instance that when extended beyond its
normative structure is traversing edges and vertices that are probabilistically less than other extended
instances. The high-level approach for the GBAD-P algorithm is:

– For a graphG, find the best substructureS that minimizes the description length ofG.
– CompressG usingS.
– For the newly compressed graphG

∗ Find the single edge and vertex extensionE that has the lowest probabilityP of existence from
instancesIn of S.

∗ Output instanceIn andE whoseP is minimum.
∗ SetS′ to instanceIn s substructure.

– CompressG usingS ′, and repeat the above steps if there are still substructures to consider.
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At each iteration, the result will be the instance that consists of the best substructure pattern and an
extension with the lowest probability of existence. The value associated with this instance represents the
lowest regularity, where the lower the value, the more anomalous the structure.

4.2.1. Algorithm
The detailed GBAD-P algorithm is as follows:

1. Find the substructureSi, where

M(Si, G) = DL(G|Si) + DL(Si)

is the MDL value ofSi, andM(Si, G)eM(Sj , G) for all j, whereSi, Sj ⊆ G.
2. CompressG by Si, and repeat Step 1.
3. Find all instancesIj that match the graph structureSi.
4. For each instanceIj, create an extended instanceI ′

j that consists of the original instance with an
additional extension of an edge and a vertex, such thatI j ⊆ I ′j , andI ′j ⊆ I ′, whereI ′ is the set of
all extended instances ofSi.

5. For eachI ′
j,

a. Find all matching instances ofI ′
j in the setI ′.

b. Determine theanomalousness value such that

A(I ′j) =
∣
∣I ′j

∣
∣ /

∣
∣I ′

∣
∣

where
∣
∣
∣I ′j

∣
∣
∣ is the cardinality of the set of instances that matchI ′

j, and|I ′| is the cardinality of the

set of extended instances ofSi. A(I ′j) is theprobability that a given instance should exist given
the existence of all of the extended instances. Again, the lower the value, the more anomalous

the instance. Given that|I ′| is the total number of possible extended instances,
∣
∣
∣I ′j

∣
∣
∣ can never

be greater, and thus the value ofA(I ′
j) will never be greater than 1.0.

6. OutputI ′j whereA(I ′j) � A(I ′k) for all k, whereI ′j, I
′
k ⊆ I ′, and its probability is less than a user

specified threshold. This threshold will allow us some flexibility to indicate that we do not want to
see instances that are not at least below some level of probability.

7. CompressGby the graph structure ofI ′
j .

8. Repeat Step 1.
9. Start again at Step 3.

4.2.2. Example
The following is a simple example of results obtained using our implementation of the GBAD-P

algorithm described above. Take the example of a network-looking structure, as shown in Fig. 3. There
is a central node (labeledX) with four connected identical star structures (each with a center node labeled
Y). Each of these star structures has an identical smaller substructure (made up of vertices labeledI, J
andK) connected to it. However, one of the star structures has theIJK substructure connected to its
vertex labeledE, while the others have it connected to their vertex labeledG.

Running the GBAD-P algorithm on this graph results in the following three structures labeled as
anomalous, as shown in Fig. 4 (after the second iteration). In essence, while it did report the anomaly
as three different substructures (all equal in probability), the complete anomaly is discovered. It should
also be noted that on subsequent iterations, no more anomalous substructures are found. (All of the
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Fig. 3. Simple graph for GBAD-P example.
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Fig. 4. Anomalous structures from GBAD-P example.

subsequent candidates have a probability of 100%.) This is because on the following iteration, the
instances of the best substructure are compressed to a single vertex, and the other vertices (I, J and
K), are linked to that single vertex, with no former knowledge of where they linked (i.e., whether they
linked toE or G). Possible future work could include a modification to this approach to keep track of the
original connections for further evaluation.

4.3. Maximum partial substructure algorithm (GBAD-MPS)

The GBAD-MPS algorithm uses the MDL approach to discover the best substructure in a graph, then
it examines all of the instances of similar substructures that are missing various edges and vertices. The
high-level approach for the GBAD-MPS algorithm is:

– For a graphG, find the best substructureS that minimizes the description length ofG.
– Find the instances of ancestor substructures ofS (we will call the ancestor substructureS ′).
– Output all instancesIn of S′ that are not part of any instances ofS, but are closest in transformation

cost (and lowest in frequency if cost of transformation is identical).

The result will be those instances that are the maximum possible partial substructures to the normative
(or best) substructure. The value associated with the instances represents the cost of transformation
(i.e., how much change would have to take place for the instance to match the best substructure). Thus,
the instance with the lowest cost transformation (if more than one instance have the same value, the
frequency of the instance’s structure will be used to break the tie if possible) is considered the anomaly,
as it is closest to the best substructure without being included on the best substructure’s instance list.

4.3.1. Algorithm
The detailed GBAD-MPS algorithm is as follows:
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Fig. 5. Simple graph for GBAD-MPS example.

