
Compression versus Frequency for Mining Patterns and
Anomalies in Graphs

William Eberle
Tennessee Technological University

Department of Computer Science
Cookeville, TN USA

1-931-372-3278

weberle@tntech.edu

Lawrence Holder
Washington State University

School of Electrical Engineering & Computer Science
Pullman, WA. USA

1-509-335-6138

holder@wsu.edu

ABSTRACT

Discovering patterns in data represented as a graph has been an

important focus of research in a variety of domains such as the

web, biological data, and networks. In general, the two different

approaches to discovering the normative pattern in a graph have

focused on either frequency or compression. In addition, the

ability to discover anomalies in data represented as a graph has

demonstrated advantages over more traditional data mining

approaches. However, one of the major issues with graph-based

approaches is the run-time performance associated with detecting

anomalies. In this paper, we analyze the differences between

using frequency versus compression as it pertains to the discovery

of both normative and anomalous patterns. Using synthetic and

real-world graphs for our experiments, we explore the varying

effects of subgraph and anomaly discovery based upon the size of

the graph, the number of normative patterns within a subgraph,

and the number of random edges (noise) that can affect subgraph

discovery. In addition, we explore the scalability of such an

approach, with the potential application to real-world problems.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications - Data

Mining.

General Terms

Algorithms.

Keywords

Graph-based, knowledge discovery, anomaly detection

1. INTRODUCTION
Over the last decade, several methods have been developed for

mining data represented as a graph. One important area of graph

mining is the discovery of frequent subgraphs in a set of graphs or

within one large graph. With frequent subgraph miners, the most

interesting substructure is the largest one (or ones) that meet the

minimum support – a parametric value that is chosen by the user.

Whereas, compression-based graph miners discover those

subgraphs that maximize the amount of compression that a

particular substructure provides a graph. The algorithms

associated with these two approaches are not only different, but

they also may result in dramatic performance differences, both in

running-times as well as accuracy when it comes to pattern

discovery.

In addition, the ability to discover anomalies is a vital task for a

wide range of organizations, such as businesses or national

defense, and involves diverse applications, such as fraud and

intrusion detection. Traditionally, methods for discovering

anomalies consist of supervised and unsupervised approaches

using techniques such as classification, clustering, nearest

neighbors, and statistics [2]. One of the primary issues with these

approaches is their inability to handle complex, structural data.

One approach to this issue involves the detection of anomalies in

data that is represented as a graph. The advantage of graph-based

anomaly detection is that the relationships between elements can

be analyzed, as opposed to just the elements’ attributes, for

structural oddities in what could be a complex, rich set of

information. However, attempts at applying graph-based

approaches to anomaly detection have encountered a few

challenges.

This paper compares these two approaches and provides some

empirical results that highlight their differences. Experimenting

with graphs of different size, structure and density, as long as the

frequent subgraph mining approach has a sufficient minimum

support threshold, both approaches discover the same normative

pattern, albeit with significantly different running times. Similar

running time differences are observed when anomaly detection is

performed, and while the reported anomalies are identical

between the two approaches, the compression approach appears

more susceptible to noise that result in false positives.

2. FREQUENT SUBGRAPH MINING
There have been various implementations of frequent subgraph

miners. Approaches like GASTON [16] and gSpan [17] return all

frequent substructures in a database that is represented as a graph.

Using a depth-first search on the input graphs, the algorithm

constructs a hierarchical search tree based upon the DFS code

assigned to each graph. Then, from its canonical tree structure,

these algorithms perform a traversal of the tree in order to

discover the frequent subgraphs. Other approaches, such as Grew

and FSG also return all of the frequent subgraphs (substructures)

in a database of transactions that have been represented as a graph

[18]. However, unlike GASTON and gSpan, they use an Apriori-

style breadth-first search. The algorithm takes the input graphs

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

MLG ’11 San Diego, CA, USA

Copyright 2011 ACM 978-1-4503-0834-2 ...$10.00.

and performs a level-by-level search, growing patterns one edge at

a time. The core of the algorithm lies in its candidate generation

and counting that are used to determine the frequent subgraphs. In

order to mine large graphs for frequent subgraphs, Huan et al.

propose a maximal frequent subgraphs approach called SPIN as

an improvement to gSpan [19]. By mining only subgraphs that are

not part of any other frequent subgraphs, they are able to reduce

the number of mined patterns by orders of magnitude. This is

accomplished by first mining all frequent trees from a graph, and

then reconstructing all maximal subgraphs from the mined trees.

Zeng et al. looked at the problem of dense graphs by mining the

properties of quasi-cliques [20]. Using a system called Cocain,

they propose several optimization techniques for pruning the

unpromising and redundant search spaces. To help combat the

subgraph isomorphism issue, Gudes et al. propose an Apriori-

based algorithm using disjoint paths [21]. Following a breadth-

first enumeration and what they called an “admissible support

measure”, they are able to prune candidate patterns without

checking their support, significantly reducing the search space.

MARGIN is another maximal subgraph mining algorithm that

focuses on the more promising nodes in a graph [22]. This is

accomplished by searching for promising nodes in the search

space along the “border” of frequent and infrequent subgraphs,

thus reducing the number of candidate patterns.

