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ABSTRACT 

Discovering patterns in data represented as a graph has been an 

important focus of research in a variety of domains such as the 

web, biological data, and networks. In general, the two different 

approaches to discovering the normative pattern in a graph have 

focused on either frequency or compression. In addition, the 

ability to discover anomalies in data represented as a graph has 

demonstrated advantages over more traditional data mining 

approaches. However, one of the major issues with graph-based 

approaches is the run-time performance associated with detecting 

anomalies. In this paper, we analyze the differences between 

using frequency versus compression as it pertains to the discovery 

of both normative and anomalous patterns. Using synthetic and 

real-world graphs for our experiments, we explore the varying 

effects of subgraph and anomaly discovery based upon the size of 

the graph, the number of normative patterns within a subgraph, 

and the number of random edges (noise) that can affect subgraph 

discovery. In addition, we explore the scalability of such an 

approach, with the potential application to real-world problems.   

Categories and Subject Descriptors 

H.2.8 [Database Management]: Database Applications - Data 

Mining.  

General Terms 

Algorithms. 
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Graph-based, knowledge discovery, anomaly detection 

1. INTRODUCTION 
Over the last decade, several methods have been developed for 

mining data represented as a graph. One important area of graph 

mining is the discovery of frequent subgraphs in a set of graphs or 

within one large graph. With frequent subgraph miners, the most 

interesting substructure is the largest one (or ones) that meet the 

minimum support – a parametric value that is chosen by the user. 

Whereas, compression-based graph miners discover those 

subgraphs that maximize the amount of compression that a 

particular substructure provides a graph. The algorithms 

associated with these two approaches are not only different, but 

they also may result in dramatic performance differences, both in 

running-times as well as accuracy when it comes to pattern 

discovery. 

In addition, the ability to discover anomalies is a vital task for a 

wide range of organizations, such as businesses or national 

defense, and involves diverse applications, such as fraud and 

intrusion detection. Traditionally, methods for discovering 

anomalies consist of supervised and unsupervised approaches 

using techniques such as classification, clustering, nearest 

neighbors, and statistics [2]. One of the primary issues with these 

approaches is their inability to handle complex, structural data. 

One approach to this issue involves the detection of anomalies in 

data that is represented as a graph. The advantage of graph-based 

anomaly detection is that the relationships between elements can 

be analyzed, as opposed to just the elements’ attributes, for 

structural oddities in what could be a complex, rich set of 

information. However, attempts at applying graph-based 

approaches to anomaly detection have encountered a few 

challenges. 

This paper compares these two approaches and provides some 

empirical results that highlight their differences. Experimenting 

with graphs of different size, structure and density, as long as the 

frequent subgraph mining approach has a sufficient minimum 

support threshold, both approaches discover the same normative 

pattern, albeit with significantly different running times.  Similar 

running time differences are observed when anomaly detection is 

performed, and while the reported anomalies are identical 

between the two approaches, the compression approach appears 

more susceptible to noise that result in false positives.  

2. FREQUENT SUBGRAPH MINING 
There have been various implementations of frequent subgraph 

miners. Approaches like GASTON [16] and gSpan [17] return all 

frequent substructures in a database that is represented as a graph.  

Using a depth-first search on the input graphs, the algorithm 

constructs a hierarchical search tree based upon the DFS code 

assigned to each graph. Then, from its canonical tree structure, 

these algorithms perform a traversal of the tree in order to 

discover the frequent subgraphs. Other approaches, such as Grew 

and FSG also return all of the frequent subgraphs (substructures) 

in a database of transactions that have been represented as a graph 

[18]. However, unlike GASTON and gSpan, they use an Apriori-

style breadth-first search. The algorithm takes the input graphs 
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and performs a level-by-level search, growing patterns one edge at 

a time. The core of the algorithm lies in its candidate generation 

and counting that are used to determine the frequent subgraphs. In 

order to mine large graphs for frequent subgraphs, Huan et al. 

propose a maximal frequent subgraphs approach called SPIN as 

an improvement to gSpan [19]. By mining only subgraphs that are 

not part of any other frequent subgraphs, they are able to reduce 

the number of mined patterns by orders of magnitude.  This is 

accomplished by first mining all frequent trees from a graph, and 

then reconstructing all maximal subgraphs from the mined trees.  

Zeng et al. looked at the problem of dense graphs by mining the 

properties of quasi-cliques [20]. Using a system called Cocain, 

they propose several optimization techniques for pruning the 

unpromising and redundant search spaces. To help combat the 

subgraph isomorphism issue, Gudes et al. propose an Apriori-

based algorithm using disjoint paths [21]. Following a breadth-

first enumeration and what they called an “admissible support 

measure”, they are able to prune candidate patterns without 

checking their support, significantly reducing the search space.  

