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Abstract
Much of current data mining research is focused on
discovering sets of attributes that discriminateadmtities
into classes, such as shopping trends for a phaticu
demographic group. In contrast, we are workindewelop
data mining techniques to discover patterns cangistf
complex relationships between entities. Our reteds
particularly applicable to domains in which the alas
event driven, such as counter-terrorism intelligenc
analysis. In this paper we describe an algorittesighed
to operate over relational data received increntignt®ur
approach includes a mechanism for summarizing
discoveries from previous data increments so that t
globally best patterns can be computed by examinirly
the new data increment. We describe a method bghwh
relational dependencies that span across temporal
increment boundaries can be efficiently resolvedttsat
additional pattern instances, which do not resi@aly in
a single data increment, can be discovered.

Introduction

Much of current data mining research is focused on
algorithms that can discover sets of attributest tha
discriminate data entities into classes, such apgshg or
banking trends for a particular demographic groujm
contrast, our work is focused on data mining teghes to
discover relationships between entities. Our wisk
particularly applicable to problems where the datavent
driven, such as the types of intelligence analgsi$ormed
by counter-terrorism organizations. Such problesgglire
discovery of relational patterns between the eventhe
environment so that these patterns can be expléitethe
purposes of prediction and action.

Also common to these domains is the continuousreatu
of the discovery problems. For example, Intelligen
Analysts often monitor particular regions of therldoor
focus on long-term problems like Nuclear Proliferat
over the course of many years. To assist in saskst we
are developing data mining techniques that can abper
with data that is received incrementally.

In this paper we present Incremental Subdue (1Sepdu
which is the result of our efforts to develop aore@mental
discovery algorithm capable of evaluating data ikexk
incrementally. ISubdue iteratively discovers aafines a
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set of canonical patterns, considered to be most

representative of the accumulated data.

Structure Discovery

The work we describe in this paper is based updrd&el
(Holder et al. 2002), which is a graph-based daitsing
system designed to discover common structures from
relational data. Subdue represents data in graph &nd

Common Substructures Compressed Graph

Figure 1. Subdue discovers common substructursnwi
relational data by evaluating their ability to caegs the
graph.

can support either directed or undirected edgesbd&e
operates by evaluating potential substructures their
ability to compress the entire graph, as illusttateFigure
1. The better a particular substructure describgsaph,
the more the graph will be compressed by replatiieg
substructure with a placeholder. Repeated itaratiwill
discover additional substructures, potentially ¢htsat are
hierarchical, containing previously compressed
substructures.

Subdue uses the Minimum Description Length Prircipl
(Rissanen 1989) as the metric by which graph cosspra
is evaluated. Subdue is also capable of usingheract
graph match parameter to evaluate substructurehemso
that slight deviations between two patterns can be
considered as the same pattern.

Incremental Discovery

For our work on ISubdue, we assume that data sived

in incremental blocks. Repeatedly reprocessing the
accumulated graph after receiving each new incrémen
would be intractable because of the combinatorianeeof
substructure evaluation, so instead we wish to ldpve
methods to incrementally refine the substructure
discoveries with a minimal amount of reexaminatiérold
data.



Independent Data

In our previous work (Coble et al, 2005), we depelb a
method for incrementally determining the best

substructures within sequential data where each new

increment is a distinct graph structure independeft
previous increments. The accumulation of these
increments is viewed as one large but disconnaptsgh.

We often encounter a situation where local appbost
of Subdue to the individual data increments widlglia set
of locally-best substructures that are not the glgbbest
substructures that would be found if the data cdodd
evaluated as one aggregate block.
problem, we introduced a summarization metric,
maintained from each incremental application of dbgh
that allows us to derive the globally best substmec
without reapplying Subdue to the accumulated data.

To accomplish this goal, we rely on a few artifacts
Subdue’s discovery algorithm. First, Subdue creatdist
of the n best substructures discovered from angset
wheren is configurable by the user. .

DL(S)+DL(G |S)
DL(G)

Second, we use the value metric Subdue maintains fo
each substructure. Subdue measures graph congoressi
with the Minimum Description Length principle as
illustrated in Equation 1, wher@L(S) is the description
length of the substructure being evaluated(G|S)is the
description length of the graph as compressed ly th
substructure, andL(G) is the description length of the
original graph. The better our substructure pengrthe
smaller the compression ratio will be. For thepmses of
our research, we have used a simple descriptiogtien
measure for graphs (and substructures) consistinpeo
number of vertices plus the number of edges. (Cdok
and Holder 1994) for a full discussion of SubdugBL
graph encoding algorithm.