There have also been several attempts at creating graph miners

that use maximal compression. Implementations such as

GraphScope [23] and SUBDUE [24] return the substructures that

compress the graph the best using the Minimum Description

Length (MDL) principle. SUBDUE uses a beam search (a limited

length queue of the best few patterns that have been found so far),

growing patterns one edge at a time, continually discovering what

substructures best compress the description length of the input

graph. Graphscope also uses an MDL compression to discover

graphs, albeit in the context of graphs changing over time. This

approach examines graph “snapshots”, and when a new graph

snapshot cannot fit well into an old segment (in terms of

compression), a change-point is introduced and a new segment

starts at that time-stamp. The purpose of this approach is to find

communities of time-evolving graphs along with the change

points, all represented in a matrix. The core of both of these

approaches is in their compression strategy.

3. GRAPH ANOMALY DETECTION
Recently, there have been significant strides in the development of

graph-based approaches to anomaly detection. In 2003, Noble and

Cook used the SUBDUE application to look at the problem of

anomaly detection from both the anomalous substructure and

anomalous subgraph perspective [12]. They were able to provide

measurements of anomalous behavior as it applied to graphs from

two different perspectives. Anomalous substructure detection

dealt with the unusual substructures that were found in an entire

graph. They also presented the idea of anomalous subgraph

detection which dealt with how anomalous a subgraph (i.e., a

substructure that is part of a larger graph) was to other subgraphs.

Lin and Chalupsky [26] took a different approach and applied

what they called rarity measurements to the discovery of unusual

links within a graph. Using various metrics to define the

commonality of paths between nodes, the user was able to

determine whether a path between two nodes was interesting or

not, without having any preconceived notions of meaningful

patterns. The AutoPart system presented a non-parametric

approach to finding outliers in graph-based data [27]. Part of

Chakrabarti’s approach was to look for outliers by analyzing how

edges that were removed from the overall structure affected the

minimum description length of the graph. Representing the graph

as an adjacency matrix, and using a compression technique to

encode node groupings of the graph, he looked for the groups that

reduced the compression cost as much as possible. Nodes were

put into groups based upon their entropy. Using just bipartite

graphs, Sun et al. [14] presented a model for scoring the normality

of nodes as they relate to the other nodes. Again, using an

adjacency matrix, they assigned what they called a “relevance

score” such that every node x had a relevance score to every node

y, whereby the higher the score the more related the two nodes.

The idea was that the nodes with the lower normality score to x

were the more anomalous ones to that node. In [28], they also

went after anomalous links, this time via a statistical approach.

Using a Katz measurement, they used the link structure to

statistically predict the likelihood of a link.

Other approaches include Wan et al. [15] who use a link-based

event detection method that clusters similar vertices together and

then considers deviations from each vertex’s individual profile.

Whereas, Huang uses probabilities to generate models that predict

the likelihood of links with the topology of a graph [10]. More

recently, Akoglu et al. present an algorithm called OddBall that

searches weighted graphs based upon a set of rules to determine

whether or not an anomaly exists [1]. Eberle and Holder [5]

introduced the GBAD (Graph-Based Anomaly Detection)

approach which uses information theoretic, probabilistic and

maximum partial substructure approaches to discover all three

types of graph-based anomalies: modifications, insertions and

deletions. In their approach, anomalies are viewed as unexpected

deviations from normative patterns, rather than just unexpected

structure [6][8] [7][8].

However, with all of these approaches, the primary issue

continues to be scalability. While certain small-world domains

(e.g., Enron e-mail [13][4]) as well as specific graph

representations (e.g., bipartite [14] and time-evolving graphs [25])

have yielded improvements in the run-time performance,

application in a large real-world setting has been elusive. We

propose the use of a frequent subgraph mining approach to help

address these performance issues.

4. TWO APPROACHES
We have chosen two systems, GASTON and SUBDUE, as

representatives of frequency and compression-based approaches.

4.1 Methodologies
The goal of GASTON is to return all frequent substructures in a

graph using a depth-first search on the input graphs. The core of

the GASTON algorithm (and other approaches, like gSpan) is the

construction of its hierarchical search tree based upon the DFS

code assigned to each graph. Using its canonical tree structure, the

algorithm performs a traversal of the tree in order to discover the

frequent sub-graphs. This search through the DFS codes is

repeated on each edge until its frequency drops below the user

specified minimum support threshold.

The key to the GASTON algorithm lies in its canonical labels,

search strategy, and effective pruning strategy. The canonical

labeling system that is employed partitions the graph according to

a DFS lexicographic order that is a minimum DFS encoding.

Because there could be many possible DFS trees, it chooses the

one with the smallest lexicographic value. GASTON also uses a

traversal of the DFS code tree, where it is able to prune false

positives before they are compared (unlike what happens in

approaches like FSG). In addition, GASTON’s performance is

improved by first searching for frequent paths, then searching for

frequent trees, and then finally for frequent subgraphs.

The goal of SUBDUE is different from frequent subgraph miners

in that it chooses to return the substructures that compress the

graph the best. Using a beam search (a limited length queue of the

best few patterns that have been found so far), the algorithm

grows patterns one edge at a time, continually discovering what

substructures best compress the description length of the input

graph. After extending each substructure by one edge, it evaluates

the substructure based upon its compression value (the higher the

better). A list is maintained of the best substructures, and this

process is continually repeated until either there are no more

substructures to compress or a user-specified limit is reached.