MARGIN is another maximal subgraph mining algorithm that 

focuses on the more promising nodes in a graph [22]. This is 

accomplished by searching for promising nodes in the search 

space along the “border” of frequent and infrequent subgraphs, 

thus reducing the number of candidate patterns. 

There have also been several attempts at creating graph miners 

that use maximal compression. Implementations such as 

GraphScope [23] and SUBDUE [24] return the substructures that 

compress the graph the best using the Minimum Description 

Length (MDL) principle. SUBDUE uses a beam search (a limited 

length queue of the best few patterns that have been found so far), 

growing patterns one edge at a time, continually discovering what 

substructures best compress the description length of the input 

graph. Graphscope also uses an MDL compression to discover 

graphs, albeit in the context of graphs changing over time. This 

approach examines graph “snapshots”, and when a new graph 

snapshot cannot fit well into an old segment (in terms of 

compression), a change-point is introduced and a new segment 

starts at that time-stamp. The purpose of this approach is to find 

communities of time-evolving graphs along with the change 

points, all represented in a matrix. The core of both of these 

approaches is in their compression strategy. 

3. GRAPH ANOMALY DETECTION 
Recently, there have been significant strides in the development of 

graph-based approaches to anomaly detection. In 2003, Noble and 

Cook used the SUBDUE application to look at the problem of 

anomaly detection from both the anomalous substructure and 

anomalous subgraph perspective [12]. They were able to provide 

measurements of anomalous behavior as it applied to graphs from 

two different perspectives. Anomalous substructure detection 

dealt with the unusual substructures that were found in an entire 

graph. They also presented the idea of anomalous subgraph 

detection which dealt with how anomalous a subgraph (i.e., a 

substructure that is part of a larger graph) was to other subgraphs.  

Lin and Chalupsky [26] took a different approach and applied 

what they called rarity measurements to the discovery of unusual 

links within a graph. Using various metrics to define the 

commonality of paths between nodes, the user was able to 

determine whether a path between two nodes was interesting or 

not, without having any preconceived notions of meaningful 

patterns. The AutoPart system presented a non-parametric 

approach to finding outliers in graph-based data [27]. Part of 

Chakrabarti’s approach was to look for outliers by analyzing how 

edges that were removed from the overall structure affected the 

minimum description length of the graph. Representing the graph 

as an adjacency matrix, and using a compression technique to 

encode node groupings of the graph, he looked for the groups that 

reduced the compression cost as much as possible.  Nodes were 

put into groups based upon their entropy. Using just bipartite 

graphs, Sun et al. [14] presented a model for scoring the normality 

of nodes as they relate to the other nodes.  Again, using an 

adjacency matrix, they assigned what they called a “relevance 

score” such that every node x had a relevance score to every node 

y, whereby the higher the score the more related the two nodes. 

The idea was that the nodes with the lower normality score to x 

were the more anomalous ones to that node. In [28], they also 

went after anomalous links, this time via a statistical approach. 

Using a Katz measurement, they used the link structure to 

statistically predict the likelihood of a link. 

Other approaches include Wan et al. [15] who use a link-based 

event detection method that clusters similar vertices together and 

then considers deviations from each vertex’s individual profile.  

Whereas, Huang uses probabilities to generate models that predict 

the likelihood of links with the topology of a graph [10]. More 

recently, Akoglu et al. present an algorithm called OddBall that 

searches weighted graphs based upon a set of rules to determine 

whether or not an anomaly exists [1]. Eberle and Holder [5] 

introduced the GBAD (Graph-Based Anomaly Detection) 

approach which uses information theoretic, probabilistic and 

maximum partial substructure approaches to discover all three 

types of graph-based anomalies:  modifications, insertions and 

deletions. In their approach, anomalies are viewed as unexpected 

deviations from normative patterns, rather than just unexpected 

structure [6][8] [7][8]. 

However, with all of these approaches, the primary issue 

continues to be scalability.  While certain small-world domains 

(e.g., Enron e-mail [13][4]) as well as specific graph 

representations (e.g., bipartite [14] and time-evolving graphs [25]) 

have yielded improvements in the run-time performance, 

application in a large real-world setting has been elusive. We 

propose the use of a frequent subgraph mining approach to help 

address these performance issues. 

4. TWO APPROACHES 
We have chosen two systems, GASTON and SUBDUE, as 

representatives of frequency and compression-based approaches. 

4.1 Methodologies 
The goal of GASTON is to return all frequent substructures in a 

graph using a depth-first search on the input graphs. The core of 

the GASTON algorithm (and other approaches, like gSpan) is the 

construction of its hierarchical search tree based upon the DFS 

code assigned to each graph. Using its canonical tree structure, the 

algorithm performs a traversal of the tree in order to discover the 

frequent sub-graphs. This search through the DFS codes is 

repeated on each edge until its frequency drops below the user 

specified minimum support threshold. 