Subdue’s evaluation algorithm ranks the best
substructure by measuring the inverse of the cossjoe
value in Equation 1. Favoring larger values setogsick
a substructure that minimize3L(S) + DL(G|S), which
means we have found the most descriptive substeictu

For ISubdue, we must use a modified version of the
compression metric to find the globally best sulgtrre,
illustrated in Equation 2.

m
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With Equation 2 we calculate the compression adtdev
by a particular substructur&, up through and including
the current data incremembh. The DL(S) term is the
description length of the substructure§, under

consideration. The term
m

DL(G; [S)
=1

j

To overcome this

represents the description length of the accumaligtaph
after it is compressed by the substructgre
Finally, the term

> DL(G,)

represents the full description length of the aagkated
graph. "
>, DL(G))

i=1

arg max(i) Eg. <

DL(S )+, DL(G, S,)
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At any point we can then reevaluate the substrastusing
Equation 3 (inverse of Equation 2), choosing the wiith
the highest value as globally best.

After running the discovery algorithm over each hew
acquired increment, we store the description lenggtrics
for the top n local subs in that increment. Bylging our
algorithm over all of the stored metrics for eactrément,
we can then calculate the global top n substrusture

Sequentially Connected Data

We now turn our attention to the challenge of
incrementally modifying our knowledge of the most
representative pattern when dependencies existsscro
sequentially received data increments. As each data
increment is received, it may contain new edgeg tha
extend from vertices in the new data incrementeidices
in previous increments.

Figure 2 illustrates an example where two data
increments are introduced over successive timesstep

Increment
Common Boundary

Substructures

Figure2. Sequentially connected d

Common substructures have been identified and two
instances extend across the increment boundarferriReg
back to our counterterrorism example, it is easyet® how
analysts would continually receive new information
regarding previously identified groups, peoplegéds, or
institutions.

Algorithm

First, we assume certain conditions with respecthi®
data.

1) The environment producing the data is stableqrimg
that the relationships that govern the variablescanstant.
We will address concept drift in our future work.



2) The pattern instances are distributed consigtent
throughout the data. We need not rely on a specifi
statistical distribution. Our requirement is orthat any
pattern prominent enough to be of interest is ctestly
supported throughout the data.

Approach
Let

G, = set of top-n globally best substructures

Is= set of pattern instances associated with a
substructursd G,

V,, = set of vertices with an edge spanning the inergm
boundary and that are potential members of a top-n
substructure

S = 2-vertex pairs of seed substructure instancts w
an edge spanning the increment boundary

C; = set of candidate substructure instances tlzat 8
increment boundary and that have the potential of
growing into an instance of a top n substructure.

The first step in the discovery process is to apthly
algorithm we developed for the independent incramen
discussed above. This involves running Subdueodey
on the data contained exclusively within the new
increment, ignoring the edges that extend to previo
increments. We then update the statistics storiéu tive
increment and compute the set of globally best
substructure&,. This process is illustrated in Figure 3.
Based on our defined assumptions, we know that the
local data within the new increment is consisteithwhe
rest of the data, so we wish to take advantaget af i
forming our knowledge about the set of patterng tre

Increment Boundary

New Increment
Received

Step 1: Run local
discovery, store
increment statistics,
compute best global
subs

Figure 3. The first step of the sequential discov
process is to evaluate the local data in the new
increment

most representative of the system generating tha. da
Although the set of top-n substructures computethigt
point in the algorithm does not consider substmactu
instances spanning the increment boundary andftimere
will not be accurate in terms of the respectiversjth of
the best substructures, it will be more accurasm tifi we
were to ignore the new data entirely prior to adslirgy the
increment boundary.

The second step of our algorithm is to identify sle¢ of
boundary verticesY,, where each vertex hasspanning
edgethat extends to a previous increment and is piaignt
a member of one of the top n best substructur&.inWe

can identify all boundary vertices in O(m), wheragrihe
number of edges in the new increment, and thentifglen
those that are potential members of a top-n sutisirel in
O(k), where k is the number of vertices in the oét
substructure&,. Figure 4 illustrates this process.

For the third step we create a set of 2-vertextsudtsire
seed instances by connecting each verteX,imwith the
spanning edge to its corresponding vertex in aipusv
increment. We immediately discard any instance rethe
the second vertex is not a member of a top-n suiistre
(all elements ofV, are already members of a top-n
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Step 2: Identify all vertices that have an
edge extending to a previous increment;
Keep only those that have the potential to
be grown into an instance of a top-n sub

Step 3: Create a 2-vertex
substructure instance by
connecting each vertex in the
list from step 2 with the edge
that spans the increment and
the corresponding vertex in a
l previous increment;

Keep only those where both
vertices are members of a
top-n sub

Figure 4. The second step is to identify
boundary vertices that could possibly be part of an
instance of a top n pattern. The third step is to
create 2-vertex substructure instances by joirtieg t
vertices that span the increment boundary.

substructure), which again can be done in O(k)opy of
each seed instance is associated with each top-n
substructuresd G, for which it is a subset.