1. Find the substructureS, where

M(S,G) = DL(G|S) + DL(S)

is the MDL value ofS, whereS ⊆ G andM(S,G) is minimal. I is the list of instances that match
S.

2. Find all ancestor substructuresS ′such thatS ′ ⊆ S.
3. Find all instancesI ′of S′.
4. For each instance ofI ′, if I ′n is not a subset of any instance ofI, and its anomalous value (cost

of transformation * frequency) is less than a user specified threshold, outputI ′
n as an anomalous

instance.

By allowing the user to specify a threshold, we can control the amount of “anomalousness” that we
are willing to accept. By our definition of an anomaly, we are expecting low transformation costs (i.e.,
few changes for the anomalous instance to be isomorphic to the best substructure).

4.3.2. Example
The following is a simple example of results obtained using our implementation of the GBAD-MDL

algorithm described above. Take the example shown in Fig. 5. The normative pattern (best substructure)
from this graph is shown in Fig. 6. Now, suppose we remove one of the edges and its associated vertex,
from one of the instances of this normative pattern, creating the graph shown in Fig. 7. In other words,
we removed one of theD vertices and its associated edge. Running the maximum partial substructure
approach on this modified graph, results in the anomalous instance shown in Fig. 8. However, this pattern
is common to all of the normative instances. So, for usefulness, our implementation also reports the
actual anomalous graph instance as specified in the input graph file.

5. Empirical evaluations on synthetic data

5.1. Synthetic Data

Synthetic graphs are created using a tool calledsubgen that randomly generates graphs based upon
various parameters, and then modified, where:

– AV is the number of vertices in an anomalous substructure
– AE is the number of edges in an anomalous substructure
– V is the number of vertices in the normative pattern
– E is the number of edges in the normative pattern

Each synthetic graph consists of substructures containing the normative pattern (with V number of
vertices and E number of edges), connected to each other by one or more random connections, and each
test consists of AV number of vertices and AE number of edges altered.
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Fig. 6. Normative pattern from simple graph for GBAD-MPS example.
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Fig. 7. Simple graph for GBAD-MPS example with deleted vertex and edge.
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Fig. 8. Anomalous instance from deletion example when using GBAD-MPS.

For modification anomalies: an AV number of vertices and AE number of edges, from the same
randomly chosen normative instance, have their labels modified to randomly chosen, non-duplicating
labels (e.g., we do not replace a vertex labeled “X” with another vertex labeled “X”).

For insertion anomalies: randomly inserted AV vertices and AE edges, where the initial connection of
one of the AE edges is connected to either an existing vertex in a randomly chosen normative instance,
or to one of the already inserted AV vertices.

Fordeletion anomalies: randomly chosen AV vertices and AV edges, from a randomly chosen norma-
tive instance, are deleted along with any possible “dangling” edges (i.e., if a vertex is deleted, all adjacent
edges are also deleted).

In addition, in order to better exemplify our definition of an anomaly, the distribution of randomly
generated connections versus the anomalies is not the same. In other words, if randomly generated
connections have the same frequency as the anomalies, there would be no way to distinguish between
noise and anomalous behavior. Since our definition explicitly states that an anomaly is a slight deviation
from the normal (to better hide the true nature of the action), its existence can not be as common as
normal behaviors. Now, that does not mean that anomalies are completely different from noise, just that
their frequency is not as prevalent. So, in order to achieve our goal, we will define in thesubgen tool a
distribution of 10-to-1 (i.e., random normal connections are ten times more likely than an anomaly).

Each of the above is repeated for each algorithm,varying sizes of graphs,normative patterns, thresholds,
iterations and sizes of anomalies (where the size of the anomaly is|AV|+ |AE|). Also, due to the random
nature in which structures are modified, each test will be repeated multiple times to verify its consistency.

5.2. Metrics

Each test consists of a single graph from which 30 randomly altered graphs are generated. The output
results consist of running the algorithms against those 30 graphs for the specified settings. The primary
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Fig. 9. Example normative pattern shapes.

three metrics calculated are:

1. Percentage of runs where thecomplete anomalous substructure was discovered.
2. Percentage of runs where at leastsome of the anomalous substructure was discovered.
3. Percentage of runs containingfalse positives.

After the algorithm has completed running, the first metric represents the percentage of success when
comparing the results to the known anomalies that were injected into the data. If all of the anomalies are
discovered for a particular run, that is counted as a success for that run. For example, if 27 out of the 30
runs found all of their anomalies, the value for this metric would be 90.0.

The second metric represents the percentage of runs where at least one of the injected anomalies was
discovered. For example, if the anomaly consisted of 3 vertices and 2 edges that had their labels changed,
and the run reported only one of the anomalous vertices, then that run would be considered a success for
this measurement. Obviously, this metric will always be at least as high as the first metric.

