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Abstract 
The ability to mine data represented as a graph has 

become important in several domains for detecting 
various structural patterns.  One important area of 
data mining is anomaly detection, particularly for 
fraud, but less work has been done in terms of 
detecting anomalies in graph-based data.  While there 
has been some work that has used statistical metrics 
and conditional entropy measurements, the results 
have been limited to certain types of anomalies and 
specific domains. In this paper we present graph-
based approaches to uncovering anomalies in domains 
where the anomalies consist of unexpected 
entity/relationship deviations that resemble non-
anomalous behavior. Using synthetic and real-world 
data, we evaluate the effectiveness of these algorithms 
at discovering anomalies in a graph-based 
representation of data.  

1. Introduction 
Setting up fraudulent web-sites, “phishing” for 

credit cards and stealing calling cards are just some of 
the examples of scams that have affected everyone 
from the investor to corporations.  In every case, the 
fraudster has attempted to swindle their victim and 
hide their dealings within a morass of data that has 
become proverbially known as the “needle in the 
haystack”.  Yet, even when the data is not relatively 
large, the ability to discover the nefarious actions is 
ultimately difficult due to the mimicry of the 
perpetrator. 

Much of the information related to fraud resides in 
the relationships among the various entities involved in 
an incident. Recently there has been an impetus 
towards analyzing multi-relational data using graph 
theoretic methods.  Yet, while there has been much 
written about graph-based data mining for intrusion 
detection [11], little research has been accomplished in 
the area of graph-based anomaly detection. 

Lin and Chalupsky [6] took the approach of 
applying what they called rarity measurements to the 
discovery of unusual links within a graph.  The 
AutoPart system presented a non-parametric approach 
to finding outliers in graph-based data [1].  Part of this 

approach was to look for outliers by analyzing how 
edges that were removed from the overall structure 
affected the minimum descriptive length (MDL) of the 
graph [9].  The idea of entropy was used by Shetty and 
Adibi [10] in their analysis of the famous Enron e-mail 
data set.  Using bipartite graphs, Sun et al. [12] 
presented a model for scoring the normality of nodes 
as they relate to other nodes.  Rattigan and Jensen went 
after anomalous links using a statistical approach [8]. 

Using information theoretic, probabilistic and 
maximum partial substructure approaches, we have 
developed three novel algorithms for analyzing graph 
substructures for the purpose of uncovering all three 
types of graph-based anomalies:  modifications, 
insertions and deletions.  In this paper, we define what 
we consider to be an anomaly as it relates to graphs.  
Then, we present the algorithms along with some 
simple examples, followed by our results using 
synthetic and real-world related data sets. 

2. Graph-Based Anomalies 
The idea behind the approach presented in this 

paper is to find anomalies in graph-based data 
where the anomalous substructure in a graph is part of 
(or attached to or missing from) a non-anomalous 
substructure, or the normative substructure.  This 
definition of an anomaly is unique in the arena of 
graph-based anomaly detection.  The concept of 
finding a pattern that is "similar" to frequent, or good, 
patterns, is different from most approaches that are 
looking for unusual or “bad” patterns.  While other 
non-graph-based data mining approaches may aide in 
this respect, there does not appear to be any existing 
approaches that directly deal with this scenario. 

Definition:  A graph substructure S’ is anomalous if it 
is not isomorphic to the graph’s normative 
substructure S, but is isomorphic to S within X%. 

X signifies the percentage of vertices and edges that 
would need to be changed in order for S’ to be 
isomorphic to S.  The thrust of this definition lies in its 
relationship to fraud detection.  If a person or entity is 
attempting to commit fraud, they will do all they can to 
convey their actions as close to legitimate actions as 
possible.  The U.N. Office on Drugs and Crime states 
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the first law of money laundering as “The more 
successful money-laundering apparatus is in imitating 
the patterns and behavior of legitimate transactions, the 
less the likelihood of it being exposed.” [4]. 

2.1 Anomaly Types 
For a graph-based anomaly, there are several 

situations that might occur: 
1. A vertex exists that is unexpected. 
2. An edge exists that is unexpected. 
3. The vertex label is different than expected. 
4. The edge label is different than expected. 
5. An expected vertex is absent. 
6. An expected edge between vertices is absent. 
There are three general categories of anomalies: 
insertions(1,2), modifications(3,4) and deletions(5, 6). 

2.2 Assumptions 
In order to address our definition of an anomaly, we 

make the following assumptions about the data. 