There are two key components to the SUBDUE algorithm. First,

there is the use of a compression methodology. The idea behind

this approach is that there could be interesting patterns that are

less frequent than other patterns. In short, using the Minimum

Description Length principle, the graph is represented as the

number of bits needed to encode an adjacency matrix

representation of the graph. Thus, the substructure that reduces the

number of bits the most (by replacing all instances of the

substructure with a single vertex) is considered the better

substructure. Second, SUBDUE collects the instances of a

subgraph by finding those that match (graph isomorphism) from a

list of candidates, rather than performing a subgraph isomorphism

test each time. SUBDUE further constrains the graph

isomorphism test to run in polynomial time. In addition, several

optimization steps have been incorporated into SUBDUE to

reduce the frequency with which it is performed. Some of these

optimization techniques are controlled by an optional -prune

parameter, while others are intrinsic. For instance, the –prune

option tells SUBDUE to prune the search space by discarding

substructures whose value is less than that of their parent's

substructure. Since the evaluation heuristics are not monotonic,

pruning may cause SUBDUE to miss some good substructures,

however, it will improve the running time.

While both of these applications have some obvious algorithmic

differences in their choices (e.g., canonical depth-first tree versus

compression), there is one key difference in their results.

GASTON returns the frequent sub-graphs from a set of input

(transaction) graphs. SUBDUE returns the sub-graphs that are

believed to represent the graph the best by resulting in the graph’s

maximum compression. Though the ultimate goal for both of

these approaches it to find interesting patterns, the result could be

a different set of patterns being discovered.

4.2 Algorithmic Analysis
Because of the algorithmic choices each methodology uses, there

are differences in the amount of memory/space that is used for

their internal structures. GASTON uses a sparse adjacency list

representation of the graphs, and with its tree structure and

pruning strategy (the depth-first search allows for removal of

edges and whole graphs from the search space after all relevant

patterns for that edge or graph has been processed), it uses a

minimal amount of memory. Whereas, SUBDUE uses a

significant amount of memory due to the graph structures it builds

and the maintenance of best substructures and graph instances.

Several optimization techniques have been employed by both of

these systems, albeit different types of optimization. GASTON, as

already mentioned, achieves its optimization through its pruning

strategy, and of course, it does not do candidate generation.

SUBDUE implements not only an optional aggressive form of

pruning the list of best substructures, it also performs some

heuristic measures to avoid some repetitive comparisons. Each of

these optimizations not only reduces the amount of memory

needed, they also increase their relative speed. However,

SUBDUE does make more calls to the graph isomorphism test

than GASTON, and the canonical tree ordering implemented in

GASTON minimizes its search space.

While in general SUBDUE may be slower than GASTON, it does

have several significant features. For instance, SUBDUE can

handle both directed and undirected input graphs. (And other

frequent subgraph miners have similar graph input restrictions,

such as dealing with only bipartite graphs, or ignoring labels.) In

addition, SUBDUE can perform inexact graph matching. By

specifying a threshold, the user can indicate a level of acceptance

for patterns that may not match completely. While it may be

possible to implement some of these features into GASTON (or

other approaches like FSG and gSpan), that could be problematic.

For instance, allowing for directed graphs in GASTON could

cause its tree structure to become a forest, and ultimately cause

issues with both its traversal and pruning strategies.

It should also be mentioned that one of the advantages of the

SUBDUE approach is its ability to handle more complex graphs

in multiple domains. GASTON does not appear to be able to

handle large, regular frequent sub-graphs (i.e., long patterns), and

has only been documented on small graphs for specific domains.

In addition, both GASTON and SUBDUE are not able to handle

non-structural attribute values. For instance, the difference

between 50.0001 and 50.0002 is handled the same as if the two

values were 1 and 1000 (i.e., two uniquely different values).

There are two algorithmic disadvantages with SUBDUE. First,

SUBDUE is a greedy algorithm. While this is useful from a

performance perspective, there is the possibility that some

frequent sub-graphs could be missed. Second, the compression

mechanism used by SUBDUE is lossy. In other words, one cannot

reverse the compression and restore the original graph.

One final observation regarding these algorithms should be made.

While GASTON should be a significantly better performer in

terms of memory and speed, it is also extremely complex.

Considering some of the enhancements that would need to be

made to make GASTON a more robust application, certain

enhancements will increase the running time. Another possibility

could be to incorporate some of GASTON’s features, such as the

canonical form for subgraph generation, into SUBDUE.

5. NORMATIVE PATTERN DISCOVERY
We now present the empirical results from experiments

comparing the two approaches. The following algorithm

represents the methodology used for constructing our synthetic

input graphs:

Given:

S = subgraph

N = number of transactions

C = maximum copies of S per transaction

E = maximum extra edges per transaction

Do:

 T = {}

 for n = 1 to N

 t = c copies of S (where c is drawn from Uniform(1,C))

 Add extra random edges e to t (where e is drawn from

 Uniform(1,E), e's label randomly selected from unique

 labels, e's vertices randomly selected from vertices in t)

 Add t to T

 return T (set of N transactions)

Using the above methodology, we kept the size of the subgraph S

constant (10 vertices and 9 edges), and varied the other

parameters as follows:

 N: 10, 100, 1000, 10000

 C: 1, 2, 3

 E: 5%, 10%, 15%, 20% (where the number of random edges is

 based upon the size of transaction)

We chose to use SUBDUE and GASTON in our experiments for

one primary reason: very few graph mining tools are publicly

available. (In addition, if needed, we can analyze/modify the code

as they both are open-source.) For SUBDUE, we will use version

5.2 (www.subdue.org). All SUBDUE runs will use the default

options (i.e., no parameters specified). The one exception to this is

the use of the –undirected parameter. Since GASTON does not

allow directed graphs, we can only compare undirected graphs.

This parameter tells SUBDUE to only handle edges as undirected.

