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Abstract. We describe an approach to learning patterns in relational data represented as a graph.
The approach, implemented in the Subdue system, searches for patterns that maximally compress
the input graph. Subdue can be used for supervised learning, as well as unsupervised pattern discov-
ery and clustering. We apply Subdue in domains related to homeland security and social network
analysis.
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1. Introduction

The field of relational data mining, of which graph-based relational learning is a part, is a new area inves-
tigating approaches to mining relational information by finding associations involving multiple tables in a
relational database. Two main approaches have been developed for mining relational information: logic-
based approaches and graph-based approaches. Logic-based approaches fall under the area of inductive
logic programming (ILP) [17]. ILP embodies a number of techniques for inducing a logical theory to
describe the data, and many techniques have been adapted to relational data mining [7]. Graph-based
approaches differ from logic-based approaches to relational mining in several ways, the most obvious of
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which is the syntax of the representation. Furthermore, logic-based approaches to supervised relational
learning rely on the prior identification of the predicate or predicates to be learned, while graph-based
approaches are more data-driven, identifying any portion of the graph that has discriminatory power.
However, logic-based approaches allow the expression of more complicated patterns involving, e.g., re-
cursion, variables, and constraints among variables. These representational limitations of graphs can be
overcome, but at a computational cost.

The ability to mine relational data has become a crucial challenge in many security-related domains.
For example, the U.S. House and Senate Intelligence Committees’ report on their inquiry into the ac-
tivities of the intelligence community before and after the September 11, 2001 terrorist attacks revealed
the necessity for ”connecting the dots” [21], that is, focusing on the relationships between entities in the
data, rather than merely on an entity’s attributes. A natural representation for this information is a graph,
and the ability to discover previously-unknown patterns in such information could lead to significant
improvement in our ability to identify potential threats.

In this article we review techniques for relational learning and focus on a method for graph-based
relational learning implemented in the Subdue system. We then look at the application of Subdue to the
security-related problem of identifying patterns in a graph representation of relational data describing a
simulated terrorist threat scenario.

2. Related Work

In this section we review representative approaches to both logic-based and graph-based relational learn-
ing. Logic-based relational learning methods come under the class of methods known as Inductive Logic
Programming (ILP). Graph-based relational learning methods are less prolific. We first review related
work in graph-based data mining, discuss the difference between graph-based data mining and graph-
based relational learning, and then describe two approaches to graph-based relational learning.

2.1. Logic-based Relational Learning

One approach to relational learning is Inductive Logic Programming (ILP), which represents data using
First Order Predicate Calculus (FOPC) in the form of Prolog logic programs. ILP systems have been
successful in a number of domains (e.g., biological domains [19]). We describe here two prominent ILP
systems: FOIL and PROGOL. We also describe the ILP system WARMR, whose approach is similar to
that of some graph-based data mining methods.

The FOIL system [2] is a top-down approach for learning relational concepts (theories) represented as
an ordered sequence of function-free definite clauses. Given extensional background knowledge relations
and examples of the target concept relation, FOIL begins with the most general theory and follows a
set-covering approach, which repeatedly adds a clause to the theory that covers some of the positive
examples and few negative examples. Individual clauses are generated by adding literals one at a time.
The next literal added is that which maximizes an information gain heuristic based on examples correctly
classified before and after addition of the literal. Literals within some percentage of the maximum can
be retained for possible later backtracking. FOIL exerts some preference toward literals that introduce
new variables, but are determinate. In order to avoid overly-complex clauses, FOIL uses a result from
the minimum description length principle that the description length of the clause should not exceed
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the description length of the examples covered by the clause. FOIL has been applied to a number of
relational domains, including learning patterns in hypertext [22].

The Progol system [18] uses inverse entailment guided by mode declarations to learn relational con-
cepts represented by definite clauses. Progol is an incremental learner that processes examples one at a
time. Clauses learned from the current example are added to the background knowledge, and the cov-
ered positive examples are removed from consideration (i.e., a set-covering approach). Inverse entailment
identifies the most-specific clause consistent with the background knowledge, the current example and
the mode declarations. Progol’s mode declarations constrain how variables are bound within literals, as
in FOIL, but also limits the number of instantiations of these literals within a theory. Progol performs an
A*-like search of a lattice ordered by subsumption and bounded by the most-specific clause. The search
is guided by maximizing theory compression and by a refinement operator that keeps the search within
the lattice and avoids redundancy. Progol has also been successful in several relational domains, e.g.,
mutagenesis [23] and protein structure [24].

