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Abstract 

In this paper we describe I-Subdue, an extension to the 
Subdue graph-based data mining system.  I-Subdue operates 
over sequentially received relational data to incrementally 
discover the most representative substructures.  The ability 
to incrementally refine discoveries from serially acquired 
data is important for many applications, particularly as 
computer systems become more integrated into human lives 
as interactive assistants.  This paper describes initial work to 
overcome the challenge of locally optimal substructures 
overshadowing those that are globally optimal.  We 
conclude by providing an overview of additional challenges 
for sequential structure discovery. 

Introduction 
While much of data mining research is focused on 
algorithms that can identify sets of attributes that 
discriminate particular data entities, such as shopping or 
banking trends for a particular demographic group, our 
work is focused on data mining techniques to discover 
relationships between entities.  Our work is particularly 
applicable to problems where the data is event driven, such 
as the types of intelligence analysis performed by counter-
terrorism organizations or the agent-based MavHome 
smart home project (Cook et al. 2003).  These types of 
problems require discovery of relational patterns between 
the events in the environment so that these patterns can be 
exploited for the purposes of prediction and action.   

In this paper we present I-Subdue, which represents our 
work to extend structure discovery to serially acquired 
data.  Systems such as MavHome require agents to operate 
in an environment over long periods of time, which means 
that the data is received sequentially and discriminating 
structures must be evolved by processing only the newest 
evidence.  The same can be said for analytical tasks where 
data streams in over time.  Domain examples in this paper 
are drawn from our work on the Defense Advanced 
Research Project Agency’s Evidence Extraction and Link 
Discovery (EELD) program, which is a multi-faceted 
project designed to provide information-oriented tools to 
support counter-terrorism intelligence analysis. 

Processing only new data with the intent of refining 
global knowledge is challenging from a variety of 

perspectives.  The work presented in this paper describes 
our efforts to address the situation where discovery from a 
new data increment yields a locally optimal structure that 
is inconsistent with the globally optimal structure.  We 
present a method by which metrics can be collected from 
the local discovery process, which can then be used to 
evaluate discovered structures for their global value.  

We conclude by introducing additional challenges, such 
as identifying temporally displaced relationships and 
shifting concepts, both of which are complicated by the 
sequential discovery process. 

Structure Discovery 
The purpose of I-Subdue is to sequentially discover 
structural patterns in data received serially.  The work we 
describe in this paper is built upon Subdue (Holder et al. 
2002), which is a graph-based data mining system 
designed to discover common structures from relational 
data.  Subdue represents data in graph form and can 

support either directed or undirected edges.  Subdue 
operates by evaluating potential substructures for their 
ability to compress the entire graph, as illustrated in Figure 
1.  In each iteration, Subdue finds the best substructure and 
compresses the graph by replacing the substructure in the 
graph with a placeholder vertex.  Repeated iterations will 
discover additional substructures, potentially those that are 
hierarchical, containing previously compressed 
substructures.   

Subdue uses the Minimum Description Length Principle 
(Rissanen 1989) as the metric by which graph compression 
is evaluated.  Subdue is also capable of using an inexact 
graph match parameter to evaluate substructure matches, 

Figure 1.  Subdue discovers common substructures 
within relational data by evaluating their ability to 
compress the graph. 
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so that slight deviations between two patterns can be 
considered as the same pattern. 

Incremental Subdue 
For our work on I-Subdue, we assume that data is 
streaming into a repository, which we then process 

incrementally in blocks.  We view each new data 
increment as a distinct graph structure.  Figure 2 illustrates 
one conceptual approach to mining sequential data, where 
each new increment received at time step ti is considered 
independently of earlier data increments so that the 
accumulation of these structures is viewed as one large, but 
disconnected, graph.  The original Subdue algorithm would 
still work equally well if we applied it to the accumulated 
graph after each new data increment is received.  The 
obstacle is the computational burden required for repeated 
full batch processing.   