For GASTON, we will use version 1.1

(www.liacs.nl/~snijssen/gaston). Again, we will use the default

options (i.e., no parameters), except for varying minimum support

thresholds (mst). Here we make a slight modification to the

baseline code. GASTON only outputs all substructure instances

that meet the MST. So, in order to test our hypothesis, we will

modify GASTON to output the single (best) substructure that

maximizes (frequency * size). This will be in direct contrast to

what SUBDUE discovers, where the best substructure is defined

to be the subgraph that compresses the graph the best (MDL).

It should be noted that in the following sections, the x-axis,

moving from left to right, represents increasing difficulty, based

upon the number of copies (c) and edges (e).

5.1 Sparse Graphs
For these experiments, we analyzed graphs which are considered

sparse (average degree < 2). Sparse graphs are very representative

of real-world phenomenon such as network traffic, citation

networks, and social networks. We chose a subgraph pattern S

consisting of 10 vertices and 9 edges and embedded it into each of

the N transactions. We vary the number of copies of S in each

transaction according to the C parameter. We then add additional

edges to each transaction according to the E parameter.

For the experiments shown in Figure 1, where N=10, when C=3,

SUBDUE discovers the normative pattern in under 0.3 seconds,

whereas for GASTON discovery of the normative pattern with an

mst of 10% and number of extra random edges (E) at 10%, takes

~2 hours, and more than 16 hours when E > 10%.

Figure 1. Runs for N=10 on sparse graphs.

In Figure 2, where N=100, when C=3, SUBDUE completes in

under 5 seconds, whereas for GASTON discovery of the

normative pattern with an mst of 10% and number of extra

random edges (E) at 5%, takes ~7 minutes, and more than 3 hours

when E > 5%. Also, with an mst of 30%, runs with E=15% take

~19 minutes and runs with E > 15% do not complete in < 3 hours.

Figure 2. Runs for N=100 on sparse graphs.

For the experiments shown in Figure 3, where N=1000, when

C=3, SUBDUE discovers the best substructure in under 4

minutes, whereas for GASTON discovery of the normative

pattern with an mst of 10% and number of extra random edges (E)

at 5%, takes ~13 minutes, and more than 3 hours when E > 5%.

Also, with an mst of 30%, runs with E=15% take over 2 hours and

runs with E > 15% do not complete in less than 10 hours.

Figure 3. Runs for N=1000 on sparse graphs.

In Figure 4, where N=10000, SUBDUE runs range from a max of

16 hours to a minimum of 3 hours. GASTON performs well on all

runs when the mst is at least 50% (less than one second in the

worst case), but even at an mst of 30%, the runs grow significantly

when more connectivity is introduced. Most runs with an mst of

10% had to be terminated after a few hours.

Figure 4. Runs for N=10000 on sparse graphs.

For all SUBDUE and GASTON runs that completed, the seeded

normative pattern is reported as the best substructure, with no

extra random edges. In addition, in all cases, both approaches

report all instances of the best substructure. So, not only does the

frequent subgraph mining approach produce identical results to

the compression approach, but it is clearly faster when the number

of transactions is large. Some of the performance degradation in

GASTON, when the minimum support threshold is low, is due to

the connectedness of the graph. The synthetic graphs that were

generated consisted of a mixture of edges between vertices in the

same subgraph and vertices in different subgraphs. The less

connected the graph, the faster the running times. While it does

not appear to affect GASTON when the threshold is at least 50%,

runs under that minimum support threshold, in some cases, do not

finish in a reasonable amount of time (albeit still better than the

compression approach in some cases). Also, as is the case with all

frequent subgraph mining approaches, the minimum support is

parametric, which requires a user to make a decision about an

appropriate threshold. With SUBDUE, there is no such threshold.

5.2 Dense Graphs
For these experiments, we analyzed graphs which are considered

dense (average degree > 2). We chose a subgraph pattern S that is

a complete graph consisting of 5 vertices and 10 edges (each

vertex has degree 4) and embedded it into each of the N

transactions. We vary the number of copies of S in each

transaction according to the C parameter. We then add additional

edges to each transaction according to the E parameter.

For the experiments shown in Figure 5, where N=10, the

discovery of normative patterns by SUBDUE grows at a nonlinear

rate, whereas the running times are negligible for GASTON when

the mst is 30% or 50%. Only when the mst is 10% does it

fluctuate based upon the number of extra random edges (E).

Figure 5. Runs for N=10 on dense graphs.

In Figure 6, where N=100, all SUBDUE runs complete in under

17 seconds. However, GASTON struggles to discover the

normative pattern when there is more than one normative pattern

(C) per transaction. With an mst of 50%, the longest run is 1760

seconds. However, for mst of 10%, runs did not complete within

24 hours when there is at least 3 normative patterns per

transaction, and an mst of 30% also struggles on graphs with more

random edges (E), not finishing within 24 hours either. In short,

except for when E=20% (i.e., the amount of random edges that

add more connectivity to the graph), an mst of 50% is sufficient to

discover the normative pattern and complete within a second for

GASTON. Similar behavior is observed when N=1000.

Figure 6. Runs for N=100 on dense graphs.

In Figure 7, where N=10000, SUBDUE runs range from a

maximum of 31 hours to minimum running times of 1 hour.

GASTON performs better on all runs when the mst is at least 50%

(less than 1324 seconds in the worst case). However, runs with an

mst of 10% and 30% do not complete in under 24 hours with C=3

(except for the case where the number of random edges is small

and the mst is 30%), and trends upwards in running times similar

to SUBDUE.

Figure 7. Runs for N=10000 on dense graphs.