The last metric represents the percentage of runs that reported at least one anomaly that was not one
of the injected anomalies. Since it is possible that multiple reported anomalous instances could have the
same anomalous value, some runs may contain both correct anomalies and false ones.

5.3. Shapes

In addition to the types of anomalous changes, the “shape” of the normative pattern may affect the
algorithms’ abilities to discover the anomalies. Figure 9 shows some examples of possible patterns. In
the following tests, we chose to use thecluster pattern as the baseline for the tests. While we could
have chosen any of these patterns, we felt that this pattern was the most representative of the types of
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Fig. 10. Percentage of GBAD-MDL runs where all anomalies discovered.

real-world data that these approaches would be used for discovering anomalies. For example (which
will be shown later), cargo shipments consist of ships, manifests, ports, etc. A nice graph representation
of this type of data would be where certain entities are hubs for common information (e.g., shipper,
port, etc.), such that multiple manifests could share identical information. There are many other types of
pertinent information, such as telecommunication call records, terrorist networks, financial transactions,
etc. which share this same type of ontology.

5.4. Information theoretic results

In this section, and the subsequent sections, for each approach, the synthetic experiments consist of
insertions (i.e., additional vertices and edges connected to the normative pattern),modifications (i.e.,
vertices and edges modified within an instance of the normative pattern), anddeletions (i.e., vertices
and edges missing from what could have been an instance of the normative pattern). While each of the
algorithms was designed to handle different types of anomalies, each approach will be evaluated as to
their effectiveness across all types.

5.4.1. Modifications
Figure 10 shows the effectiveness of the GBAD-MDL approach on graphs of varying sizes with

random anomalous modifications. (The results are the same for the experiments where at least part of the
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Fig. 11. Percentage of GBAD-MDL runs where all anomalies are discovered (finer granularity).

anomaly is discovered, and there are no false positives.) In Fig. 10 (and subsequent figures), the X-axis
represents the thresholds, the Y-axis is the percentage of anomalies discovered, and the Z-axis indicates
the sizes of the normative patterns, graphs and anomalies.

For very small synthetic tests (not shown for space reasons), when the threshold is high enough, (i.e.,
the threshold is equal to or higher than the percentage of change), this approach is able to find all of the
anomalies. For example, when the normative pattern is of size 6 (3 vertices and 3 edges), we have to set
the threshold higher than 0.1. This is done because with a normative pattern of size 6, even just a change
of a single vertex and a single edge would require a threshold of at least 0.33 in order to discover such an
anomaly. Thus, when we set the threshold to 0.035, the algorithm is able to find 100% of the anomalies
for a change of size 2. Similarly, when we set the threshold to 0.2, GBAD-MDL is able to find all of the
single anomalous modifications (as 0.167% of the normative pattern is changed).

For all tests where the threshold was 0.1 or less, no false positives are reported. However, when we
increase the threshold to 0.2, a few false positives are reported. For a threshold of 0.2, we are basically
saying that we want to analyze patterns that are up to 20% different. Such a huge window results in
some noise being considered (along with the actual anomalies, as all of the anomalous instances are
discovered). Fortunately, our definition of what is truly an anomaly would steer us towards observing
runs with lower thresholds.

When the size of the normative pattern is larger, smaller thresholds can be used in order to uncover
small changes to the structure. Figures 11, 12 and 13 represent the use of finer thresholds for the
discovery of very small anomalies (1 to 3 changes) to a normative pattern of 30 vertices and 30 edges.

5.4.2. Insertions
Figures 14, 15 and 16 show the effectiveness of the GBAD-MDL approach on graphs of varying sizes

with random anomalous insertions. On the smaller graphs, no matter how large the anomaly or the
size of the threshold, none of the anomalous insertions are discovered. Even when unrealistically large
thresholds (i.e., above 0.1) are used, we are unable to find any of the insertion anomalies.
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Fig. 12. Percentage of GBAD-MDL runs where at least one anomaly is discovered (finer granularity).
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Fig. 13. Percentage of GBAD-MDL runs with false positives (finer granularity).

Two observations about the effectiveness of this algorithm on anomalous insertions are evident in
these results. First, in the situation where the anomaly is a single edge and vertex, there is some success
because the insertion is “close” to the normative pattern (a direct connection). Second, the effectiveness
clearly drops off as the insertions get further away from the normative pattern, and the few successes can
be attributed to the random insertions being close to the normative pattern (e.g., an anomaly of size 4 that
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Fig. 14. Percentage of GBAD-MDL runs where all anomalous insertions are discovered.

consists of two edges and two vertices that are directly connected to the normative pattern via different
vertices).

This is clearly not an effective solution for anomalous insertions.

5.4.3. Deletions
As expected, the results of running the GBAD-MDL algorithm on the graphs generated with random

deletions are also not effective. In order to discover any of the anomalies, the threshold has to be set high
(above 20%), however, that also results in very high false positives. The best result on a graph of 1000
vertices and 1000 edges is a 3.33% discovery rate, and 100% of the runs report false positives.