It is easy to see how the concept depicted in Figure 1 can 
be applied to real problems.  For instance, a software agent 

deployed to assist an intelligence analyst would gradually 
build up a body of data as new information streams in over 
time.  This streaming data could be viewed as independent 
increments from which common structures are to be 
derived.  Although the data itself may be generated in very 

small increments, we would expect to collect some 
minimum amount before we mine it.  Duplicating nodes 
and edges in the accumulated graph serves the purpose of 
giving more weight to frequently repeated patterns.  This 
incremental mechanism would also be suited for 
applications such as long-term behavioral monitoring of 
the inhabitants of a smart home, with the intent of 
continuously evaluating and refining observed patterns.   

Figure 3 represents another option for dealing with 
serially acquired data in which new increments are a 
mechanism for introducing new vertices and edges.  
Envisioning circumstances under which such a scheme 
would be desirable is more difficult, but we may want to 
model a situation in which new associations are made 
between variables, without necessarily weighting the 
existing variables more heavily by repeating their vertices.   

Sequential Discovery 
Storing all accumulated data and continuing to periodically 
repeat the entire structure discovery process is intractable 
both from a computational perspective and for data storage 
purposes.  Instead we wish to devise a method by which 
we can discover structures from the most recent data 
increment and simultaneously refine our knowledge of the 
globally best substructures discovered so far. 

However, we can easily encounter a situation where 
sequential applications of Subdue to individual data 
increments will yield a series of locally best substructures 
that are not the globally best substructures, which would be 
found assuming the data could be evaluated as one 
aggregate block. 

Figure 4 illustrates an example where Subdue is applied 
sequentially to each data increment as it is received.  At 
each increment Subdue discovers the best substructure for 
the respective data increment, which turns out to only be 
locally best.  However, as illustrated in Figure 5, applying 
Subdue to the aggregate data will yield a different best 
substructure, which in fact is globally best.  Although our 
simple example could easily be aggregated at each time 
step, realistically large data sets would be too unwieldy to 
do so. 
In general, sequential discovery and action brings with it a 
set of unique challenges, which are generally driven by the 
underlying system that is generating the data from which 
structures are discovered.  One problem that is almost 
always a concern is how to reevaluate the accumulated 
data at each time step in light of newly added data.  There 
is generally a tradeoff between the amount of data that can 
be stored and reevaluated and the quality of the result.  A 
summarization technique is usually employed to capture 
salient metrics about the data.  The richness of this 
summarization is a tradeoff between the speed of the 
incremental evaluation and the range of new substructures 
that can be considered.   

Figure 2.  Data received incrementally can be viewed 
as a unique extension to the accumulated graph.   

Figure 3.  Data received incrementally can be 
viewed as augmentation of the accumulated graph, 
with duplicate nodes serving as anchor points for 
new nodes and vertices.   
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Figure 4.  Three data increments received serially and 
processed individually by Subdue.  The best substructure is 
shown for each local increment. 

Figure 6.  The top n=3 
substructures found 
independently in each iteration. 

Figure 5.  Result from applying Subdue to the three aggregated data increments in one batch. 
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Summarization Metrics.  Our goal for this research is 
to develop a summarization metric that can be maintained 
from each incremental application of Subdue that will 
allow us to derive the globally best substructure without 
reapplying Subdue to the accumulated data. 

To accomplish this goal, we rely on a few artifacts of 
Subdue’s discovery algorithm.  First, Subdue maintains a 
list of the n best substructures discovered from any dataset, 
where n is configurable by the user.  The default value for 
n is 3, but any number of ranked substructures can be 
maintained, limited only by constraints on the beam search 
that Subdue uses to prune its search space. 

Second, we use the value metric Subdue maintains for 
each substructure.  Subdue measures graph compression 
with the minimum description length principle as 
illustrated in Equation 1, where DL(S) is the description 
length of the substructure being evaluated, DL(G|S) is the 
description length of the graph as compressed by the 
substructure, and DL(G) is the description length of the 
original graph.  The better our substructure performs, the 
smaller the compression ratio will be.  The description 
length of a graph (or substructure) consists of the number 
of bits needed to encode the vertex labels, the adjacency 
matrix, the number of edges between vertices, and the edge 
labels.   C.f. (Cook and Holder 1994) for a full discussion 
of the MDL computation used by Subdue to encode 
graphs. 
 