In summary, across all of the experiments, when the graphs are

small, SUBDUE discovers all of the normative patterns in a

reasonable amount of time. However, a frequent subgraph mining

approach like GASTON is consistent in its discovery and running

times when the minimum support threshold is at 50%, plus

executes faster than SUBDUE on larger graphs.

5.3 Real-World Example
In order to evaluate the two approaches on real-world data, we

chose to use the publicly available data set of e-mails between

employees from the Enron Corporation. The Enron e-mail dataset

consists of not only messages, but also employee information such

as their full name and work title. We created graphs based on the

“social network” and company position of employees that start a

“chain” of e-mails, where a chain consists of the originating e-

mail and any subsequent replies or forwards to that e-mail. Each

graph consists of substructures represented as shown in Figure 8.

<originating

title> TRANSFER
SENDER

<ORIG or

RE or

FW>

STATE

<mid>

MID

<TO or

CC or

BCC>

METHOD

<title>RECEIVER

Figure 8. Substructure topology for Enron e-mail.

In this representation, a graph consists of individual, disconnected

substructures that represent the “flow” of each e-mail that

originates from someone with a specified title (e.g., Director). An

e-mail can be sent by one or more TRANSFERs to one or more

individuals with varying employment titles (represented by an

arrow to show who sent the message to whom), and can either be

sent back (as a reply or forward) to the <originating title>, or

forwarded/replied on to other <title> entities.

There are many different employee titles within Enron, for

example Presidents, each with expected different patterns of

behavior. So, in order to determine the interesting patterns that

each approach would discover, we created graphs that consist of

all personnel grouped by their respective title. For instance, if a

person is a VP, all of the e-mails that originated from them would

be included in the graph of VPs. In addition, we will vary the mst

on the frequent subgraph mining approach to see what effect that

has on the discovered normative pattern. On the experiments of e-

mails originating from Traders, GASTON, with an mst of 50%,

reports the best substructure as the one shown in Figure 9.

TO

ORIG

TRANSFER

TRADER TRANSFER ORIG

TRANSFER

ORIG

EMPLOYEE

METHOD

STATE

RECEIVER

SENDER

SENDER

STATE

SENDER STATE

Figure 9. Best substructure for Traders with mst=50%.

However, if we lower the minimum support threshold below 50%,

the normative pattern begins to shrink. Figure 10 shows the

normative pattern when the mst value is below 50%.

TRANSFER

TRANSFER

TRADER

TRANSFER

TRANSFER
SENDER

SENDER

SENDER

SENDER

Figure 10. Best substructure for Traders with mst < 50%.

Clearly, a more interesting (structurally) pattern exists when the

threshold represents a value whereby the normative pattern exists

in at least half of the transactions. In the case where the minimum

support is lower, we discover more instances of the pattern shown

above in Figure 10, but even a slight increase from 45 to 50

allows one to see a larger pattern of behavior among traders. It is

also interesting to note that increasing the mst to 55% results in a

different AND smaller normative pattern, as shown in Figure 11.

Figure 11. Best substructure for Traders with mst= 55%.

Based upon the size of the substructures discovered, the use of an

mst of 50% appears to be a reasonable choice. In addition,

SUBDUE, which does not use a minimum support threshold, also

discovers the same substructure as shown in Figure 9, where an

mst of 50% was used by the frequent subgraph miner GASTON.

Similar results using GASTON and SUBDUE are observed in

graphs that represent employees at other levels. It should also be

noted that both approaches (with an mst of 50% for GASTON)

were able to discover the normative patterns in less than 4

seconds.

6. ANOMALY DETECTION
In order to further assess the differences in frequency-based and

compression-based approaches to graph mining, we will now look

at a technique for anomaly detection that relies on the discovery

of normative patterns in order to detect anomalies. While

frequency-based approaches offer the potential of faster pattern

discovery, there is the question of what effect differences in the

discovered patterns have on the detected anomalies.

In order to test our ability to detect anomalies using a frequent

subgraph miner, we chose to implement the GBAD algorithms

within GASTON, because GBAD is not limited to certain graph

types (e.g., bipartite graphs) or certain domains (e.g., intrusion

detection), and has been well documented [5]. GBAD has already

been implemented within the SUBDUE graph-based knowledge

discovery approach [3][9][11].

There are three general categories of anomalies: insertions,

modifications and deletions. Insertions constitute the presence of

an unexpected vertex or edge in an instance of the normative

pattern. Modifications would consist of an unexpected label on a

vertex or edge in the normative pattern. Deletions would

constitute the unexpected absence of a vertex or edge from the

normative pattern. GBAD consists of three algorithms, where

each algorithm is intended to discover one of the corresponding

possible graph-based anomaly categories. The reader should refer

to [5] for a more detailed description of GBAD.

For this work, we implemented all three GBAD algorithms into

the GASTON framework, which we will call GBAD-FSM. None

of the algorithms had to be modified to fit into this FSM, with the

only significant difference being the generation of the normative

pattern. In previous work, we implemented the GBAD algorithms

into a compression-based framework, which we will now call

GBAD-MDL. In GBAD-MDL, the normative pattern (that

provides the greatest amount of compression) is discovered and

saved for the GBAD algorithms to use, along with all of the

instances of the subgraph. However, GASTON by default reports

all subgraphs that meet its minimum support threshold, no matter

what the size of the subgraph. So, we modified GBAD-FSM to

output the n best substructures that maximize (frequency * size).