Assumption 1:  The majority of a graph consists of a 
normative pattern, and no more than X% of the 
normative pattern is altered in the case of an anomaly. 

Since our definition implies that an anomaly 
constitutes a minor change to the prevalent 
substructure, we chose a small percentage (e.g., 10%) 
to represent the most a substructure would be changed 
in a fraudulent action. 

Assumption 2:  Anomalies consist of one or more 
modifications, insertions or deletions. 

As was described earlier, there are only three types of 
changes that can be made to a graph. 

Assumption 3:  The normative pattern is connected. 

In all cases, the data consists of a series of nodes and 
links that share common nodes and links. 

3. Graph-Based Anomaly Detection  
Most anomaly detection methods use a supervised 

approach, which requires a baseline of information 
from which training can be performed.  In general, if 
one has an idea what is normal behavior, deviations 
from that behavior could constitute an anomaly.  
However, the issue with those approaches is that one 
has to have data to train the system, and the data has to 
already be labeled (i.e., fraudulent versus legitimate). 

Our work has resulted in the development of three 
algorithms, which we have implemented using a tool 
called GBAD (Graph-Based Anomaly Detection).  
GBAD is an unsupervised approach, based upon the 
SUBDUE graph-based knowledge discovery system 

[2].  Using a greedy beam search and Minimum 
Description Length (MDL) heuristic, each of the 
anomaly detection algorithms uses SUBDUE to 
provide the normative pattern in an input graph.  In our 
implementation, the MDL approach is used to 
determine the best substructure as the one that 
minimizes the following: 
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where G is the entire graph, S is the substructure, 
DL(G|S) is the description length of G after 
compressing it using S, and DL(S) is the description 
length of the substructure.   

Using GBAD as the tool for our implementation, 
we have developed three separate algorithms:  GBAD-
MDL, GBAD-P and GBAD-MPS.  Each of these 
approaches is intended to discover all possible graph-
based anomaly types as respectively set forth earlier. 

3.1 Information Theoretic (GBAD-MDL) 
The GBAD-MDL algorithm uses a Minimum 

Description Length (MDL) heuristic to discover the 
best substructure in a graph, and then subsequently 
examines all of the instances for similar patterns.   

3.1.1 Algorithm 
The detailed GBAD-MDL algorithm is as follows: 

Alg. 1:  proc GBAD-MDL (graph G, threshold T)  

1. Find normative substructure S minimizing 
DL(S)+DL(G|S), where the instances Ik of S in G 
have matchcost(Ik,S) < (T * size(S)) 

2. For each instance Ik such that matchcost(Ik,S) > 0 
a. freq(Ik) = num instances of S that exactly match Ik 
b. anomalyScore(Ik) = freq(Ik) * matchcost(Ik,S) 

3. Return all instances Ik having minimal anomalyScore 

With the inexact matching, the result will be those 
instances that are the “closest” (without matching 
exactly) in structure to the best structure (i.e., 
compresses the graph the most), where there is a 
tradeoff in the cost of transforming the instance to 
match the structure (matchcost), as well as the 
frequency with which the instance occurs, where the 
lower the value, the more anomalous the structure.   
3.1.2 Example 

The following is a simple example of results 
obtained using our implementation of the GBAD-MDL 
algorithm described above.  In Noble and Cook’s work 
on graph-based anomaly detection [7], they presented 
the example shown in Figure 1. 
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Figure 1.  Example, with anomaly circled. 

Running the GBAD-MDL algorithm on this example 
results in the (circled) anomalous substructure.  With 
Noble and Cook’s approach, the D vertex is shown to 
be the anomaly.  While correct, the importance of this 
new approach is that a larger picture is provided 
regarding its associated substructure.  In other words, 
not only are we providing the anomaly, but we are also 
presenting the context of that anomaly within the graph 
(the individual anomaly is in bold.)   

3.2 Probabilistic (GBAD-P) 
The GBAD-P algorithm uses the MDL evaluation 

technique to discover the best substructure in a graph, 
but instead of examining all instances for similarity, 
this approach examines all extensions to the normative 
substructure with the lowest probability.  The 
difference between the algorithms is that GBAD-MDL 
is looking at instances of substructures with the same 
characteristics (e.g., size), whereas GBAD-P is 
examining the probability of extensions to the 
normative pattern to determine if there is an instance 
that includes edges and vertices that are 
probabilistically less than other possible extensions. 