 
 

 
Subdue’s evaluation algorithm ranks the best 

substructure by measuring the inverse of the compression 
value in Equation 1.  Favoring larger values serves to pick 
a substructure that minimizes DL(S) + DL(G|S), which 
means we have found the most descriptive substructure. 

For I-Subdue, we must use a modified version of the 
compression metric to find the globally best substructure, 
illustrated in Equation 2. 

 
 
 
 
 
With Equation 2 we calculate the compression achieved 

by a particular substructure, Si, up through and including 
the current data increment m.  The DL(Si) term is the 
description length of the substructure, Si, under 
consideration.  The term  

 
 
 
 
represents the description length of the accumulated graph 
after it is compressed by the substructure Si.   

 
 
 

Finally, the term  
 
 
 
represents the full description length of the accumulated 
graph. 

 
 

 
 

 
At any point we can then reevaluate the substructures using 
Equation 3 (inverse of Equation 2), choosing the one with 
the highest value as globally best. 

The process of computing the global substructure value 
takes place in addition to the normal operation of Subdue 
on the isolated data increment.  We only need to store the 
requisite description length metrics after each iteration for 
use in our global computation. 

As an illustration of our approach, consider the results 
from the example depicted in Figure 4.  The top n=3 
substructures from each iteration are shown in Figure 6.  
Table 1 lists the values returned by Subdue for the local 
top n substructures discovered in each iteration.  The 
second best substructures in iterations 2 and 3 (S22, S32) are 
the same as the second best substructure in iteration 1 (S12), 
which is why the column corresponding to S12 has a value 
for each iteration.  The values in Table 1 are the result of 
the compression evaluation metric from Equation 1.  The 
locally best substructures illustrated in Figure 4 have the 
highest values, demarcated by the highlighted cells in 
Table 1. 

Table 2 depicts our application of I-Subdue to the 
increments from Figure 4.  After each increment is 
received, we apply Equation 3 to select the globally best 
substructure.  The values in Table 2 are the inverse of the 
compression metric from Equation 2.  As an example, the 
calculation of the compression metric for substructure S12 
after iteration 3 would be: 

 
 
 
 
Consequently the value of S12 would be: 
 
 
 
 
For this computation we rely on the metrics computed 

by Subdue when it evaluates substructures in a graph, 
namely the description length of the discovered 
substructure, the description length of the graph 
compressed by the substructure, and the description length 
of the graph.  By storing these values after each increment 
is processed, we can retrieve the globally best substructure 
using Equation 3.  Figure 7 illustrates the basic algorithm, 
where Subdue is invoked to discover the candidate 
substructures and the byproduct evaluation metrics are 
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collected and used to calculate the globally best 
substructures after each new data increment is processed. 

In circumstances where a specific substructure is not 
present in a particular data increment, such as S31 in 
iteration 2, then  

 
 
 

and the substructure’s value would be calculated as 
follows: 

 
 

Conclusions  
In this paper we have presented our introductory work on 
I-Subdue, an extension to the Subdue structure discovery 

Table 2.  Using I-Subdue to calculate the global value of each substructure.  The description 
length of each graph iteration (Gj) and of each substructure (Si) are shown.  Highlighted cells 
indicate the global best substructure at each iteration. 

Table 1.  Substructure values computed independently for each iteration.  
Highlighted cells indicate maximum values in each iteration. 