Again, this is not a surprise, as the GBAD-MDL algorithm was designed for discovering anomalous
modifications and not deletions.

5.5. Probabilistic results

For each of the following tests, we will implement the following GBAD settings:

– prune substructures whose pattern matching value is less than their parent’s (for performance)
– only analyze extensions found in the top 10 best substructures (for performance)
– allow the program to iterate (i.e., compress and run again) until there is nothing left to compress

It should be noted that for these experiments we will not perform any single vertex tests because one
can not insert a new vertex without also inserting a new edge.
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Fig. 15. Percentage of GBAD-MDL runs where at least one anomalous insertion is discovered.
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Table 1
Percentage of discovery for GBAD-P runs on anomalous insertions

Graph size (norm pattern) All anomalies Partial anomalies False positives
<anomaly size>
100 vertices/100 edges (3 vertices/3 edges)

< 1 vertex/ 1edge> 100 100 0
< 2 vertices/2 edges> 100 100 0

100 vertices/100 edges (10 vertices/10 edges)
< 1 vertex/ 1edge> 100 100 0
< 2 vertices/ 2 edges> 100 100 0
< 3 vertices/3 edges> 100 100 0
< 4 vertices/ 4 edges> 100 100 0
< 5 vertices/5 edges> 93.33 93.33 0

1000 vertices/1000 edges (10 vertices/10 edges)
< 1 vertex/ 1edge> 93.33 93.33 0
< 2 vertices/ 2 edges> 86.67 91.67 0
< 3 vertices/3 edges> 93.33 98.89 0

1000 vertices/1000 edges (30 vertices/30 edges)
< 1 vertex/ 1edge> 96.67 96.67 0
< 2 vertices/ 2 edges> 82.76 84.48 0
< 3 vertices/3 edges> 60.0 70.0 0

10000 vertices/10000 edges (10 vertices/10 edges)
< 1 vertex/ 1edge> 96.67 96.67 0
< 2 vertices/ 2 edges> 100 100 0
< 3 vertices/3 edges> 93.33 98.33 0

10000 vertices/10000 edges (30 vertices/30 edges)
< 1 vertex/ 1edge> 100 100 0
< 2 vertices/ 2 edges> 93.10 95.69 0
< 3 vertices/3 edges> 90.0 95.56 0
< 4 vertices/ 4 edges> 96.0 96.0 0
< 5 vertices/5 edges> 96.43 99.64 0

5.5.1. Insertions
Table 1 shows the effectiveness of the GBAD-P approach on graphs of varying sizes with random

anomalous insertions.
The positive results from these runs are the relatively high discovery rate (never lower than 82% except

for one scenario) and the lack of false positives. The exception to the positives is the one scenario
where only 60% of the complete anomalies (70% of at least some of the anomalies) are discovered.
However, when the same size normative pattern and anomaly is used in a larger graph, the discovery
rate is 90% (and 95.56% for some of the anomalies). We have hypothesized that it has something to do
with the regularity of the data, where the more data one has the more regular the data becomes. Further
investigation of this oddity will need to be performed.

It should be noted in the example with 1000 vertices/1000 edges and a normative pattern of 10
vertices/10 edges, that even though some unrealistic anomaly sizes were used (representing 20–30% of
the normative pattern), this approach is still effective. This same behavior can be observed in larger
graphs as well. As a further experiment, we also tried this approach on different distributions, varying
the number of vertices versus the number of edges (e.g., adding more edges than vertices by creating
more edges between existing vertices), and also lessening the distribution difference between noise and
anomalies. In all cases, the results were relatively the same.

5.5.2. Modifications
Running modification tests on graphs of 100 vertices/100 edges and 1000 vertices/1000 edges results

in no anomalies, partial or complete, being discovered, and no false positives reported. The issue with
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trying to find modifications using the Probabilistic approach lies in the way the algorithm examines
extensions. Modifications are changes to the normative pattern, while the Probabilistic approach is
examining edges and vertices that are connected to a normative pattern. Since modified anomalies
are connected to substructures that are not the best substructure (or normative pattern), examination
of extensions would not consider these anomalies. While we could look for smaller patterns (i.e., a
substructure of the true normative pattern that does not include the modified vertices and edges), that
would go against our principle of what is the normative (and best) pattern.

5.5.3. Deletions
Running deletion tests on graphs of 100 vertices/100 edges and 1000 vertices/1000 edges results in no

anomalies, partial or complete, being discovered, and no false positives reported. Again, the Probabilistic
approach is examining extensions from the normative pattern. Intuitively, it makes sense that anomalous
deletions would be difficult to discover with this approach, as they could almost be considered the
opposite of what we are hoping to uncover.