The WARMR system [5] uses an Apriori-like method to find all substructures that occur more than
a given frequency threshold, or minimum support, in the input examples. WARMR represents exam-
ples and learned substructures using definite clause logic and searches the space of substructures using
specialization ordered by �-subsumption and constrained by mode declarations. As with other Apriori-
based approaches, WARMR gains efficiency by pruning all specializations of substructures whose fre-
quency falls below the given threshold.

2.2. Graph-based Relational Learning

Graph-based data mining (GDM) is the task of finding novel, useful, and understandable graph-theoretic
patterns in a graph representation of data. Several approaches to GDM exist based on the task of identify-
ing frequently occurring subgraphs in graph transactions, i.e., those subgraphs meeting a minimum level
of support. Kuramochi and Karypis [16] developed the FSG system for finding all frequent subgraphs
in large graph databases. FSG starts by finding all frequent single and double edge subgraphs. Then, in
each iteration, it generates candidate subgraphs by expanding the subgraphs found in the previous itera-
tion by one edge. In each iteration the algorithm checks how many times the candidate subgraph occurs
within an entire graph. The candidates, whose frequency is below a user-defined level, are pruned. The
algorithm returns all subgraphs occurring more frequently than the given level.

Yan and Han [26] introduced gSpan, which combines depth-first search and lexicographic ordering
to find frequent subgraphs. Their algorithm starts from all frequent one-edge graphs. The labels on
these edges together with labels on incident vertices define a code for every such graph. Expansion of
these one-edge graphs maps them to longer codes. The codes are stored in a tree structure such that if
� � ���� ��� ���� ��� and � � ���� ��� ���� ��� ��, the � code is a child of the � code. Since every graph
can map to many codes, the codes in the tree structure are not unique. If there are two codes in the code
tree that map to the same graph and one is smaller than the other, the branch with the smaller code is
pruned during the depth-first search traversal of the code tree. Only the minimum code uniquely defines
the graph. Code ordering and pruning reduces the cost of matching frequent subgraphs in gSpan.

Inokuchi et al. [12] developed the Apriori-based Graph Mining (AGM) system, which uses an ap-
proach similar to Agrawal and Srikant’s [1] apriori algorithm for discovering frequent itemsets. AGM
searches the space of frequent subgraphs in a bottom-up fashion, beginning with a single vertex, and
then continually expanding by a single vertex and one or more edges. AGM also employs a canonical
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coding of graphs in order to support fast subgraph matching. AGM returns association rules satisfying
user-specified levels of support and confidence.

We distinguish graph-based relational learning (GBRL) from graph-based data mining in that GBRL
focuses on identifying novel, but not necessarily most frequent, patterns in a graph representation of
data [11]. Only a few GBRL approaches have been developed to date. Two specific approaches, Sub-
due [4] and GBI [27], take a greedy approach to finding subgraphs maximizing an information theoretic
measure. Subdue searches the space of subgraphs by extending candidate subgraphs by one edge. Each
candidate is evaluated using a minimum description length metric [20], which measures how well the
subgraph compresses the input graph if each instance of the subgraph were replaced by a single vertex.
GBI continually compresses the input graph by identifying frequent triples of vertices, some of which
may represent previously-compressed portions of the input graph. Candidate triples are evaluated us-
ing a measure similar to information gain. Kernel-based methods have also been used for supervised
GBRL [15].

3. Graph-based Relational Learning in Subdue

The Subdue graph-based relational learning system1 [4, 3] encompasses several approaches to graph-
based learning, including discovery, clustering and supervised learning, which will be described in
this section. Subdue uses a labeled graph � � �����	� as both input and output, where � �
�
�� 
�� � � � � 
�� is a set of vertices, � � ��
�� 
���
�� 
� � � � is a set of edges, and 	 is a set of
labels that can appear on vertices and edges. The graph � can contain directed edges, undirected edges,
self-edges (i.e., �
�� 
�� � �), and multi-edges (i.e., more than one edge between vertices 
� and 
�). The
input graph need not be connected, but the learned patterns must be connected subgraphs (called sub-
structures) of the input graph. The input to Subdue can consist of one large graph or several individual
graph transactions, and in the case of supervised learning, the individual graphs are classified as positive
or negative examples.