The key to the GASTON algorithm lies in its canonical labels, 

search strategy, and effective pruning strategy. The canonical 

labeling system that is employed partitions the graph according to 

a DFS lexicographic order that is a minimum DFS encoding. 

Because there could be many possible DFS trees, it chooses the 



one with the smallest lexicographic value. GASTON also uses a 

traversal of the DFS code tree, where it is able to prune false 

positives before they are compared (unlike what happens in 

approaches like FSG). In addition, GASTON’s performance is 

improved by first searching for frequent paths, then searching for 

frequent trees, and then finally for frequent subgraphs. 

The goal of SUBDUE is different from frequent subgraph miners 

in that it chooses to return the substructures that compress the 

graph the best. Using a beam search (a limited length queue of the 

best few patterns that have been found so far), the algorithm 

grows patterns one edge at a time, continually discovering what 

substructures best compress the description length of the input 

graph. After extending each substructure by one edge, it evaluates 

the substructure based upon its compression value (the higher the 

better). A list is maintained of the best substructures, and this 

process is continually repeated until either there are no more 

substructures to compress or a user-specified limit is reached. 

There are two key components to the SUBDUE algorithm.  First, 

there is the use of a compression methodology. The idea behind 

this approach is that there could be interesting patterns that are 

less frequent than other patterns. In short, using the Minimum 

Description Length principle, the graph is represented as the 

number of bits needed to encode an adjacency matrix 

representation of the graph. Thus, the substructure that reduces the 

number of bits the most (by replacing all instances of the 

substructure with a single vertex) is considered the better 

substructure. Second, SUBDUE collects the instances of a 

subgraph by finding those that match (graph isomorphism) from a 

list of candidates, rather than performing a subgraph isomorphism 

test each time. SUBDUE further constrains the graph 

isomorphism test to run in polynomial time. In addition, several 

optimization steps have been incorporated into SUBDUE to 

reduce the frequency with which it is performed. Some of these 

optimization techniques are controlled by an optional -prune 

parameter, while others are intrinsic. For instance, the –prune 

option tells SUBDUE to prune the search space by discarding 

substructures whose value is less than that of their parent's 

substructure. Since the evaluation heuristics are not monotonic, 

pruning may cause SUBDUE to miss some good substructures, 

however, it will improve the running time.  

While both of these applications have some obvious algorithmic 

differences in their choices (e.g., canonical depth-first tree versus 

compression), there is one key difference in their results.  

GASTON returns the frequent sub-graphs from a set of input 

(transaction) graphs. SUBDUE returns the sub-graphs that are 

believed to represent the graph the best by resulting in the graph’s 

maximum compression. Though the ultimate goal for both of 

these approaches it to find interesting patterns, the result could be 

a different set of patterns being discovered. 

4.2 Algorithmic Analysis 
Because of the algorithmic choices each methodology uses, there 

are differences in the amount of memory/space that is used for 

their internal structures. GASTON uses a sparse adjacency list 

representation of the graphs, and with its tree structure and 

pruning strategy (the depth-first search allows for removal of 

edges and whole graphs from the search space after all relevant 

patterns for that edge or graph has been processed), it uses a 

minimal amount of memory. Whereas, SUBDUE uses a 

significant amount of memory due to the graph structures it builds 

and the maintenance of best substructures and graph instances. 

Several optimization techniques have been employed by both of 

these systems, albeit different types of optimization. GASTON, as 

already mentioned, achieves its optimization through its pruning 

strategy, and of course, it does not do candidate generation.  

SUBDUE implements not only an optional aggressive form of 

pruning the list of best substructures, it also performs some 

heuristic measures to avoid some repetitive comparisons. Each of 

these optimizations not only reduces the amount of memory 

needed, they also increase their relative speed. However, 

SUBDUE does make more calls to the graph isomorphism test 

than GASTON, and the canonical tree ordering implemented in 

GASTON minimizes its search space. 

While in general SUBDUE may be slower than GASTON, it does 

have several significant features. For instance, SUBDUE can 

handle both directed and undirected input graphs. (And other 

frequent subgraph miners have similar graph input restrictions, 

such as dealing with only bipartite graphs, or ignoring labels.) In 

addition, SUBDUE can perform inexact graph matching. By 

specifying a threshold, the user can indicate a level of acceptance 

for patterns that may not match completely. While it may be 

possible to implement some of these features into GASTON (or 

other approaches like FSG and gSpan), that could be problematic. 

For instance, allowing for directed graphs in GASTON could 

cause its tree structure to become a forest, and ultimately cause 

issues with both its traversal and pruning strategies. 

It should also be mentioned that one of the advantages of the 

SUBDUE approach is its ability to handle more complex graphs 

in multiple domains.  GASTON does not appear to be able to 

handle large, regular frequent sub-graphs (i.e., long patterns), and 

has only been documented on small graphs for specific domains.  