5.6. Maximum partial substructure results

For each of the following tests, we will implement the following GBAD settings:

– prune substructures whose pattern matching value is less than their parent’s (for performance)
– only analyze the top 25 ancestral substructures (for performance)
– a cost of transformation (or anomalous) threshold of 8.0, so as to ignore substructures that would

have too many changes to be considered an anomaly (based upon our definition of an anomaly)

It should also be noted that “partial-anomalies” do not apply for this approach. Either an instance is
anomalous because it is missing some edges and vertices that exist in the normative pattern, or it is not
considered anomalous.

5.6.1. Deletions
Table 2 shows the effectiveness of the GBAD-MPS approach on graphs of varying sizes with random

anomalous deletions.
Initially, the results from the runs on the graph with 1000 vertices and 1000 edges, where the normative

pattern consists of 30 vertices and 30 edges, were not good. However, when we increase the number of
substructures (to analyze) to 100, and increase the anomalous threshold (i.e., cost of transformation *
frequency) to 50.0, the results improve to what is shown. The reason that the number of best substructures
and the threshold has to be increased is that as the size of the anomaly grows (i.e., the number of vertices
and edges deleted increases), the further away the cost of transformation for the anomalous instance is
from the normative pattern. So, a good rule of thumb is to choose an anomalous threshold based upon
the size of the normative pattern. For instance, GBAD could be run first to determine the normative
pattern, then based upon the size of the normative pattern, we can determine the maximum size of an
anomaly (e.g., around 10%), choose a cost of transformation that would allow for the discovery of an
anomaly that size, and then rerun the algorithm with the new threshold.

One will notice that there is one strange discovery in that no anomalies were discovered in the large
graphs where the anomaly consisted of a deleted edge. This may have something to do with the way we
go about discovering the normative pattern by a single extension at a time. We need to further investigate
the possibility that the complete normative pattern is not being discovered, leading to the inability of the
GBAD-MPS algorithm to find the anomalous deletion.
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Table 2
Percentage of discovery for GBAD-MPS runs on anomalous deletions

Graph size (norm pattern) All anomalies False positives
<anomaly size>
100 vertices/100 edges (3 vertices/3 edges)

< 1 vertex and associated edges> 100 0
< 1 edge> 100 0
< 1 vertex/1 edge> 100 0

100 vertices/100 edges (10 vertices/10 edges)
< 1 vertex and associated edges> 100 0
< 1 edge> 100 0
< 1 vertex/1 edge> 100 0
< 2 vertices/1 edge> 100 0

1000 vertices/1000 edges (10 vertices/10 edges)
< 1 vertex> 100 0
< 1 edge> 100 0
< 1 vertex/1 edge> 100 0
< 2 vertices/1 edge> 100 0

1000 vertices/1000 edges (30 vertices/30 edges)
< 1 vertex> 100 0
< 1 edge> 100 0
< 1 vertex/1 edge> 100 0
< 2 vertices/1 edge> 100 0
< 2 vertices/2 edges> 100 0
< 2 vertices/3 edges> 100 0
< 3 vertices/3 edges> 100 0

10000 vertices/10000 edges (10 vertices/10 edges)
< 1 vertex> 100 0
< 1 edge> 100 0
< 1 vertex/1 edge> 100 0
< 2 vertices/1 edge> 100 0

10000 vertices/10000 edges (30 vertices/30 edges)
< 1 vertex> 100 0
< 1 edge> 0 0
< 1 vertex/1 edge> 100 0
< 2 vertices/1 edge> 100 0
< 2 vertices/2 edges> 100 0
< 2 vertices/3 edges> 100 0
< 3 vertices/3 edges> 100 0

5.6.2. Modifications
Running tests on graphs of 100 vertices/100 edges and 1000 vertices/1000 edges results in no anomalies,

partial or complete, being discovered, and a 100% false positives rate.

5.6.3. Insertions
When running tests on 100 vertices/100 edges and 1000 vertices/1000 edges the GBAD-MPS algorithm

does not discover any anomalies. As with the previous tests, since no anomalies are discovered in any
of the tests up to this point (also there are no false positives), there is no reason to continue with these
experiments.

5.7. Other types of normative patterns

Each of the above tests are run using the same type of normative pattern: a star cluster. However, it
is theoretically possible that the shape of the normative pattern could have an effect on the effectiveness
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Table 3
Percentage of complete anomalous instances found on
runs with different patterns

Algorithm (anomaly type) Star Strand Cycle
GBAD-MDL (Modification) 100 100 100
GBAD-P (Insertion) 40.0 93.33 93.33
GBAD-MPS (Deletion) 100 100 100

Table 4
Percentage of runs with anomalous parts found on runs
with different patterns

Algorithm (anomaly type) Star Strand Cycle
GBAD-MDL (Modification) 100 100 100
GBAD-P (Insertion) 40.0 93.33 93.33
GBAD-MPS (Deletion) n/a n/a n/a

Table 5
Percentage of runs containing false positives on runs with
different patterns

Algorithm (anomaly type) Star Strand Cycle
GBAD-MDL (Modification) 0 0 0
GBAD-P (Insertion) 44.19 0 0
GBAD-MPS (Deletion) 0 0 0

of the algorithms. So, the following tests are devised in order to test some of the other patterns that are
common, particularly as they might be used for real-world data. (Refer to section 5.3 for examples of
each of these patterns.)