In addition, we saved all instances of the best substructure, so as

TO

TRADER TRANSFER

ORIG

TRANSFERORIG

METHOD

SENDERSTATE SENDER

STATE

to avoid overlapping of potential subgraphs as well as to know

which vertices and edges were part of the normative subgraphs.

6.1 Synthetic Experiments
For the following experiments, the graphs are created with the

following attributes:

 100 to 32,000 transactions with the number of vertices

and edges ranging from 5,000 to 424,000,

 80 - 1500 unique labels,

 A minimum support threshold of 50% (for discovering

the normative pattern),

 An anomalous threshold of 7% (i.e., up to 7% difference

is acceptable as a potential anomaly).

In terms of what constitutes as an “anomaly” for these

experiments, we will define anomalies in graph-based data as any

substructure in a graph that is part of (or attached to or missing

from) a normative pattern. Formally, the definition is as follows.

Definition: A graph substructure S’ is anomalous if it is not

isomorphic to the graph’s normative substructure S, but is

isomorphic to S within X%.

X signifies the percentage of vertices and edges that would need to

be changed in order for S’ to be isomorphic to S.

Using the same graphs as before, where t is the number of

transactions in a graph, we randomly created anomalies of varying

sizes, where some substructures are more anomalous than others.

On experiments involving anomalous deletions, as shown in

Figure 12, the percentage of anomalies discovered is higher for

the GBAD-FSM approach than the GBAD-MDL approach (where

a value of 1.0 means all anomalies were discovered).

Figure 12. Percentage of anomalous deletions discovered.

In terms of false positives, neither approach reports any false

positives (i.e., substructures that are more anomalous than the

most anomalous substructure), except for a couple of cases when

using the GBAD-FSM approach on a graph consisting of 16,000

transactions (~848,000 vertices and edges). In this example, some

random “noise” in the graph (i.e., structure that is unexpected and

at a low frequency) is picked up as equally anomalous to the

randomly injected anomalies.

On experiments involving anomalous insertions, both approaches

discover all of the injected anomalies, except for the GBAD-MDL

run on graphs of 32,000 transactions (~1,696,000 vertices and

edges). However, in terms of false positives, the GBAD-MDL

approach reports many other substructures as equally anomalous

when the graphs are smaller, as shown in Figure 13. In these

cases, the noise that is prevalent in the smaller graphs is repeated

in the large graphs to the point that their frequency is no longer as

anomalous as the targeted anomalies.

Note that the GBAD-FSM implementation does not report any

false positives. The reason for this is being investigated, as the

algorithms for determining what substructures are anomalous are

identical between the two approaches, so clearly the compression

approach is affecting GBAD-MDL’s accuracy.

Figure 13. Percentage of false positives running GBAD-MDL.

On experiments involving anomalous modifications, the results

are very similar between the GBAD-MDL and GBAD-FSM.

Both approaches are able to discover anywhere from 33% to

100% of the targeted anomalies, and in all cases where the

anomaly is not discovered, it is a case of an anomalous

modification being made to a non-normative vertex or edge (due

to the randomness of the graph generation). Since the definition of

anomaly that is used by the GBAD approach assumes that an

anomaly is a small modification to a normative pattern, this

behavior is to be expected. False positives are also at a minimum,

as the GBAD-FSM approach does not report any false positives,

and the GBAD-MDL approach only reports a few false positives

(less than 10% of the transactions) when the number of

transactions is less than 2000. Again, structural modifications as a

result of “noise” are more predominant when the graph is smaller.

Figure 14 shows the running times of the experiments on graphs

with anomalous deletions. Clearly the GBAD-FSM result is faster

when the graph reaches 1000 transactions or more, with almost an

exponential growth in the running times for GBAD-MDL. Runs

of GBAD-MDL on graphs of over 8,000 transactions (~424,000

vertices/edges) were aborted after 24 hours, and not expected to

finish in a reasonable amount of time for these experiments (or

most real-world scenarios). Similar behavior is observed for

detecting anomalous modifications and insertions.

Figure 14. Running times for discovering anomalous deletions.

6.2 Accuracy
In the previous section, we arbitrarily chose an anomalous

threshold of 0.07, targeting substructures whose differences from

the normative pattern did not exceed more than 7% change.

However, as with most anomaly detection approaches, one can

adjust thresholds to achieve different results. A decrease in the

threshold may reduce the number of potential anomalies, while an

increase in the threshold may not only result in more anomalies

being discovered, but also may introduce more false positives. To

analyze the effects of the anomalous threshold on both of these

approaches, we will measure accuracy based on different

thresholds of 0.05, 0.10, 0.15 and 0.20.

For these experiments, we generated 30 synthetic graphs with

random anomalies (i.e., deletion, insertion and modification) for a

total of 90 graphs, and evaluated both approaches using the

different thresholds. Figure 15 shows the accuracy for both the

GBAD-FSM and GBAD-MDL approaches on the discovery of

anomalous deletions and anomalous modifications.While the

GBAD-MDL approach is slightly more accurate in terms of

detecting anomalous deletions, particularly at the higher

thresholds, that is due to the aggressive pruning that takes places

with the GBAD-FSM approach. As was documented earlier, the

GBAD-FSM is significantly faster, much of which is due to the

canonical tree structure that is known to be faster than the

compression approach. However, because of the pruning, the

accuracy is diminished slightly.