3.2.1 Algorithm 
The detailed GBAD-P algorithm is as follows: 

Alg. 2:  proc GBAD-P (graph G, prob P, iterations N)  

1. Find normative substructure S minimizing 
DL(S)+DL(G|S); where Ij are instances of S in G. 

2. Compress G by S, where all instances Ij of S in G are 
each compressed to a new vertex V. 

3. Iterate over each new vertex V, extending each 
vertex V by all possible single edges E. 

4. For instances In, where each instance of In consists of 
V and a unique extension, a substructure S’ consists 
of all matching instances Ik from instances In. 

5. For each instance Ik , anomalyScore(Ik) = number of 
instances of S’ / |In |  

6. Return instances Ik with minimal anomalyScore  < P. 
7. Set S to substructure definition of the Ik with 

minimal anomaly score, and let Ij be the instances of 
S in G. 

8. If current iteration < N, start next iteration at step 2. 

anomalyScore(Ik) is the probability that an instance 
should exist given the existence of all of the extended 

instances.  Given that |In| is the total number of 
possible extended instances, freq(Ik) can never be 
greater, and thus anomalyScore(Ik) will never be 
greater than 1.0. 

3.2.2 Example 
Take the example shown in Figure 2. 
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Figure 2.  Example with instance of normative 

pattern boxed and anomaly circled. 

After one iteration, the boxed instance in Figure 2 is 
one of the instances of the best substructure.  Then, on 
the second iteration, extensions are evaluated, and the 
circled instance is the resulting anomalous 
substructure.  Again, the edge and vertex (shown in 
bold) is labeled as the actual anomaly, but the entire 
anomalous substructure is output for possible analysis. 

3.3 Max Partial Substructure (GBAD-MPS) 
The GBAD-MPS algorithm again uses the MDL 

approach to discover the best substructure in a graph, 
then it examines all of the instances of parent (or 
ancestral) substructures that are missing various edges 
and vertices.  The value associated with the parent 
instances represents the cost of transformation (i.e., 
how much change would have to take place for the 
instance to match the best substructure).  Thus, the 
instance with the lowest cost transformation (if more 
than one instance have the same value, the frequency 
of the instance’s structure will be used to break the tie 
if possible) is considered the anomaly, as it is closest 
(maximum) to the best substructure without being 
included on the best substructure’s instance list. 

3.3.1 Algorithm 
The detailed GBAD-MPS algorithm is as follows: 

Alg. 3:  proc GBAD-MPS (graph G, cost C)  

1. Find normative substructure S minimizing 
DL(S)+DL(G|S). 

2. For each Sn, in the set of previously-generated 
substructures,  where SSn ⊆ , let In be the set of 
instances of Sn. 

3. For each instance Ik in the set of instances In, where 
matchcost(Ik,S) > 0 
a. anomalyScore(Ik) = | In | * matchcost(Ik,S). 

4. Return instances Ik having min anomalyScore < C. 



Allowing the user to specify a cost of transformation 
C, we control the amount of “anomalousness” we are 
willing to accept.  By our definition of an anomaly, we 
expect low transformation costs (to match best 
substructure).  It should be noted that whenever we 
indicate a relationship between substructures 
as yx ⊆ , we are referring to the fact that x is a sub-
graph of y, rather than x is a subset of y. 
3.3.2 Example 

Consider the slightly more complex graph shown in 
Figure 3. 
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Figure 3. GBAD-MPS example. 

Suppose we take one of the instances of the normative 
pattern (shown in the box), and remove an edge and its 
associated vertex (shown in the circle). Running 
GBAD-MPS on the modified graph results in the 
discovery of an anomalous substructure similar to the 
normative pattern, but missing the triangle object and 
its shape link. 
4. Synthetic Experiments 

For our synthetic experiments, we created graphs 
using a tool called subgen [14] that generates graphs 
based upon user-specified parameters, including: 

• total number of vertices and edges 
• list of possible vertex and edge labels and their 

probabilities 
• substructure pattern 
• amount of connectivity 

Using these parameters, subgen computes the 
number of instances that need to be generated by 
calculating the size of a graph and dividing by the size 
of a substructure pattern (i.e., what we want to be the 
normative pattern).  After the graph is built from these 
instances, randomly-labeled vertices are added in order 
to achieve the desired graph size, and randomly-
labeled edges are added in order to achieve the 

specified connectivity level.  Finally, any additional 
edges are added in order to achieve the desired graph 
size. 