To facilitate an efficient process for growing theed

Reference

Seed Graph

Instance .
Mapping
e

Complete
Graph

Mapping

Step 4: For each 2-vertex seed
instance, create a Reference
Graph that is one extension in
every possible direction beyond
the instance

Figure5. To facilitate efficient instance extension,
create a reference graph, which we keep extended on
step ahead of the instances it repres

instances into potential instances of a top-n subktre,
we now create a set of reference graphs. We cresde



reference graph for each copy of a seed instaneighws
in turn associated with one top-n substructuregufe 5
illustrates this process. We create the initidenence

Candidate

Seed Reference Instances

Instance Graph op/@ C{;
c{o

@ iﬁ

Evaluate candidate W
instances and mark
reference graph

Figure 6.  The reference graphs aused as .
template to extend new candidate instances for
evaluation against the top-n substructures. Failed
extensions are propagated back into the reference
graph with marked edges and vertices, to guide
future extensions.

graph by extending the seed instance by one edde an
vertex in all possible directions. We can theressdtthe
seed instance with respect to the reference gmaptette a

Step 5: Candidate instances are
repeatedly grown by one edge and
one vertex with respect to the
reference graph and evaluated
against the set of top-n subs
=0 g

Step 6: Repeat step 5 until the
remaining subs are exact matches to
a top-n sub; Discard any duplicates

Step 7: Update the statistics for the
current increment in light of the newly
discovered instances; Re-compute
the top-n subs if desired.

Figure 7. Thefifth and sixth steps repeatedly exte
the set of seed instances until they are eithemgiato
a substructure from, 8r discarded.

set of candidate instances, @r each top-n substructure
sO G, illustrated in Figure 6. The candidate instances
represent an extension by a single edge and aesieglex,
with one candidate instance being generated foh eac
possible extension beyond the seed instance. We th
evaluate each candidate instangelcC; and keep only
those wherecis still a subgraph of. For each candidate
instance that is found to not be a subgraph of mnto
substructure, we mark the reference graph to inglitae
failed edge and possibly a vertex that is a dead érhis
prevents redundant exploration in future extensiand
significantly prunes the search space.

In the fifth step (Figure 7), we repeatedly extezath
instance, £ O C;, in all possible directions by one edge
and one vertex. When we reach a point where catelid

instances remain but all edges and vertices imdfegence
graph have already been explored, then we agagneéxt
the reference graph frontier by one edge and onexe
After each instance extension we discard any igsté&mC;
that is no longer a subgraph of a substructurg&.in Any
instance inC; that is an exact match to a substructur&jn
is added to the instance list for that substruc¢tuyeand

WhileCi # 0
Forallc O G
found = false
Foralls O Gn
IfcOs
found = true
Ifc=s
Is: U C
If notfoundorc = s
C~Ci-c
If Ci#0
Ci — ExtendinsancéCi)

Figure 8. Pseudocode for ste[5
and 6.

removed fromC;. The pseudocode for this process is
illustrated in Figure 8.

Once we have exhausted the set of instanc€ssa that
they have either been added to a substructurearios list
or discarded, we update the increment statisticefiect
the new instances and then we can recalculat®fhe set,
G, for the sake of accuracy, or wait until the next
increment.

Evaluation

To validate our work, we have conducted two sets of
experiments, one on synthetic data and anotherata d
simulated for the counterterrorism domain.

Synthetic Data. Our synthetic data consists of a
randomly generated graph segment with vertex labels
drawn uniformly from the 26 letters of the alphabet
Vertices have between one and three outgoing esigese

the target vertex is selected at random and mageds a
previous data increment, causing the edge to span t
increment boundary. In addition to the random sags)

Figure 9. Predefined substructure embedded
synthetic data.

we intersperse multiple instances of a predefined
substructure. For the experiments described hibre,



predefined substructure we used is depicted inrEigu
We embed this substructure internal to the incrésnand
also insert instances that span the increment lzoyno
test that these instances are detected by our wdigco
algorithm.