For the GBAD-FSM approach on the 30 graphs that contained

anomalous modifications, the randomness of the anomalous

modifications, plus an anomalous threshold above what is needed

for small modifications, clearly affects the accuracy. Where the

modification occurs can influence the amount of change in a

substructure – in some cases, effectively cutting the substructure

in half. In addition, the increase in the threshold allows for more

false positives (and false negatives) to be reported. For the

GBAD-MDL approach on these graphs, while there are

fluctuations in terms of the number of false positives and false

negatives, the accuracy is fairly consistent. Threshold 0.1

produces the most anomalies, while thresholds above and below

this value result in more false results. This behavior is similar

between the two approaches, with a slightly better accuracy using

the GBAD-MDL approach.

For anomalous insertions, the accuracy using the GBAD-FSM

approach is 94.3. For the GBAD-MDL approach the accuracy is

98.3%. Again, due to an aggressive pruning strategy associated

with maintaining the canonical tree for frequent subgraph mining,

some anomalies are not discovered, pushing non-targeted

anomalies to a false-positive state.

In summary, the accuracy of detecting anomalous deletions is

fairly consistent across both approaches, while the accuracy of

detecting anomalous insertions fluctuates, specifically with the

GBAD-FSM approach, which appears more susceptible to the

location of the inserted anomaly relative to the normative pattern.

6.3 Real-World Example
Using shipping data obtained from Customs Border and

Protection (http://www.cbp.gov/), we are able to create a graph-

based representation of cargo information where containers, ports,

financial information, shippers, importers, etc., are represented as

labeled vertices, and labeled edges convey their relationships.

Figure 16 shows a portion of the graph that we used on our

experiments. We injected different types of known (reported)

anomalies into the data, allowing us to analyze the performance of

these two approaches on real-world data at significant volumes.

ARRIVAL_INFO

“020601”

VDATE

SHIPMENT

COMMODITY

“EMPTY RACK”

COMMODITY

COUNTRIES_AND_PORTS

“YOKOHAMA”

“SEATTLE”

“JAPAN”

US_IMPORTER

FPORT

USPORT

COUNTRY

“AMERICAN TRI NET EXPRESS”

NAME

FOREIGN_SHIPPER

“TRI NET”

FNAME

VESSEL

“CSCO”

“LING YUN HE”

36

TARIFF

“CONTAINER FOR

ONE OR

MORE MODES OF

TRANSPORT”

HARM_DESC

860900

HSCODE

CONTAINER

FINANCIAL

CARGO

HAS_A

HAS_A
HAS_A

HAS_A

HAS_A

HAS_A

HAS_A

HAS_A

HAS_A

HAS_A

“TOLU4972933”

CONTAINER

VALUE

27579

00434100

“”

“”

0.00

5.60

BOL_NBR

HAZMAT_FLA

CONSIZE

TEUS

MTONS

SLINE

VESSEL

VOYAGE

Figure 16. Example graph substructure of a cargo shipment.

As reported in [5], among 1000 shipments, where each shipment

consists of ~60 vertices and edges, the GBAD-MDL approach is

able to successfully discover the anomalous structure associated

with the existence of an extra edge and vertex (in this case, the

vessel traversed an extra port – an unexpected deviation from the

normal pattern). In addition, the GBAD-MDL approach reports

the substructure as anomalous due to the missing information – in

this instance, the financial information that was removed. Similar

to GBAD-MDL, GBAD-FSM discovers the anomalous instance.

In addition, we experimented on cargo shipments with anomalous

modifications, and both approaches report the most anomalous

substructure as the one containing a different country of origin –

one that deviated from the normal pattern. It should also be noted

that the GBAD-FSM approach was significantly faster at

discovering the anomalies. The GBAD-MDL approach took

22,523 seconds to discover all of the anomalies, whereas GBAD-

FSM only took 15 seconds.

7. CONCLUSIONS AND FUTURE WORK
We have compared a frequency-based and compression-based

approach to mining normative and anomalous patterns in graphs.

While there are some advantages to the SUBDUE compression-

based approach with its multiple features and best substructure

instance generation, the running-times clearly favor a frequent

subgraph miner like GASTON where an appropriate minimum

support threshold is used. In terms of accuracy, both approaches

were able (when given enough time) to discover the same

normative patterns. In the future, experiments with larger graphs

(> 1 million nodes) will need to be examined, as that is a known

issue with many data mining approaches, as well as different sizes

of normative patterns. Also, a more thorough analysis of the

effects of noise in a graph (a known issue in real-world data such

as TCP/IP networks), is warranted. We also plan on investigating

the inclusion of efficiency mechanisms from GASTON into

SUBDUE. In addition, in the process of executing these

Figure 15. Accuracy for detecting deletions and modifications.

http://www.cbp.gov/

experiments, we discovered several topological properties that

affect the performance of these approaches. First, for the GBAD-

FSM approach, the size of a transaction (i.e., the larger the

frequent subgraph) affects the algorithm’s running times. Also, in

order to speed up the GBAD-FSM approach, overlapping

substructures are not considered, which can be an issue with the

number of reported anomalous substructures. And, both

approaches are affected by the connectivity of the substructures,

and the number of unique labels. Only connected substructures are

considered for the normative patterns, and the greater the number

of unique labels, the longer the algorithms take to execute.

Finally, both of these approaches are based upon the GBAD

definition of an anomaly [5]. There are other potential definitions

of what constitutes an anomaly, and they should be examined in

terms of their effect on performing anomaly detection.

8. ACKNOWLEDGMENTS
This material is based upon work supported by the DHS under

Contract No. HSHQDC-10-C-00212. Any opinions, findings and

conclusions expressed in this material are those of the author(s)

and do not necessarily reflect the views of the DHS.