3.1. Substructure Discovery

Subdue searches for a substructure that best compresses the input graph. Subdue uses a variant of beam
search for its main search algorithm. A substructure in Subdue consists of a subgraph definition and all
its occurrences throughout the graph. The initial state of the search is the set of substructures consisting
of all uniquely labeled vertices. The only operator of the search is the ExtendSubstructure operator. As
its name suggests, it extends a substructure in all possible ways by a single edge and a vertex, or by only
a single edge if both vertices are already in the subgraph.

The search progresses by applying the ExtendSubstructure operator to each substructure in the cur-
rent state. The resulting state, however, does not contain all the substructures generated by the Extend-
Substructure operator. The substructures are kept on a queue and are ordered based on their description
length (or sometimes referred to as value) as calculated using the MDL principle described below.

The search terminates upon reaching a user-specified limit on the number of substructures extended,
or upon exhaustion of the search space. Once the search terminates and Subdue returns the list of best

1Subdue source code, sample datasets and publications are available at http://ailab.uta.edu/subdue.
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Figure 1. Example of Subdue’s substructure discovery capability.

substructures found, the graph can be compressed using the best substructure. The compression proce-
dure replaces all instances of the substructure in the input graph by single vertices, which represent the
substructure definition. Incoming and outgoing edges to and from the replaced instances will point to, or
originate in the new vertex that represents the instance. The Subdue algorithm can be invoked again on
this compressed graph. This procedure can be repeated a user-specified number of times, and is referred
to as an iteration.

Subdue’s search is guided by the minimum description length (MDL) [20] principle, which seeks
to minimize the description length of the entire data set. The evaluation heuristic based on the MDL
principle assumes that the best substructure is the one that minimizes the description length of the input
graph when compressed by the substructure [4]. The description length of the substructure � given
the input graph � is calculated as �	����� � �	��� � �	�����, where �	��� is the description
length of the substructure, and �	����� is the description length of the input graph compressed by the
substructure. Description length �	�� is calculated as the number of bits in a minimal encoding of the
graph. Subdue seeks a substructure � that minimizes �	�����.

As an example, Figure 1a shows a collection of geometric objects described by their shapes and their
“ontop” relationship to one another. Figure 1b shows the graph representation of a portion (“triangle
on square”) of the input graph for this example and also represents the substructure minimizing the
description length of the compressed graph. Figure 1c shows the input example after being compressed
by the substructure.

3.2. Graph-based Clustering

Given the ability to find a prevalent subgraph pattern in a larger graph and then compress the graph
with this pattern, iterating over this process until the graph can no longer be compressed will produce a
hierarchical, conceptual clustering of the input data. On the �� iteration, the best subgraph �� is used
to compress the input graph, introducing new vertices labeled �� in the graph input to the next iteration.
Therefore, any subsequently-discovered subgraph �� can be defined in terms of one or more ��, where
 � �. The result is a lattice, where each cluster can be defined in terms of more than one parent subgraph.
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Figure 2. Example of Subdue’s clustering (bottom) on a portion of DNA (top).
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Figure 3. Graph-based supervised learning example with (a) four positive and four negative examples, (b) one
possible graph concept, and (c) another possible graph concept.

For example, Figure 2 shows such a clustering done on a DNA molecule. Subdue finds substructures ��
(C–N) and �� (C–C) during earlier iterations, which are used in later iterations to discover substructures
�� (��–��) and �� (��–O). Subdue can then discover the bottom-left substructure �� (O–��–��–O) in
terms of previously discovered substructures. See [13] for more information on graph-based clustering.

3.3. Supervised Learning

Extending a graph-based discovery approach to perform supervised learning involves, of course, the need
to handle negative examples (focusing on the two-class scenario). In the case of a graph the negative
information can come in two forms. First, the data may be in the form of numerous small graphs, or
graph transactions, each labeled either positive or negative. Second, data may be composed of two large
graphs: one positive and one negative.