Each of the tests in Tables 3, 4 and 5 are executed with a graph size of approximately 500 vertices
and 500 edges, a normative pattern of 11 vertices and 10 edges, and an anomalous change of 9.5% . All
of the same GBAD parameter settings that were used in the previous tests are implemented here, and a
threshold of 0.1 is used for the GBAD-MDL algorithm.

From these results we notice that except for the star normative pattern when running the GBAD-P
algorithm, the results are the same across each algorithm for each of the different shapes. The case of
the low discovery rate for a star-shaped normative pattern may again be traceable to an inconsistency in
determining the normative pattern, and will need to be investigated further.

5.8. Performance

One of the factors to consider in evaluating these algorithms is their respective performances. Table 6
represents the average running times (in seconds) for each of the algorithms against each of the graph
sizes for the anomaly types that were the most effectively discovered. For all of the Information Theoretic
runs, the times are represented as a range, because the performance of this algorithm is dependent upon
the threshold chosen. The higher the threshold, the longer the algorithm takes to execute, so there is a
definite trade-off associated with the threshold choice.

6. Experiments on cargo shipments

One area that has garnered much attention recently is the analysis and search of imports into the United
States. The largest number of imports into the US arrive via ships at ports of entry along the coast-lines.
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Table 6
Running-times of algorithms (in seconds)

Graph size 100v 100v 1,000v 1,000v 10,000v 10,000v
(normative 100e 100e 1,000e 1,000e 10,000e 10,000e
pattern size)
Algorithm (6) (20) (20) (60) (20) (60)
(anomaly type)
GBAD-MDL 0.05–0.08 0.26–15.80 20.25–55.20 31.02–5770.58 1342.58–15109.58 1647.89–45727.09
(Modification)
GBAD-P 1.33 0.95 30.61 18.52 745.45 2118.99
(Insertion)
GBAD-MPS 0.14 0.07 4.97 75.59 242.65 813.46
(Deletion)

Thousands of suspicious cargo, whether it be illegal or dangerous, are examined by port authorities
every day. Due to the volume, strategic decisions must be made as to which cargo should be inspected,
and which cargo will pass customs without incident. A daunting task that requires advanced analytical
capabilities that will maximize effectiveness and minimize false searches.

The Customs and Border Protection (CBP) agency maintains shipping manifests in a system called
PIERS (Port Import Export Reporting Service). This database is used for tasks such as reporting and
data mining. Each entry (or row) in the PIERS tables consists of various information from a shipping
manifest.

Using shipping data obtained from the CBP (http://www.cbp.gov/), we are able to create a graph-based
representation of the cargo information where row/column entries are represented as vertices, and labels
convey their relationships as edges. Figure 17 shows a portion of the actual graph that we will use in our
anomalous detection experiments.

While we were not given any labeled data from the CBP (i.e., which shipments were illegal, or
anomalous, and which ones were not), we can draw some results from simulations of publicized incidents.

6.1. Random changes

Similar to what we did for the synthetic tests, we randomly modified, inserted and deleted small
portions of the graph for randomly selected shipping entries. However, even though this data is not as
regular as the synthetic data generated for the earlier tests, all three algorithms were able to successfully
find all of their intended target anomalies with no false positives reported. This helps us validate further
the usefulness of this approach when the anomaly consists of small modifications to the normative
pattern.

6.2. Real-world scenarios

In Eberle and Holder’s work [4], real-world cargo shipment occurrences were generated so as to show
how graph properties can be used to determine structural anomalies in graphs. While that approach
was successful in discovering graphs that contained anomalies, the exact anomalies were not part of the
output. Using the GBAD algorithms on these same data sets, we can display the actual anomalies.

One example is from a press release issued by the US Customs Service. The situation is that almost
a ton of marijuana is seized at a port in Florida [15]. In this drug smuggling scenario, the perpetrators
attempt to smuggle contraband into the US without disclosing some financial information about the
shipment. In addition, an extra port is traversed by the vessel during the voyage. For the most part, the
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Fig. 17. Example of cargo information represented as a graph.

cargo looks like a normal shipment from Jamaica. Fig. 18 shows a graphical representation of a portion
of the graph (for space reasons) containing the anomaly.