In order to be consistent across all experiments, we 
chose a star-cluster pattern as our normative pattern 
(i.e., a node with connections to several other nodes, 
and each of those nodes with several connections to 
other nodes).  The choice of this pattern was somewhat 
arbitrary, but it also resembles many types of real-
world data, such as networks, calling trees, and 
financial transactions.  Each synthetic graph consisted 
of substructures containing a normative pattern (V 
number of vertices and E number of edges), connected 
to each other by one or more random connections, and 
each test consisted of AV number of anomalous 
vertices and AE number of anomalous edges. 

Figure 4 shows the effectiveness of the GBAD-
MDL approach.  For graphs of varying sizes, from 100 
vertices/edges to 10,000 vertices/edges, with a 
normative pattern consisting of 10 vertices/10 edges, 
the results were identical across the spectrum.  In this 
figure, the X axis represents the thresholds, the Y axis 
is the percentage of anomalies discovered, and the Z 
axis indicates the sizes of the anomalies. 
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Figure 4.  Percentage of GBAD-MDL runs where 

all anomalies discovered. 

As expected, when the threshold is increased to 
accommodate the size of the anomaly with respect to 
the normative pattern, the anomalies are discovered 
100% of the time.  The drawback is that as the 
threshold is increased, so is the running time of the 
algorithm, and false positives, like noise, will increase 
(i.e., the size of the reported anomaly is equal to or 
smaller than that of the true anomaly). 

Without changing any parameters, experiments 
using GBAD-P and GBAD-MPS resulted in less than a 
100% discovery rate across all tests.  However, when 
we increased SUBDUE’s beam width parameter so 



that GBAD could be provided a larger set of 
substructure instances to evaluate, the result was a 
100% discovery rate.  The reason that the number of 
substructures to evaluate has to be increased is that as 
the size of the anomaly grows (i.e., the number of 
vertices and edges inserted or deleted increases), the 
further away the cost of transformation for the 
anomalous instance is from the normative pattern.  In 
addition, unlike with the GBAD-MDL tests, there were 
no false positives reported from any of the GBAD-P or 
GBAD-MPS synthetic tests.  Using varying sizes of 
normative patterns and anomalies, each approach has 
shown to be useful at discovering a specific type of 
anomaly.  While the algorithms do not appear to be 
useful outside of their intended targets, no graphs of 
any size or any anomaly went undetected by all three 
approaches. 

One of the advantages of these algorithms is that 
they do not just return the pattern of the anomaly – 
they also return the actual anomalous instances within 
the data.  In a real-world scenario, that can be 
invaluable to an analyst who may need to act upon a 
fraud situation before the losses are too great.  The 
disadvantage of these algorithms is that they are 
focused on specific anomalies: modifications, 
insertions or deletions.  Thus, in a real-world scenario, 
it would require that all three algorithms be used in 
conjunction, as the type of anomaly would most likely 
be unknown. 

5. Real-World Experiments 
5.1 Cargo Shipments 

One area that has garnered much attention recently 
is the analysis and search of imports into the United 
States.  A large number of imports into the U.S. arrive 
via ships at ports of entry along the coast-lines.  
Thousands of suspicious cargo, whether it be illegal or 
dangerous, are examined by port authorities every day.  
Due to the volume, strategic decisions must be made as 
to which cargo should be inspected, and which cargo 
will pass customs without incident.  A daunting task 
that requires advanced analytical capabilities to 
maximize effectiveness and minimize false searches. 

Using shipping data obtained from the Customs 
Border and Protection (http://www.cbp.gov/), we are 
able to create a graph-based representation of the cargo 
information where row/column entries are represented 
as vertices, and labels convey their relationships as 
edges.  Figure 5 shows a portion of the actual graph 
that we will use in our experiments. 

A R R IV A L_ IN FO

“020 601 ”

V D A T E

S H IP M E N T

C O M M O D IT Y

“E M P T Y  R AC K ”

C O M M O D ITY  

C O U N T R IES _ A N D _P O R TS

“Y O K O H AM A ”

“S E A TT LE ”

“JA P A N ”

U S_ IM PO R T E R

FP O R T

U S P O R T

C O U N TR Y

“A M E R IC A N  T R I N E T E X P R E S S ”

N A M E

F O R E IG N _ S H IP P E R

“TR I N ET ”

F N A M E

V E SS E L

“C S C O ”

“L IN G  Y U N  H E ”

3 6

T A R IFF

“C O N T A IN E R  F O R  
O N E  O R  

M O R E  M O D E S  O F  
TR A N S P O R T ”