The first scenario is closest to the standard supervised learning problem in that we have a set of clearly
defined examples. Figure 3a depicts a simple set of positive and negative examples. Let �� represent
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the set of positive graphs, and �� represent the set of negative graphs. Then, one approach to supervised
learning is to find a subgraph that appears often in the positive graphs, but not in the negative graphs.
This amounts to replacing the information-theoretic measure with simply an error-based measure. For
example, we would find a subgraph � that minimizes

��� � ���� �� ��� � ��� � ���� � ���

����� ����
�

where � � � means � is isomorphic to a subgraph of �. The first term of the numerator is the number of
false negatives, and the second term is the number of false positives.

This approach will lead the search toward a small subgraph that discriminates well, e.g., the subgraph
in Figure 3b. However, such a subgraph does not necessarily compress well, nor represent a characteristic
description of the target concept. We can bias the search toward a more characteristic description by
using the information-theoretic measure to look for a subgraph that compresses the positive examples,
but not the negative examples. If �	��� represents the description length (in bits) of the graph �, and
�	����� represents the description length of graph � compressed by subgraph �, then we can look
for an � that minimizes �	������ � �	��� � �	���� � �	������, where the last two terms
represent the portion of the negative graph incorrectly compressed by the subgraph. While �	���� can
be ignored in minimizing over �, its value need be computed only once, and allows the values reported
for each substructure to make more sense. This approach will lead the search toward a larger subgraph
that characterizes the positive examples, but not the negative examples, e.g., the subgraph in Figure 3c.

Finally, this process can be iterated in a set-covering approach to learn a disjunctive hypothesis. If
using the error measure, then any positive example containing the learned subgraph would be removed
from subsequent iterations. If using the information-theoretic measure, then instances of the learned sub-
graph in both the positive and negative examples (even multiple instances per example) are compressed
to a single vertex. See [10] for more information on graph-based supervised learning.

3.4. Graph Grammar Learning

As mentioned earlier, two of the advantages of an ILP approach to relational learning are the ability
to learn recursive hypotheses and constraints among variables. Graph grammars offer the ability to
represent recursive graphical hypotheses [8]. Graph grammars are similar to string grammars except that
terminals can be arbitrary graphs rather than symbols from an alphabet. Graph grammars can be divided
into two types: node-replacement grammars and hyperedge-replacement grammars. Node-replacement
grammars allow non-terminals on vertices, and hyperedge-replacement grammars allow non-terminals
on edges. Figure 4b shows an example of a context-free, node-replacement graph grammar. Recent
research has begun to develop techniques for learning graph grammars [14, 6].

A graph-based learning approach can be extended to consider graph grammar productions by ana-
lyzing the instances of a substructure to see how they relate to each other. If two or more instances are
connected to each other by an edge, then a recursive production rule generating an infinite sequence of
such connected subgraphs can be constructed. A slight modification to the information-theoretic measure
taking into account the extra information needed to describe the recursive component of the production
is all that is needed to allow such a hypothesis to compete along side simple subgraphs (i.e., terminal pro-
ductions) for maximizing compression. The above constraint that the subgraphs be connected by a single
edge limits the grammar to be context free. More than one connection between subgraph instances can
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Figure 4. Graph grammar learning example with (a) the input graph, (b) the first grammar rule learned, and (c)
the second and third grammar rules learned.

be considered, and would allow learning context-sensitive grammars, but the algorithm is exponential in
the number of connections.

Figure 4b shows an example of a recursive, node-replacement graph grammar production rule learned
from the graph in Figure 4a. These productions can be disjunctive, as in Figure 4c, which represents the
final production learned from Figure 4a using this approach. The disjunctive rule is learned by looking
for similar, but not identical, extensions to the instances of a subgraph. A new rule is constructed that
captures the variability of the extensions, and is included in the pool of production rules competing based
on their ability to compress the input graph. With a proper encoding of this disjunction information, the
MDL criterion will tradeoff the complexity of the rule with the amount of compression it affords in the
input graph.

An alternative to defining these disjunctive non-terminals is to construct a variable whose range con-
sists of the different values of the production. In this way we can introduce constraints among variables
contained in a subgraph by adding a constraint edge to the subgraph. For example, if the four instances
of the triangle structure in Figure 4a each had another edge to a c, d, e and f vertex respectively, then we
could propose a new subgraph, where these two vertices are represented by variables, and an equality
constraint is introduced between them. If the range of the variable is numeric, then we can also consider
inequality constraints between variables and other vertices or variables in the subgraph pattern.