When we run all three algorithms on this graph, GBAD-MDL is unable to find any anomalies,
which makes sense considering none of the anomalies are modifications. When the graph contains the
anomalous insertion of the extra traversed port (shown as the bold edge and darkened vertex in Fig.
18), the GBAD-P algorithm is able to successfully discover the anomaly. Similarly, when the shipment
instance in the graph is missing some financial information (the dotted and dashed edges and vertices in
Fig. 18), GBAD-MPS reports the instance as anomalous.

According to the CBP, an estimated $2 billion in illegal textiles enter the US every year [3]. One of the
more common methods of alluding authorities is accomplished using what is called transshipment. The
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Fig. 18. Graph representation of cargo shipment containing the anomaly, with an insertion in bold and removals represented as
dotted lines.

CBP defines transshipment as “A false declaration or information given in order to circumvent existing
trade laws for the purpose of avoiding quotas, embargoes or prohibitions, or to obtain preferential duty
treatment.” In order to circumvent quotas, the fraudster will change the country of origin of their goods.
For example, they may ship the goods into Canada or Mexico, change the country-of-origin, and ship
into the US free from tariffs under the North American Free Trade Agreement (NAFTA).

In order to simulate this real-world example, we randomly changed the country of origin on one of
the shipments to “CANADA”. While the GBAD-P and GBAD-MPS algorithms were unsuccessful in
discovering this anomaly (as was expected), the GBAD-MDL algorithm was able to clearly mark the
instance that contained the anomaly. At first it was surprising that just a change in the country of origin
would have that effect, and given perhaps a different set of data, this would not have been as effective.
But, in this case, all of the shipments had a normative pattern that included Asian ports of origin. So,
by altering the originating country to Canada, the GBAD-MDL was able to clearly notice the structural
oddity.

6.3. Comparison to non-graph-based approach

We also compared our algorithms against a traditional non-graph-based anomaly detection approach
found in the commercially available application called Gritbot, from a company called RuleQuest
(www.RuleQuest.com). The objective of the Gritbot tool is to look for anomalous values that would
compromise the integrity of data to be analyzed by other data modeling tools such as Cubist, See5, etc.

There are two required input files for Gritbot: a .names file that specifies the attributes to be analyzed,
and a .data file that supplies the corresponding comma-delimited data. There are several optional
parameters for running Gritbot, of which the most important is the “filter level”. By default, the filter
level is set at 50%. The lower the value, the more possible anomalies are found.

In order to compare Gritbot to our GBAD algorithms, we gave Gritbot the same cargo data files used
in the previous experiments (formatted to the Gritbot specifications). Using the default parameters, no
anomalies were reported. We then lowered the filter level to 0 (which specifies that all anomalies are
requested). In every case, anomalies were reported, but none of the anomalies reported were the ones we
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had injected into the data set. So, we increased the number of samples from 200 shipments to∼ 1000
shipments, so that Gritbot could infer more of a statistical pattern, and then randomly injected a single
modification to the country-of-origin attribute. In the cargo data files, all of the country-of-origins were
“JAPAN”, except for the randomly selected records where the value was changed to “CHINA”. Again,
Gritbot did not report this anomaly (i.e. 1020 cases of “JAPAN” and one case of “CHINA”), and instead
reported a couple of other cases as anomalous.

While we consider the existence of a record with “CHINA” as anomalous, Gritbot does not view that
as an anomaly. The issue is that Gritbot (and this is similar to other outlier-based approaches), does
not treat discrete attributes the same as numeric attributes. This is because Gritbot views continuous
distributions (such as “age”) as a much easier attribute to analyze because the distribution of values leads
to certain expectations. While discrete distributions are more difficult because there is not a referential
norm (statistically), it limits the tools ability to provide its user with a comprehensive list of anomalies.
That is not to say that Gritbot will not discover anomalous discrete values - it will if it can determine
a statistical significance. For example, we found (when examining by hand) records that contained a
significant number of identical attribute values (e.g., COUNTRY, FPORT, SLINE, VESSEL). In this
case,∼250 out of the∼1,000 records. When we arbitrarily modify the SLINE value of one of these
cases from “KLIN” to “PONL” (i.e., another one of the possible SLINE values from this data set), Gritbot
does not report the anomaly. When we changed it to “MLSL”, Gritbot still did not report it. However,
when we changed it to “CSCO”, Gritbot reported that case as being anomaloues (however, not the most
anomalous). Why? It again gets to what Gritbot can determine to be statistically significant. Of all of the
∼1,000 records, only 1 has an SLINE value of “MLSL”, and only 3 have a value of “PONL”. However,
there are 123 records with an SLINE value of “CSCO”. Thus, Gritbot was able to determine that a value
of “CSCO” among those∼250 records is anomalous because it had enough other records containing the
value “CSCO” to determine that its existence in these other records was signfiicant. In short, it really
gets to the definition of what is an anomaly.

Gritbot’s approach to anomaly detection is common among many other outlier-based data mining
approaches. However, in terms of finding what we would consider to be anomalous (small deviations
from the norm), Gritbot’s approach may not find the anomaly.