In addition, both GASTON and SUBDUE are not able to handle 

non-structural attribute values. For instance, the difference 

between 50.0001 and 50.0002 is handled the same as if the two 

values were 1 and 1000 (i.e., two uniquely different values). 

There are two algorithmic disadvantages with SUBDUE. First, 

SUBDUE is a greedy algorithm. While this is useful from a 

performance perspective, there is the possibility that some 

frequent sub-graphs could be missed.  Second, the compression 

mechanism used by SUBDUE is lossy. In other words, one cannot 

reverse the compression and restore the original graph. 

One final observation regarding these algorithms should be made.  

While GASTON should be a significantly better performer in 

terms of memory and speed, it is also extremely complex.  

Considering some of the enhancements that would need to be 

made to make GASTON a more robust application, certain 

enhancements will increase the running time.  Another possibility 

could be to incorporate some of GASTON’s features, such as the 

canonical form for subgraph generation, into SUBDUE. 

5. NORMATIVE PATTERN DISCOVERY 
We now present the empirical results from experiments 

comparing the two approaches. The following algorithm 

represents the methodology used for constructing our synthetic 

input graphs: 

Given: 

S = subgraph 

N = number of transactions 



C = maximum copies of S per transaction 

E = maximum extra edges per transaction 

Do: 

    T = {} 

    for n = 1 to N 

        t = c copies of S (where c is drawn  from Uniform(1,C)) 

        Add extra random edges e to t (where e is drawn from 

          Uniform(1,E), e's label randomly selected from unique 

          labels, e's vertices randomly selected from vertices in t) 

       Add t to T 

   return T (set of N transactions) 

 
Using the above methodology, we kept the size of the subgraph S 

constant (10 vertices and 9 edges), and varied the other 

parameters as follows: 

 N:  10, 100, 1000, 10000 

 C:  1, 2, 3 

 E:  5%, 10%, 15%, 20% (where the number of random edges is 

   based upon the size of transaction)   

 

We chose to use SUBDUE and GASTON in our experiments for 

one primary reason: very few graph mining tools are publicly 

available.  (In addition, if needed, we can analyze/modify the code 

as they both are open-source.) For SUBDUE, we will use version 

5.2 (www.subdue.org). All SUBDUE runs will use the default 

options (i.e., no parameters specified). The one exception to this is 

the use of the –undirected parameter. Since GASTON does not 

allow directed graphs, we can only compare undirected graphs. 

This parameter tells SUBDUE to only handle edges as undirected. 

For GASTON, we will use version 1.1 

(www.liacs.nl/~snijssen/gaston). Again, we will use the default 

options (i.e., no parameters), except for varying minimum support 

thresholds (mst). Here we make a slight modification to the 

baseline code. GASTON only outputs all substructure instances 

that meet the MST. So, in order to test our hypothesis, we will 

modify GASTON to output the single (best) substructure that 

maximizes (frequency * size). This will be in direct contrast to 

what SUBDUE discovers, where the best substructure is defined 

to be the subgraph that compresses the graph the best (MDL). 

It should be noted that in the following sections, the x-axis, 

moving from left to right, represents increasing difficulty, based 

upon the number of copies (c) and edges (e). 

5.1 Sparse Graphs 
For these experiments, we analyzed graphs which are considered 

sparse (average degree < 2). Sparse graphs are very representative 

of real-world phenomenon such as network traffic, citation 

networks, and social networks. We chose a subgraph pattern S 

consisting of 10 vertices and 9 edges and embedded it into each of 

the N transactions.  We vary the number of copies of S in each 

transaction according to the C parameter. We then add additional 

edges to each transaction according to the E parameter. 

For the experiments shown in Figure 1, where N=10, when C=3, 

SUBDUE discovers the normative pattern in under 0.3 seconds, 

whereas for GASTON discovery of the normative pattern with an 

mst of 10% and number of extra random edges (E) at 10%, takes 

~2 hours, and more than 16 hours when E > 10%. 

 

Figure 1.  Runs for N=10 on sparse graphs. 

In Figure 2, where N=100, when C=3, SUBDUE completes in 

under 5 seconds, whereas for GASTON discovery of the 

normative pattern with an mst of 10% and number of extra 

random edges (E) at 5%, takes ~7 minutes, and more than 3 hours 

when E > 5%. Also, with an mst of 30%, runs with E=15% take 

~19 minutes and runs with E > 15% do not complete in < 3 hours. 

 

Figure 2.  Runs for N=100 on sparse graphs. 

For the experiments shown in Figure 3, where N=1000, when 

C=3, SUBDUE discovers the best substructure in under 4 

minutes, whereas for GASTON discovery of the normative 

pattern with an mst of 10% and number of extra random edges (E) 

at 5%, takes ~13 minutes, and more than 3 hours when E > 5%. 

Also, with an mst of 30%, runs with E=15% take over 2 hours and 

runs with E > 15% do not complete in less than 10 hours. 