This section has described and demonstrated a number of techniques stemming from an approach to
graph-based relational learning and implemented in the Subdue system. The next section applies GBRL,
specifically the supervised learning technique, to a security-related domain.

4. Application of Subdue to Detecting Security Threats

As part of the U.S. Air Force program on Evidence Assessment, Grouping, Linking and Evaluation
(EAGLE), a domain has been built to simulate the evidence available about terrorist groups and their
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Table 1. EAGLE threat event simulator dataset parameters.

Parameters Number of Cases Number of Groups

Dataset Observability Noise Vulnerability Productivity Threat Non-Threat

1 Low High 101 106 10 43

2 High Medium 92 158 12 57

3 Medium Low 101 106 14 57

4 High Low 77 133 18 78

plans prior to their execution. This domain is motivated from an understanding of the real problem of
intelligence data analysis. The EAGLE domain consists of a number of concepts, including threat and
non-threat actors, threat and non-threat groups, targets, exploitation modes (vulnerability modes are ex-
ploited by threat groups, productivity modes are exploited by threat and non-threat groups), capabilities,
resources, communications, visits to targets, and transfer of resources between actors, groups and tar-
gets. The domain follows a general plan of starting a group, recruiting members with needed capabilities,
acquiring needed resources, visiting a target, and then exploiting the target. These events involve vari-
ous forms of communication and transfer of assets. The EAGLE simulator generates various threat and
non-threat groups, and then executes various vulnerability and productivity exploitations. The simula-
tor generates evidence related to all these events, and this evidence is passed through filters varying the
degree of observability and noise in the final evidence.

This final evidence is the data from which we are to learn. We address two different relational learn-
ing problems in this domain. First, we attempt to learn patterns distinguishing vulnerability exploitation
cases (terrorist attacks) from productivity exploitation cases (legitimate uses). Second, we attempt to
learn patterns distinguishing threat groups from non-threat groups. We address this second problem in
two forms: with all evidence and with only communication evidence between actors. We generated a
number of datasets using the EAGLE simulator for testing, and four representative datasets are described
in Table 1. Each of the four datasets vary in the amount of observability and noise in the data, and the
specific number of cases and groups in the data.

Before presenting the results of the experimentation, we should address the applicability of a re-
lational learning approach to the problem of finding patterns that discriminate threat from non-threat
events and groups. First, given the fortunate reality that few terrorist events have taken place in the
United States, there may not be many positive examples from which to learn. In addition to executed
terrorist events, there are a number of terrorist plots and groups which are preempted before completing
their mission. Non-U.S. terrorist information may also provide a further source of positive examples.
Finally, intelligence analysts can provide artificial examples based on their knowledge of the domain.
Since we do not have access to much of the real data described above, we rely on the intent of the simu-
lator designers to capture the relevant dimensions of the real problem, which was part of their mandate.
The ability of relational learning systems to discover known patterns in the simulator data will increase
analysts’ confidence in the patterns discovered in the real data. The simulator has undergone numerous
refinements based on input from intelligence analysts.

Second, while the learning problem in this work is to find discriminators between threat and non-
threat events and groups, the primary task in “connecting the dots” is identifying general patterns in
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Figure 5. Portion of a vulnerability exploitation case graph drawn using GraphViz [9].

terrorist networks and their activities and looking for these patterns in current intelligence data. This
task generally falls under the area of link discovery, which includes the task of finding instances of
known patterns in the intelligence data. However, this task is essentially a subgraph isomorphism task,
and can be greatly influenced by where in the large graph the search begins. Discriminators, like the
ones learned in this work, can help direct the search. Still, some discriminators can represent novel,
previously unknown (albeit small) patterns that are indicative of terrorists (e.g., nationality, VISA type,
attended flight school). Discriminatory patterns can also be helpful to the analyst who is confident in their
classification of the event or group, but has not identified an explicit pattern supporting their intuition.
Therefore, relational learning can have a beneficial impact on the task of identifying terrorist events and
groups.

4.1. Learning Patterns in Threat Events

In lieu of an exact specification of the EAGLE simulator evidence and our graph representation, we show
a portion of a vulnerability case graph in Figure 5. The upper-right “ExploitationCase” vertex is the root
vertex of the case. From there, we see the target and its modes, individuals and their capabilities, and
visit and communication events. Columns two and three of Table 2 show the number of vertices and
edges in all the cases for each dataset.