9. REFERENCES
[1] Akoglu, L., Mcglohon, M. and Faloutsos, C. OddBall:

Spotting Anomalies in Weighted Graphs, Pacific-Asia

Conference on Knowledge Discovery and Data Mining

(PAKDD), June 23, 2010.

[2] Chandola, V., Banerjee, A. and Kumar, V., Anomaly

Detection: A Survey, Technical Report TR 07-017,

University of Minnesota, August 15, 2007.

[3] Cook, D. and Holder, L. Graph-based data mining. IEEE

Intelligent Systems 15(2), 32-41, 2000.

[4] Diesner, J. and Carley, K. Exploration of Communication

Networks from the Enron Email Corpus, Computational and

Mathematical Organization Theory, 11 (3), p. 201-228, 2005.

[5] Eberle. W. and Holder, L. Anomaly Detection in Data

Represented as Graphs. Intelligent Data Analysis, An

International Journal, Volume 11(6), 2007.

[6] Eberle, W. and Holder, L. Analyzing Catalano/Vidro Social

Structure Using GBAD. VAST 2008 Challenge Track,

VisWeek. October, 2008.

[7] Eberle, W., Holder, L. and Graves, J. Detecting Employee

Leaks Using Badge and Network IP Traffic. IEEE

Symposium on Visual Analytics Science and Technology.

October 2009.

[8] Eberle, W. and Holder, L. Mining for Insider Threats in

Business Transactions and Processes. Computational

Intelligence in Data Mining, IEEE Symposium Series on

Computational Intelligence. April 2009.

[9] Holder, L, Cook, D. and Djoko, Substructure Discovery in

the SUBDUE System, AAAI Workshop on Knowledge

Discovery in Databases, 1994.

[10] Huang, Z. Link Prediction Based on Graph Topology: The

Predictive Value of the Generalized Clustering Coefficient,

Twelfth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, 20 August, 2006.

[11] Ketkar, N., Holder, L. and Cook, D. Qualitative Comparison

of Graph-based and Logic-based Multi-Relational Data

Mining: A Case Study,” Proceedings of the ACM KDD

Workshop on Multi-Relational Data Mining, August 2005.

[12] Noble, C. and Cook, D. Graph-Based Anomaly Detection.

ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pp. 631-636, 2003.

[13] Shetty, J. and Adibi, J. Discovering Important Nodes through

Graph Entropy: The Case of Enron Email Database, KDD,

Proceedings of the 3rd international workshop on link

discovery, pp. 74-81, 2005.

[14] Sun et al. Relevance search and anomaly detection in

bipartite graphs. SIGKDD Explorations 7(2),p.48-55, 2005.

[15] Wan, X., Milios, E., Janssen, J. and Kalyaniwalla, N. Link-

Based Event Detection in Email Communication Networks,

ACM Symposium on Applied Computing, 2009.

[16] S. Nijssen and J. Kok, “A Quickstart in Frequent Structure

Mining Can Make a Difference,” International Conference

on Knowledge Discovery and Data Mining, SIGKDD, pp.

647-652, 2004.

[17] X. Yan and J. Han, “gSpan: Graph-Based Substructure

Pattern Mining,” Proceedings of International Conference

on Data Mining, ICDM, pp. 51-58, 2002.

[18] M. Kuramochi and G. Karypis, “An Efficient Algorithm for

Discovering Frequent Subgraphs,” IEEE Transactions on

Knowledge and Data Engineering, pp. 1038-1051, 2004.

[19] J. Huan, W. Wang and J. Prins, “SPIN: Mining Maximal

Frequent Subgraphs from Graph Databases,” Knowledge

Discovery and Data Mining (KDD), 2004.

[20] Z. Zeng, J. Wang, J., L. Zhou and G. Karypis, “Coherent

closed quasi-clique discovery from large dense graph

database,” Conference on Knowledge Discovery and Data

Mining, SIGKDD, 797-802, 2006.

[21] E. Gudes, S. Shimony and N. Vanetik, “Discovering

Frequent Graph Patterns Using Disjoint Paths,” IEEE

Transactions on Knowledge and Data Engineering,

18(11):1441-1456, 2006.

[22] L. Thomas, S. Valluri and K. Karlapalem, “MARGIN:

Maximal Frequent Subgraph Mining,” Sixth International

Conference on Data Mining (ICDM), 109-1101, 2006.

[23] J. Sun, P. You, S. Papadimitriou and C. Faloustos,

“GraphScope: Parameter-free Mining of Large Time-

evolving Graphs,” KDD 2007, August 12-15, 2007.

[24] D. Cook and L. Holder, “Graph-based data mining,” IEEE

Intelligent Systems 15(2), 32-41, 2000.

[25] H. Tong, S. Papadimitriou, P. Yu and C. Faloutsos

“Proximity Tracking on Time-Evolving Bipartite Graphs,”

SIAM Data Mining, 2008, Atlanta, GA, April 24-26, 2008.

[26] Lin, S. & Chalupsky, H. (2003). Unsupervised Link

Discovery in Multi-relational Data via Rarity Analysis.

Proceedings of 3rd IEEE ICDM Intl. Conf. on Data Mining.

pp. 171-178.

[27] Chakrabarti, D. (2004). AutoPart: Parameter-Free Graph

Partitioning and Outlier Detection. PKDD, 8th European

Conference on Principles/Practices of KDD. pp. 112-124.

[28] Rattigan, M. & Jensen, D. (2005). The case for anomalous

link discovery. ACM SIGKDD Exploration News. 7(2):41-

47.