 

Figure 3.  Runs for N=1000 on sparse graphs. 

In Figure 4, where N=10000, SUBDUE runs range from a max of 

16 hours to a minimum of 3 hours. GASTON performs well on all 

runs when the mst is at least 50% (less than one second in the 

worst case), but even at an mst of 30%, the runs grow significantly 

when more connectivity is introduced. Most runs with an mst of 

10% had to be terminated after a few hours. 



 

Figure 4.  Runs for N=10000 on sparse graphs. 

For all SUBDUE and GASTON runs that completed, the seeded 

normative pattern is reported as the best substructure, with no 

extra random edges. In addition, in all cases, both approaches 

report all instances of the best substructure. So, not only does the 

frequent subgraph mining approach produce identical results to 

the compression approach, but it is clearly faster when the number 

of transactions is large. Some of the performance degradation in 

GASTON, when the minimum support threshold is low, is due to 

the connectedness of the graph.  The synthetic graphs that were 

generated consisted of a mixture of edges between vertices in the 

same subgraph and vertices in different subgraphs. The less 

connected the graph, the faster the running times. While it does 

not appear to affect GASTON when the threshold is at least 50%, 

runs under that minimum support threshold, in some cases, do not 

finish in a reasonable amount of time (albeit still better than the 

compression approach in some cases).  Also, as is the case with all 

frequent subgraph mining approaches, the minimum support is 

parametric, which requires a user to make a decision about an 

appropriate threshold.  With SUBDUE, there is no such threshold. 

5.2 Dense Graphs 
For these experiments, we analyzed graphs which are considered 

dense (average degree > 2). We chose a subgraph pattern S that is 

a complete graph consisting of 5 vertices and 10 edges (each 

vertex has degree 4) and embedded it into each of the N 

transactions.  We vary the number of copies of S in each 

transaction according to the C parameter. We then add additional 

edges to each transaction according to the E parameter.  

For the experiments shown in Figure 5, where N=10, the 

discovery of normative patterns by SUBDUE grows at a nonlinear 

rate, whereas the running times are negligible for GASTON when 

the mst is 30% or 50%. Only when the mst is 10% does it 

fluctuate based upon the number of extra random edges (E). 

 

Figure 5.  Runs for N=10 on dense graphs. 

In Figure 6, where N=100, all SUBDUE runs complete in under 

17 seconds. However, GASTON struggles to discover the 

normative pattern when there is more than one normative pattern 

(C) per transaction. With an mst of 50%, the longest run is 1760 

seconds. However, for mst of 10%, runs did not complete within 

24 hours when there is at least 3 normative patterns per 

transaction, and an mst of 30% also struggles on graphs with more 

random edges (E), not finishing within 24 hours either. In short, 

except for when E=20% (i.e., the amount of random edges that 

add more connectivity to the graph), an mst of 50% is sufficient to 

discover the normative pattern and complete within a second for 

GASTON. Similar behavior is observed when N=1000. 

 

Figure 6.  Runs for N=100 on dense graphs. 

In Figure 7, where N=10000, SUBDUE runs range from a 

maximum of 31 hours to minimum running times of 1 hour. 

GASTON performs better on all runs when the mst is at least 50% 

(less than 1324 seconds in the worst case). However, runs with an 

mst of 10% and 30% do not complete in under 24 hours with C=3 

(except for the case where the number of random edges is small 

and the mst is 30%), and trends upwards in running times similar 

to SUBDUE. 

 

Figure 7.  Runs for N=10000 on dense graphs. 

In summary, across all of the experiments, when the graphs are 

small, SUBDUE discovers all of the normative patterns in a 

reasonable amount of time. However, a frequent subgraph mining 

approach like GASTON is consistent in its discovery and running 

times when the minimum support threshold is at 50%, plus 

executes faster than SUBDUE on larger graphs. 

5.3 Real-World Example 
In order to evaluate the two approaches on real-world data, we 

chose to use the publicly available data set of e-mails between 

employees from the Enron Corporation. The Enron e-mail dataset 

consists of not only messages, but also employee information such 

as their full name and work title. We created graphs based on the 

“social network” and company position of employees that start a 

“chain” of e-mails, where a chain consists of the originating e-

mail and any subsequent replies or forwards to that e-mail. Each 

graph consists of substructures represented as shown in Figure 8. 



<originating 

title> TRANSFER
SENDER

<ORIG or 

RE or 

FW>

STATE

<mid>

MID

<TO or 

CC or 

BCC>

METHOD

<title>RECEIVER

 

Figure 8.  Substructure topology for Enron e-mail. 

In this representation, a graph consists of individual, disconnected 

substructures that represent the “flow” of each e-mail that 

originates from someone with a specified title (e.g., Director). An 

e-mail can be sent by one or more TRANSFERs to one or more 

individuals with varying employment titles (represented by an 

arrow to show who sent the message to whom), and can either be 

sent back (as a reply or forward) to the <originating title>, or 

forwarded/replied on to other <title> entities. 