We used Subdue in supervised learning mode to perform a 3-fold cross-validation experiment on each
dataset, where the vulnerability case graphs comprised the positive examples, and the productivity case
graphs comprised the negative examples. Figure 6 shows one of the patterns learned for distinguishing
vulnerability from productivity cases. This pattern indicates that the same individual both visited the
target and was involved in a generalized transfer of a resource. The last two columns of Table 2 show the
cross-validation accuracy and the average learning time per fold for each dataset. Note that the testing
phase of the cross-validation experiment involves a subgraph isomorphism to determine if the learned
pattern is in the test examples. While subgraph isomorphism is known to be NP-Complete, the pattern
sizes were small enough to allow testing to finish in a reasonable amount of time (usually a few days).
This time is not included in the timings reported in Table 2.
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Table 2. Size and performance statistics for learning to distinguish vulnerability from productivity cases.

3-fold CV Average Learning

Dataset Vertices Edges Accuracy Time Per Fold

1 10,617 22,406 58% 51 sec.

2 24,251 61,535 63% 2,912 sec.

3 17,837 55,986 62% 134 sec.

4 47,704 209,556 68% 2,412 sec.

target individual

GeneralizedTransferVisitToExploitationTarget

eventOccursAt
performedBy

performedBy

Figure 6. Sample pattern distinguishing vulnerability from productivity cases.
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Figure 7. Portion of a threat group graph drawn using GraphViz [9].

Results show that Subdue was able to achieve 58-68% accuracy discriminating vulnerability from
productivity cases. Not surprisingly, the accuracy increases with higher observability and lower noise.
Subdue’s learning time was less than 50 minutes even on graphs of size 250,000 vertices and edges. The
majority of errors consist of false negatives, which unfortunately, would indicate a vulnerability case
being incorrectly classified as a productivity event. One explanation for the majority of false negatives
is that these experiments attempt to find one, connected graph pattern that can discriminate vulnerability
from productivity cases. A better approach would be to learn a disjunction of patterns for the discrimi-
nation task, which would correctly classify more of the positive examples. Subdue has the capability of
running with multiple iterations in a set-covering mode to learn disjunctive hypotheses. We are inves-
tigating this approach to see if such hypotheses can reduce the number of false negatives. Preliminary
results indicate that this is indeed the case.

4.2. Learning Patterns in Threat Groups

Figure 7 shows a portion of a threat group graph, which contains persons, their capabilities and resources,
and their communications with others in the group. Columns two and three of Table 3 show the number
of vertices and edges in all the groups for each dataset. The graph sizes vary considerably both because of
the number of groups in the dataset, and because the amount of communication between group members
varied considerably due to arbitrary amounts of legitimate communication added beyond that involved
in specific cases.

We used Subdue in supervised learning mode to perform a 3-fold cross-validation experiment on
each dataset, where the threat group graphs comprised the positive examples, and the non-threat group
graphs comprised the negative examples. Figure 8 shows one of the patterns learned for distinguishing
threat from non-threat groups. This pattern indicates that a group possessing capabilities 6 and 7, along
with resource 2, is a threat group. The “mode” vertex is used to collect the capabilities and resources of a
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Table 3. Size and performance statistics for learning to distinguish threat from non-threat groups.

3-fold CV Average Learning

Dataset Vertices Edges Accuracy Time Per Fold

1 5,813 7,814 78% 2,216 sec.

2 42,962 111,472 81% 1,333 sec.

3 48,381 57,985 93% 11,578 sec.

4 223,427 392,562 85% 9,547 sec.

Capability−6

Mode

ResourceType−2Capability−7

modeCapabilities modeResourceTypes

modeCapabilities

Figure 8. Sample pattern distinguishing threat from non-threat groups.
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TwoWayCommunication

Actor

Communication

Actor

CommType

Initiator Respondent

TwoWayCommunication

Actor

Communication

... ... ...

CommType

Respondent
Initiator

Figure 9. Portion of a group graph using only communication events to connect actors.

group in order to match them to the exploitation modes of targets in the evidence. The EAGLE simulator
does not assign meaning to the capabilities and resources, but an example capability might be driving a
truck, and an example resource might be explosives.