Figure 10 illustrates the results for a progressbriive

experiments. The x-axis indicates the number of

Applying-Capability One person applies a capability to a
target
Applying-ResourceOne person applies a resource to a
target

The data also involves targets and groups, groepgb
comprised of member agents who are the participants

increments that were processed and the respedtiears
terms of vertices and edges. To illustrate theesrpent
methodology, consider the 15-increment experimaite
provide ISubdue with the 15 increments in sequeatider

Comparison Between ISubdue and Subdue on Synthetic Data
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Figure :0. Comparison of ISubdue and Subue or
increasing number of increments for synthetic data.

as fast as the algorithm can process them. The tim
depicted is for processing all 15 increments. Went
aggregate all 15 increments and process them wibiol &

for the comparison. The five results shown in Fg0

are not cumulative, meaning that each experimatdes

a new set of increments. It is reasonable to sighen
that adding five new increments — from 15 to 20 culd
require approximately three additional seconds of
processing time for ISubdue, whereas Subdue would
require the full 1130 seconds because of the need t
reprocess all of the accumulated data.

Counterterrorism Data. The counterterrorism data was
generated by a simulator created as part of thdefee
Assessment, Grouping, Linking, and Evaluation (EAGpL
program, sponsored by the U.S. Air Force Research
Laboratory. The simulator was created by a program
participant after extensive interviews with Intgéince
Analysts and several studies with respect to apjaiap
ratios of noise and clutter. The data we use fecavery
represents the activities of terrorist organizagi@s they
attempt to exploit vulnerable targets, represeritgdhe
execution of five different event types. They are:

Two-way-Communicationlnvolves one initiating person
and one responding person.
N-way-Communicatianinvolves one initiating person and
multiple respondents.

Generalized-TransfelOne person transfers a resource.

Figure11. A section of the graph representation of
counterterrorism data used for our evaluation.

the aforementioned events. All data is generalaedhat
no specific names are used. Figure 11 illustratasall
cross-section of the data used in our experiments.

The intent of this experiment was to evaluate the
performance of our research on ISubdue against the

Comparison Between ISubdue and Subdue
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Figure 2. Comparison of ri-times for ISubdue an
Subdue on increasing numbers of increments for
counterterrorism da.
performance of the original Subdue algorithm. We a
interested in measuring performance along two
dimensions, run-time and the best reported sulistes



Figure 12 illustrates the comparative run-time perfance

information learned outside of the data window. isTis

of ISubdue and Subdue on the same data. As for the akin to forgetting everything discovered about aogst

synthetic data, ISubdue processes all

TwoWayCommunication ) TwoWayCommunication™) (“TwoWayCommunication
Event Event Event

Figure 3. The top 3 substructures discoverec
both ISubdue and Subdue for the counterterrorism
data
successively whereas Subdue batch processes
aggregation of the increments for the comparatgsilt.
Figure 13 depicts the top three substructures disea
by both ISubdue and Subdue. This set of substestu
was consistently discovered for all five experingent
introduced in Figure 12.

Conclusions and Future Work

In this paper we have presented a method for mining
graph-based data received incrementally over tirifée
have demonstrated that our approach provides Hisagrt
savings, in terms of processing time, without $eimg
accuracy. This work provides essential capalslitie
necessary for the next phase of our research iohwive

will investigate the notion of drifting conceptshieh is a
significant challenge for time-sequenced data.

Concept Drift

In the traditional machine learning problem (Mitthe
2004; Vapnik, 1995), it is generally stated thahecstable
function F(x) is generating an attribute vector X he
attribute vector x represents the observable feataf the
problem space. This definition extends intuitivedydata
mining. However, in sequential discovery probleris
domains are such that the underlying relationsbgis/een
system variables often change over time. Refetvamk to
our counter-terrorism domain, it is certainly these that
terrorist organizations change their behaviors
unpredictable ways and adapt to counter-terroriforts.
There are approaches to machine learning in theepoe
of shifting concepts, such as the sliding windowrapch
(Widmer & Kubat, 1996), where only the lastlata points
are used to update the learned model, but sucloagipes
are often naive in the sense that they disregaluhble

an

increments organization’s behaviors and capabilities wheraict bnly

a small portion of their behaviors have changdd Bn
alteration in communication patterns. Our futuie kwvill
focus on developing methods for structure discovengn
the underlying system is undergoing change.

Increment Size

We have learned from our experimentation that ihe af
the data increments must be chosen carefully. athd
increments are too small, then the local discoyncess
we use as a precursor to our boundary evaluation brea
overly biased to incomplete substructures. Infaragit is
often possible to select an appropriately sizedeiment
boundary given some knowledge about the domain.
However, there are situations where the data may ob
irregular cycles and therefore the increment shrmukin’t
be set to a fixed size. In our future work we mteto
explore statistical and information theoretic measufor
dynamically selecting an increment size.
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