H A R M _ D E S C

8 609 00

H S C O D E

C O N T A IN E R

F IN A N C IA L

C A R G O

H A S _A

H A S _ A
H AS _A

H AS _A

H A S _ A

H A S _A

H A S _ A

H A S _A

H A S _A

H A S _A

“T O LU 4 972 933 ”

C O N TA IN E R

V AL U E

275 79

0 043 410 0

“”

“”

0 .00

5 .60

B O L _N B R

H A Z M A T _F LA

C O N S IZ E

TE U S

M T O N S

S LIN E

V E S S E L

V O Y A G E

Figure 5.  Example graph of cargo information. 

While we were not given any labeled data from the 
CBP, we can draw some results from simulations of 
publicized incidents.  Take for instance the example 
from a press release issued by the U.S. Customs 
Service.  The situation is that almost a ton of marijuana 
is seized at a port in Florida [13].  In this drug 
smuggling scenario, the perpetrators attempt to 
smuggle contraband into the U.S. without disclosing 
some financial information about the shipment.  In 
addition, an extra port is traversed by the vessel during 
the voyage.  For the most part, the shipment looks like 
it contains a cargo of toys and bicycles from Jamaica. 

When we run all three algorithms on this graph, 
GBAD-MDL is unable to find any anomalies, which 
makes sense considering none of the anomalies are 
modifications.  When the graph contains the 
anomalous insertion of the extra traversed port, the 
GBAD-P algorithm is able to successfully discover the 
anomaly.  Similarly, when the shipment instance in the 
graph is missing some financial information, GBAD-
MPS reports the instance as anomalous. 

5.2 Intrusion Detection 
One of the more applied areas of research when it 

comes to anomaly detection can be found in the 
multiple approaches to intrusion detection.  The 
reasons for this are its relevance to the real world 
problem of networks and systems being attacked, and 
the ability of researchers to gather actual data for 
testing their models.  The most used data set for this 
area of research is the 1999 KDD Cup dataset [5].   

The KDD Cup data consists of connection records, 
where a connection is a sequence of TCP packets.  
Each connection record is labeled as either “normal”, 
or one of 37 different attack types.  Each record 
consists of 31 different features (or fields), with 
features being either continuous (real values) or 

http://www.cbp.gov/


discrete.  In the 1999 competition, the data was split 
into two parts: one for training and the other for 
testing.  Groups were then allowed to train their 
solutions using the training data, and were then judged 
based upon their performance on the test data.  Since 
the GBAD approach uses unsupervised learning, we 
will run the algorithms on the test data so that we can 
judge our performance versus other approaches. 

Not surprisingly, each of the algorithms has a 
different level of effectiveness when it comes to 
discovering anomalies in intrusion detection data.  
Using GBAD-MDL, our ability to discover the attacks 
is relatively successful.  Across all data sets, 100% of 
the attacks are discovered.  However, all but the 
apache2 and worm attacks produce some false 
positives.  42.2% of the test runs do not produce any 
false positives, while runs containing snmpgetattack, 
snmpguess, teardrop and udpstorm attacks contribute 
the most false positives.  False positives are even 
higher for the GBAD-P algorithm, and the discovery 
rate of actual attacks decreases to 55.8%.  GBAD-MPS 
shows a similarly bad false positive rate at 67.2%, and 
a worse discovery rate at 47.8%. 

It is not surprising that GBAD-MDL is the most 
effective of the algorithms, as the data consists of TCP 
packets that are structurally similar in size across all 
records.  Thus, the inclusion of additional structure, or 
the removal of structure, is not as relevant for this type 
of data, and any structural changes, if they exist, would 
consist of value modifications. 

6. Conclusions and Future Work 
The three algorithms presented in this paper are 

able to discover an anomaly when it consists of a small 
change to the normative pattern.  Using the minimum 
description length principle and probabilistic 
approaches, we have been able to successfully discover 
anomalies in graphs and patterns of varying sizes with 
minimal to no false positives.  Results from both 
synthetic and real-world data demonstrate the 
effectiveness of the approaches.  We are pursuing 
experiments on other domains that can be represented 
as graphs, including telecom and social networks.  
While our results are effective in detecting anomalies 
in a security area such as cargo shipments, other 
possible applications of these approaches include post-
9/11 terrorist networks and the Enron e-mail datasets 
(e.g., detecting anomalies in e-mail patterns). 
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