There are many different employee titles within Enron, for 

example Presidents, each with expected different patterns of 

behavior. So, in order to determine the interesting patterns that 

each approach would discover, we created graphs that consist of 

all personnel grouped by their respective title.  For instance, if a 

person is a VP, all of the e-mails that originated from them would 

be included in the graph of VPs. In addition, we will vary the mst 

on the frequent subgraph mining approach to see what effect that 

has on the discovered normative pattern. On the experiments of e-

mails originating from Traders, GASTON, with an mst of 50%, 

reports the best substructure as the one shown in Figure 9. 

TO

ORIG

TRANSFER

TRADER TRANSFER ORIG

TRANSFER

ORIG

EMPLOYEE

METHOD

STATE

RECEIVER

SENDER

SENDER

STATE

SENDER STATE

 

Figure 9.  Best substructure for Traders with mst=50%. 

However, if we lower the minimum support threshold below 50%, 

the normative pattern begins to shrink. Figure 10 shows the 

normative pattern when the mst value is below 50%. 

TRANSFER

TRANSFER

TRADER

TRANSFER

TRANSFER
SENDER

SENDER

SENDER

SENDER

 

Figure 10.  Best substructure for Traders with mst < 50%. 

Clearly, a more interesting (structurally) pattern exists when the 

threshold represents a value whereby the normative pattern exists 

in at least half of the transactions. In the case where the minimum 

support is lower, we discover more instances of the pattern shown 

above in Figure 10, but even a slight increase from 45 to 50 

allows one to see a larger pattern of behavior among traders. It is 

also interesting to note that increasing the mst to 55% results in a 

different AND smaller normative pattern, as shown in Figure 11. 

 

Figure 11.  Best substructure for Traders with mst= 55%. 

Based upon the size of the substructures discovered, the use of an 

mst of 50% appears to be a reasonable choice. In addition, 

SUBDUE, which does not use a minimum support threshold, also 

discovers the same substructure as shown in Figure 9, where an 

mst of 50% was used by the frequent subgraph miner GASTON. 

Similar results using GASTON and SUBDUE are observed in 

graphs that represent employees at other levels.  It should also be 

noted that both approaches (with an mst of 50% for GASTON) 

were able to discover the normative patterns in less than 4 

seconds. 

6. ANOMALY DETECTION 
In order to further assess the differences in frequency-based and 

compression-based approaches to graph mining, we will now look 

at a technique for anomaly detection that relies on the discovery 

of normative patterns in order to detect anomalies. While 

frequency-based approaches offer the potential of faster pattern 

discovery, there is the question of what effect differences in the 

discovered patterns have on the detected anomalies. 

In order to test our ability to detect anomalies using a frequent 

subgraph miner, we chose to implement the GBAD algorithms 

within GASTON, because GBAD is not limited to certain graph 

types (e.g., bipartite graphs) or certain domains (e.g., intrusion 

detection), and has been well documented [5]. GBAD has already 

been implemented within the SUBDUE graph-based knowledge 

discovery approach [3][9][11].  

There are three general categories of anomalies: insertions, 

modifications and deletions. Insertions constitute the presence of 

an unexpected vertex or edge in an instance of the normative 

pattern. Modifications would consist of an unexpected label on a 

vertex or edge in the normative pattern. Deletions would 

constitute the unexpected absence of a vertex or edge from the 

normative pattern. GBAD consists of three algorithms, where 

each algorithm is intended to discover one of the corresponding 

possible graph-based anomaly categories. The reader should refer 

to [5] for a more detailed description of GBAD. 

For this work, we implemented all three GBAD algorithms into 

the GASTON framework, which we will call GBAD-FSM. None 

of the algorithms had to be modified to fit into this FSM, with the 

only significant difference being the generation of the normative 

pattern. In previous work, we implemented the GBAD algorithms 

into a compression-based framework, which we will now call 

GBAD-MDL. In GBAD-MDL, the normative pattern (that 

provides the greatest amount of compression) is discovered and 

saved for the GBAD algorithms to use, along with all of the 

instances of the subgraph. However, GASTON by default reports 

all subgraphs that meet its minimum support threshold, no matter 

what the size of the subgraph. So, we modified GBAD-FSM to 

output the n best substructures that maximize (frequency * size). 

In addition, we saved all instances of the best substructure, so as 
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to avoid overlapping of potential subgraphs as well as to know 

which vertices and edges were part of the normative subgraphs. 

6.1 Synthetic Experiments 
For the following experiments, the graphs are created with the 

following attributes: 

 100 to 32,000 transactions with the number of vertices 

and edges ranging from 5,000 to 424,000,  

 80 - 1500 unique labels, 

 A minimum support threshold of 50% (for discovering 

the normative pattern), 

 An anomalous threshold of 7% (i.e., up to 7% difference 

is acceptable as a potential anomaly). 