//Call I-Subdue on the new data increment Gj 
I-Subdue(Gj) 

//Subdue returns description length values and top n substructures for current data increment,  
//which are stored for global calculations 
CandidateSubstructures[], SubstructureSizes[], CompressedGraphSizes[], size_Gj ⇐ Subdue(Gj)   
total_graph_size = total_graph_size + size_Gj 

 
/************************************************************************/ 
Get_Global_Best(total_graph_size,CandidateSubstructures[], SubstructureSizes[], CompressedGraphSizes[]) 
 best_value = 0 
 global_best_substructure = nil 
 for(i=1 to sizeof(CandidateSubstructures)) 
  size_si = CandidateSubstructureSizes[i] 

compressed_graph_size = 0 
  for(j=1 to num_data_increments) 

compressed_graph_size = compressed_graph_size + 
CompressedGraphSizes[i][j])    //DL(Gj|Si) 

   value_si = graph_size/(size_si + compressed_graph_size) 
   if value_si > best_value 
    best_value = value_si 
    global_best_substructure = CandidateSubstructures[i] 
 return global_best_substructure 

Figure 7.  Application of I-Subdue to store metrics returned from running Subdue over a single data 
increment, then calculating the global best substructure using the collected metrics.  

04551
768511711715

116117117
.

.
=

+++
++

)DL(G  )S|DL(G 2312 =

Global Best Calculation 
After Iteration #

S11 S12 S13 S21 S23 S31 S33 DL(Gj)*
1 1.2182 1.04808 0.9815 117
2 1.0983 1.1235 0.9906 1.0986 0.9906 117
3 1.0636 1.1474 0.9937 1.0638 0.9937 1.0455 0.9884 116

DL(Si)* 15 15 25.755 15 25.7549 15 26.5098
*measured in bits
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2 1.04808 1.21882 0.98151
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system.  We have presented a set of metrics and associated 
rules for their application that allows our system to 
discover globally best substructures from serially 
processed data increments.  This work allows us to 
overcome a problem inherent to the sequential discovery 
process, namely that of overlooking globally best 
substructures because of discoveries that are locally best to 
the specific data increment being mined.   

Future Work 
Our preliminary analysis indicates that there would be 
some benefit to formulating I-Subdue so that the algorithm 
uses what it has learned from previous data iterations to 
direct the discovery process in future iterations.  By using 
the ranking of globally best substructures, I-Subdue may 
be able to prune substructures from the search space that 
are clearly only good in the local context.  However, care 
must be taken not to prematurely judge a substructure as 
unimportant.  Doing so may inappropriately bias the global 
discovery process. 

Sequential Relationships.  Many applications areas in 
which we are applying our research are event driven.  For 
example the smart home application generates data about 
events created by the human occupants.  The counter-
terrorism application domain used throughout this paper is 
also a collection of events.  The goal of structure discovery 
is then to derive representative patterns from sets of these 
events.  This is complicated in the sequential learning 
process, since event correlations may transcend multiple 
data iterations.  For example, in the smart home one might 
assume that the temporal adjacency of two events is 
significant enough to infer a relationship.  This time 
window is certainly subjective, however, one might also 
choose to assume a relationship between two events that 
fall outside of the time window but happen to have some 
conceptual relationship; the use of a washer and dryer for 
instance.  One may start the wash on one day and dry it on 
another.  Although the events may not be temporally 
related, they are conceptually related.  We will address 
sequential relationships in our future work. 

Shifting Concepts.  In the traditional machine learning 
problem (Mitchell 1997, Vapnik, 1995), it is generally 
stated that some function F(x) is generating an attribute 
vector x, based on a fixed relationship, whether 
probabilistic or deterministic.  The attribute vector x 
represents the observable features of the problem space.  
This definition extends intuitively to data mining.  
However, in sequential discovery problems, the 
applications are such that the underlying relationships 
between system variables often change.  Referring back to 
our smart home application, changes in lifestyle, seasons, 
or anomalous weather events may perturb the typical 
system behavior.  There are approaches to machine 
learning in the presence of shifting concepts, such as the 
sliding window approach presented in (Widmer and Kubat 
1996), but these are often naïve in the sense that they 
disregard valuable information learned outside of the data 

window.  Our future work will focus on developing 
methods for structure discovery when the underlying 
system is undergoing change. 
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