7. Experiments on network intrusions

One of the more applied areas of research when it comes to anomaly detection can be found in the
multiple approaches to intrusion detection. The reasons for this are its relevance to the real world problem
of networks and systems being attacked, and the ability of researchers to gather actual data for testing
their models. Perhaps the most used data set for this area of research and experimentation is the 1999
KDD Cup network intrusion dataset [7].

In 1998, MIT Lincoln Labs managed the DARPA Intrusion Detection Evaluation Program. The
objective was to survey and evaluate research in intrusion detection. The standard data set consisted of
a wide variety of intrusions simulated in a military network environment. The 1999 KDD Cup intrusion
detection dataset consists of a version of this data. For nine weeks, they simulated a typical US Air Force
local-area network, initiated multiple attacks, and dumped the raw TCP data for the competition.

The KDD Cup data consists of connection records, where a connection is a sequence of TCP packets.
Each connection record is labeled as either “normal”, or one of 37 different attack types. Each record
consists of 31 different features (or fields), with features being either continuous (real values) or discrete.
In the 1999 competition, the data was split into two parts: one for training and the other for testing.
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Groups were then allowed to train their solutions using the training data, and were then judged based
upon their performance on the test data.

Since the GBAD approach uses unsupervised learning, we will run the algorithms on the test data so
that we can judge our performance versus other approaches. Also, because we do not know the possible
structural graph changes associated with network intrusions, we will have to run all three algorithms to
determine which algorithms are most effective for this type of data. Each test contains 50 essentially
random records, where 49 are normal records and 1 is an attack record, where the only controlled
aspect of the test is that there is only one attack record per data set. This is done because the test data
is comprised of mostly attack records, which does not fit our definition of an anomaly, where we are
assuming that anomalous substructures are rare. Fortunately, this again is a reasonable assumption, as
attacks would be uncommon in most networks.

Not surprisingly, each of the algorithms has a different level of effectiveness when it comes to
discovering anomalies in intrusion detection data. Using GBAD-MDL, our ability to discover the attacks
is relatively successful. Across all data sets, 100% of the attacks are discovered. However, all but the
apache2 andworm attacks produce some false positives. 42.2% of the test runs do not produce any false
positives, while runs containingsnmpgetattack, snmpguess, teardrop andudpstorm attacks contribute the
most false positives. False positives are even higher for the GBAD-P algorithm, and the discovery rate
of actual attacks decreases to 55.8%. GBAD-MPS shows a similarly bad false positive rate at 67.2%,
and an even worse discovery rate at 47.8%.

It is not surprising that GBAD-MDL is the most effective of the algorithms, as the data consists of TCP
packets that are structurally similar in size across all records. Thus, the inclusion of additional structure,
or the removal of structure, is not as relevant for this type of data, and any structural changes, if they
exist, would consist of value modifications.

8. Conclusions and future work

In this paper we presented our definition of a graph-based anomaly and how that is manifested in data
that is represented as a graph. The purpose of this work was to present an approach for discovering
the three possible graph anomalies: modifications, insertions and deletions. Using a practical definition
of fraud, we designed algorithms to specifically handle the scenario where the anomalies are small
deviations to a normative pattern.

First we described three novel algorithms, each with the goal of uncovering one of the specified
anomalous types. With the aide of several simple examples, we were able to describe the approaches and
the simplicity of their implementation. Then we validated all three approaches using synthetic data. The
tests verified each of the algorithms on graphs and anomalies of varying sizes, with the results showing
very high detection rates with minimal false positives. Finally, we further validated the algorithms using
real-world cargo data and actual fraud scenarios injected into the data set. Despite a less regular set of
data, normative patterns did exist, and changes to those prevalent substructures were detected with 100%
accuracy and no false positives. We also presented results on data consisting of network intrusions where
one of our algorithms (GBAD-MDL) was very successful in discovering the anomalies.

Currently, there is no connection between compressed substructures. In other words, once instances of
a particular substructure have been compressed to a single vertex (i.e., when running multiple iterations
of the GBAD-P algorithm), and a link (and vertex) extends from that compressed substructure, there is no
information telling us what actual vertex is connected to that extension. If we can save that information
for future iterations, that could prove to be useful for two reasons. One, we could possibly generate a
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better probabilistic model for determining which extensions are actually more anomalous. Second, it
would allow us to create a better picture of the anomaly, as an analyst would be able to view the entire
chain of connections associated with the anomaly.

The minimum description length principle was used as the metric for determining the normative pattern,
as well as by the GBAD-MDL algorithm for discovering substructures with minor modifications. This
metric is a key component of the algorithms presented in this work. However, other graph-based
approaches have used various other metrics for determining the normative pattern in a graph. Future
work should include an analysis of these other metrics in lieu of the MDL approach.
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