In terms of what constitutes as an “anomaly” for these 

experiments, we will define anomalies in graph-based data as any 

substructure in a graph that is part of (or attached to or missing 

from) a normative pattern. Formally, the definition is as follows.  

Definition: A graph substructure S’ is anomalous if it is not 

isomorphic to the graph’s normative substructure S, but is 

isomorphic to S within X%. 

X signifies the percentage of vertices and edges that would need to 

be changed in order for S’ to be isomorphic to S.   

Using the same graphs as before, where t is the number of 

transactions in a graph, we randomly created anomalies of varying 

sizes, where some substructures are more anomalous than others. 

On experiments involving anomalous deletions, as shown in 

Figure 12, the percentage of anomalies discovered is higher for 

the GBAD-FSM approach than the GBAD-MDL approach (where 

a value of 1.0 means all anomalies were discovered). 

  

 

Figure 12.  Percentage of anomalous deletions discovered. 

In terms of false positives, neither approach reports any false 

positives (i.e., substructures that are more anomalous than the 

most anomalous substructure), except for a couple of cases when 

using the GBAD-FSM approach on a graph consisting of 16,000 

transactions (~848,000 vertices and edges). In this example, some 

random “noise” in the graph (i.e., structure that is unexpected and 

at a low frequency) is picked up as equally anomalous to the 

randomly injected anomalies. 

On experiments involving anomalous insertions, both approaches 

discover all of the injected anomalies, except for the GBAD-MDL 

run on graphs of 32,000 transactions (~1,696,000 vertices and 

edges). However, in terms of false positives, the GBAD-MDL 

approach reports many other substructures as equally anomalous 

when the graphs are smaller, as shown in Figure 13. In these 

cases, the noise that is prevalent in the smaller graphs is repeated 

in the large graphs to the point that their frequency is no longer as 

anomalous as the targeted anomalies. 

Note that the GBAD-FSM implementation does not report any 

false positives. The reason for this is being investigated, as the 

algorithms for determining what substructures are anomalous are 

identical between the two approaches, so clearly the compression 

approach is affecting GBAD-MDL’s accuracy. 

  

Figure 13.  Percentage of false positives running GBAD-MDL. 

On experiments involving anomalous modifications, the results 

are very similar between the GBAD-MDL and GBAD-FSM.  

Both approaches are able to discover anywhere from 33% to 

100% of the targeted anomalies, and in all cases where the 

anomaly is not discovered, it is a case of an anomalous 

modification being made to a non-normative vertex or edge (due 

to the randomness of the graph generation). Since the definition of 

anomaly that is used by the GBAD approach assumes that an 

anomaly is a small modification to a normative pattern, this 

behavior is to be expected. False positives are also at a minimum, 

as the GBAD-FSM approach does not report any false positives, 

and the GBAD-MDL approach only reports a few false positives 

(less than 10% of the transactions) when the number of 

transactions is less than 2000. Again, structural modifications as a 

result of “noise” are more predominant when the graph is smaller. 

Figure 14 shows the running times of the experiments on graphs 

with anomalous deletions. Clearly the GBAD-FSM result is faster 

when the graph reaches 1000 transactions or more, with almost an 

exponential growth in the running times for GBAD-MDL. Runs 

of GBAD-MDL on graphs of over 8,000 transactions (~424,000 

vertices/edges) were aborted after 24 hours, and not expected to 

finish in a reasonable amount of time for these experiments (or 

most real-world scenarios). Similar behavior is observed for 

detecting anomalous modifications and insertions. 

 

Figure 14. Running times for discovering anomalous deletions. 

6.2 Accuracy 
In the previous section, we arbitrarily chose an anomalous 

threshold of 0.07, targeting substructures whose differences from 

the normative pattern did not exceed more than 7% change.  

However, as with most anomaly detection approaches, one can 



adjust thresholds to achieve different results. A decrease in the 

threshold may reduce the number of potential anomalies, while an 

increase in the threshold may not only result in more anomalies 

being discovered, but also may introduce more false positives. To 

analyze the effects of the anomalous threshold on both of these 

approaches, we will measure accuracy based on different 

thresholds of 0.05, 0.10, 0.15 and 0.20. 

For these experiments, we generated 30 synthetic graphs with 

random anomalies (i.e., deletion, insertion and modification) for a 

total of 90 graphs, and evaluated both approaches using the 

different thresholds.  Figure 15 shows the accuracy for both the 

GBAD-FSM and GBAD-MDL approaches on the discovery of 

anomalous deletions and anomalous modifications.While the 

GBAD-MDL approach is slightly more accurate in terms of 

detecting anomalous deletions, particularly at the higher 

thresholds, that is due to the aggressive pruning that takes places 

with the GBAD-FSM approach. As was documented earlier, the 

GBAD-FSM is significantly faster, much of which is due to the 

canonical tree structure that is known to be faster than the 

compression approach. However, because of the pruning, the 

accuracy is diminished slightly. 