The last two columns of Table 3 show the cross-validation accuracy and the average learning time
per fold for each dataset. Results show that Subdue was able to achieve 78-93% accuracy discriminating
threat from non-threat groups. Here, lower noise had the most significant effect on performance, while
higher observability had less of an effect. Subdue’s learning time was less than 200 minutes even on
graphs of size 600,000 vertices and edges. As with the previous experiments on cases, a majority of the
errors are false negatives. And as discussed in the last section, learning a disjunction of substructures
using a set-covering approach will reduce these types of errors.

4.3. Learning Communication-Only Patterns in Threat Groups

The last experiment investigates Subdue’s ability to learn patterns in threat groups using only commu-
nications relationships between the actors of a group. Figure 9 shows a portion of such a graph, where
each actor participates as the initiator or respondent in a communications event. This simplified graph
representation is more akin to typical social network representations [25].

The first four columns of Table 4 show the parameters of three datasets used for this experiment.
These datasets were generated using the same EAGLE simulator, but we used different simulator pa-
rameters to control the number of threat and non-threat groups. We used Subdue in supervised learning
mode, where the threat group graphs comprised the positive examples, and the non-threat group graphs
comprised the negative examples. Figure 10 shows one of the patterns learned for distinguishing threat
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Table 4. Size and performance statistics for learning to distinguish threat from non-threat groups using only
communication.

Threat Non-Threat Total Total Training Learning

Groups Groups Vertices Edges Accuracy Time

5 20 3,723 4,152 100% 17 sec.

15 85 10,447 12,351 96% 147 sec.

20 85 7,411 8,889 92% 35 sec.

Actor

Communication

Actor

Communication

Actor

Communication

Actor

Communication Communication Communication

Initiator Respondent

Respondent

Initiator

Initiator

Respondent

Initiator Respondent Respondent

Figure 10. Sample pattern distinguishing threat from non-threat groups using only communication.
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from non-threat groups This pattern shows a set of actors involved in a linear-like communication chain.
Such chains are typical of threat groups who attempt to hide their identity by minimizing the amount of
communication among members.

The last two columns of Table 4 show the training-set accuracy and the learning time for each dataset.
We do not show the results for 3-fold cross-validation, because the patterns learned in the experiment
were significantly larger than in previous experiments, and the cost of the subgraph isomorphism test-
ing needed for cross-validation became prohibitive. The results show that Subdue was able to achieve
92-100% training-set accuracy discriminating threat from non-threat groups using only communication
evidence. Subdue’s learning time was less than 3 minutes even on graphs of size 22,000 vertices and
edges. While the accuracy values are difficult to generalize, the chain-like communication patterns dis-
covered by Subdue, which are known properties of terrorist communication, indicate that Subdue is able
to learn relevant patterns in this domain.

5. Conclusions

The necessity to “connect the dots” [21] in order to combat threats to homeland security requires explicit
representation of relational information and the ability to discover patterns in relational data. Graphs are
a natural representation for many relational domains. Our approach to graph-based relational learning,
and its implementation in the Subdue system, offers the ability to discover patterns in data represented
as a graph. These patterns can take the form of prevalent subgraphs, a hierarchical, conceptual cluster-
ing of subgraphs, or a subgraph that can distinguish positive graphs from negative graphs. Results on
simulated threat data indicate that Subdue is effective and efficient in learning patterns to distinguish
threats from non-threats, especially when focusing on groups and communications between group mem-
bers. These results show the potential of graph-based relational learning for helping intelligence analysts
better identify and assess possible security threats.

There are several future directions for our graph-based relational learning research that will improve
our ability to handle security-related data. First, such data typically streams in rapidly, preventing our
running Subdue from scratch each time new data is available. We need to develop incremental methods
for augmenting the data graph and re-evaluating candidate patterns in the light of new data. Second, the
need to clearly separate positive and negative examples can be difficult or impossible. For example, we
may not be certain of an individuals membership in a known threat group. We need to develop methods
for learning in what we call supervised graphs, where each vertex and edge of the input graph can be
annotated with a degree of participation in the various categories of interest (e.g., membership in a threat
group). Finally, improved scalability of graph operations is necessary to learn patterns, evaluate their
accuracy on test cases, and ultimately to use the patterns to find matches in future intelligence data. The
graph and subgraph isomorphism operations are a significant bottleneck to these capabilities. We need
to develop faster and approximate versions of these operations to improve the scalability of graph-based
relational learning.
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