For the GBAD-FSM approach on the 30 graphs that contained 

anomalous modifications, the randomness of the anomalous 

modifications, plus an anomalous threshold above what is needed 

for small modifications, clearly affects the accuracy. Where the 

modification occurs can influence the amount of change in a 

substructure – in some cases, effectively cutting the substructure 

in half.  In addition, the increase in the threshold allows for more 

false positives (and false negatives) to be reported. For the 

GBAD-MDL approach on these graphs, while there are 

fluctuations in terms of the number of false positives and false 

negatives, the accuracy is fairly consistent.  Threshold 0.1 

produces the most anomalies, while thresholds above and below 

this value result in more false results. This behavior is similar 

between the two approaches, with a slightly better accuracy using 

the GBAD-MDL approach.  

 

 

For anomalous insertions, the accuracy using the GBAD-FSM 

approach is 94.3. For the GBAD-MDL approach the accuracy is 

98.3%. Again, due to an aggressive pruning strategy associated 

with maintaining the canonical tree for frequent subgraph mining, 

some anomalies are not discovered, pushing non-targeted 

anomalies to a false-positive state. 

In summary, the accuracy of detecting anomalous deletions is 

fairly consistent across both approaches, while the accuracy of 

detecting anomalous insertions fluctuates, specifically with the 

GBAD-FSM approach, which appears more susceptible to the 

location of the inserted anomaly relative to the normative pattern. 

6.3 Real-World Example 
Using shipping data obtained from Customs Border and 

Protection (http://www.cbp.gov/), we are able to create a graph-

based representation of cargo information where containers, ports, 

financial information, shippers, importers, etc., are represented as 

labeled vertices, and labeled edges convey their relationships. 

Figure 16 shows a portion of the graph that we used on our 

experiments. We injected different types of known (reported) 

anomalies into the data, allowing us to analyze the performance of 

these two approaches on real-world data at significant volumes. 
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Figure 16.  Example graph substructure of a cargo shipment. 

As reported in [5], among 1000 shipments, where each shipment 

consists of ~60 vertices and edges, the GBAD-MDL approach is 

able to successfully discover the anomalous structure associated 

with the existence of an extra edge and vertex (in this case, the 

vessel traversed an extra port – an unexpected deviation from the 

normal pattern). In addition, the GBAD-MDL approach reports 

the substructure as anomalous due to the missing information – in 

this instance, the financial information that was removed. Similar 

to GBAD-MDL, GBAD-FSM discovers the anomalous instance. 

In addition, we experimented on cargo shipments with anomalous 

modifications, and both approaches report the most anomalous 

substructure as the one containing a different country of origin – 

one that deviated from the normal pattern. It should also be noted 

that the GBAD-FSM approach was significantly faster at 

discovering the anomalies. The GBAD-MDL approach took 

22,523 seconds to discover all of the anomalies, whereas GBAD-

FSM only took 15 seconds. 

7. CONCLUSIONS AND FUTURE WORK 
We have compared a frequency-based and compression-based 

approach to mining normative and anomalous patterns in graphs. 

While there are some advantages to the SUBDUE compression-

based approach with its multiple features and best substructure 

instance generation, the running-times clearly favor a frequent 

subgraph miner like GASTON where an appropriate minimum 

support threshold is used. In terms of accuracy, both approaches 

were able (when given enough time) to discover the same 

normative patterns. In the future, experiments with larger graphs 

(> 1 million nodes) will need to be examined, as that is a known 

issue with many data mining approaches, as well as different sizes 

of normative patterns.  Also, a more thorough analysis of the 

effects of noise in a graph (a known issue in real-world data such 

as TCP/IP networks), is warranted.  We also plan on investigating 

the inclusion of efficiency mechanisms from GASTON into 

SUBDUE. In addition, in the process of executing these 

Figure 15.  Accuracy for detecting deletions and modifications. 

http://www.cbp.gov/


experiments, we discovered several topological properties that 

affect the performance of these approaches. First, for the GBAD-

FSM approach, the size of a transaction (i.e., the larger the 

frequent subgraph) affects the algorithm’s running times.  Also, in 

order to speed up the GBAD-FSM approach, overlapping 

substructures are not considered, which can be an issue with the 

number of reported anomalous substructures. And, both 

approaches are affected by the connectivity of the substructures, 

and the number of unique labels. Only connected substructures are 

considered for the normative patterns, and the greater the number 

of unique labels, the longer the algorithms take to execute. 

Finally, both of these approaches are based upon the GBAD 

definition of an anomaly [5]. There are other potential definitions 

of what constitutes an anomaly, and they should be examined in 

terms of their effect on performing anomaly detection. 
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