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Abstract— The graph classification problem is learning to classify
separate, individual graphs in a graph database into two or more
categories. A number of algorithms have been introduced for the graph
classification problem. We present an empirical comparison of the major
approaches for graph classification introduced in literature, namely,
SubdueCL, frequent subgraph mining in conjunction with SVMs, walk-
based graph kernel, frequent subgraph mining in conjunction with
AdaBoost and DT-CLGBI. Experiments are performed on five real world
data sets from the Mutagenesis and Predictive Toxicology domain which
are considered benchmark data sets for the graph classification problem.
Additionally, experiments are performed on a corpus of artificial data
sets constructed to investigate the performance of the algorithms across
a variety of parameters of interest.

Our conclusions are as follows. In datasets where the underlying
concept has a high average degree, walk-based graph kernels perform
poorly as compared to other approaches. The hypothesis space of the
kernel is walks and it is insufficient at capturing concepts involving
significant structure. In datasets where the underlying concept is discon-
nected, SubdueCL performs poorly as compared to other approaches. The
hypothesis space of SubdueCL is connected graphs and it is insufficient
at capturing concepts which consist of a disconnected graph. FSG+SVM,
FSG+AdaBoost, DT-CLGBI have comparable performance in most cases.

I. INTRODUCTION

In the past, machine learning research has focused on attribute-
valued data or data that is naturally expressed as a single table.
Although these methods have achieved great success in a variety of
real world domains, data in a majority of domains has an inherent
structure which prevents it from being expressed as attribute-valued
data and hence new approaches for dealing with such data have been
developed. The two main approaches for dealing with such data are
based on representing such data in first-order logic and graphs. A
variety of problems based on graphical representation of structured
data have been studied in the past. The problem that this work focuses
on is that of graph classification which is learning to classify separate,
individual graphs in a graph database into two or more categories.

The problem of graph classification was first studied by [1] who
proposed the SubdueCL algorithm for the task and had promising
initial results. The approach was based on a greedy search for sub-
graphs which distinguish one class of graphs from all other classes.
Since then, a variety of new algorithms and approaches based on
extending existing attribute-valued algorithms have been studied. [2]
applied the FSG system to mine frequent sub-graphs in a graph
database which were represented as a feature vector, and support
vector machines were then applied to classify these feature vectors.
[3] proposed the DT-CLGBI algorithm which learns a decision tree for
graph classification in which each node is associated with a sub-graph
and represents an existence/nonexistence test. [4] proposed an ap-
proach based on boosting decision stumps where a decision stump is
associated with a sub-graph and represents an existence/nonexistence
test. [5] proposed an approach based on using support vector machines
for the task of graph classification by developing graph kernels. Two
kernels, namely, the walk-based (direct product) kernel and the cycle-
based graph kernel were proposed in this work. [6] recently proposed
another walk-based graph kernel.

The variety of algorithms and approaches introduced for the
task of graph classification raises the following natural question.

What are the comparative strengths and weaknesses of these algo-
rithms/approaches? The overall goal of this research is to answer
this question by conducting a comprehensive empirical comparison
of approaches for graph classification in order to identify their under-
lying strengths and weaknesses. Our empirical comparison included
all the major approaches/algorithms for graph classification intro-
duced in literature, namely, SubdueCL, frequent subgraph mining in
conjunction with SVMs, walk-based graph kernel, frequent subgraph
mining in conjunction with AdaBoost and DT-CLGBI. Experiments
are performed on five real world data sets from the Mutagenesis and
Predictive Toxicology domain which are considered benchmark data
sets for the graph classification problem. Additionally, experiments
are performed on a corpus of artificial data sets constructed to
investigate the performance of the algorithms across a variety of
parameters of interest.

The rest of the document is organized as follows. In Section 2
we present a concise overview of the algorithms/approaches for the
graph classification problem introduced in literature. In Section 3, we
discuss our experiments and results with real world data. In Section
4, we discuss our experiments and results with artificial data. Section
5 concludes.

II. APPROACHES TO GRAPH CLASSIFICATION

In this section, we present a concise overview of the algo-
rithms/approaches for the graph classification problem introduced in
literature. First, we formulate the graph classification problem.

A labelled graph is defined as G = (V, E, α, β) where V is the
set of vertices, E ⊆ V ×V is a set of edges, α is the vertex labelling
function α : V → ΣV where ΣV is the alphabet of vertex labels
and β is the edge labelling function β : E → ΣE where ΣE is
the alphabet of edge labels. Given a set of L training examples T =
{〈xi, yi〉}L

i=0 where xi ∈ X is a graph and yi ∈ {+1,−1}, the graph
classification problem is to induce a mapping f : X → {+1,−1}.

A. SUBDUE

The SubdueCL algorithm proposed by [1] is the pioneering algo-
rithm for the graph classification problem. The key aspect of the
algorithm is the greedy, heuristic search for subgraphs present in
positive examples and absent in the negative examples. The hypothesis
space of Subdue consists of all the connected subgraphs of all the
example graphs labeled positive.

Subdue performs a beam search which begins from subgraphs
consisting of all vertices with unique labels. The subgraphs are
extended by one vertex and one edge or one edge in all possible
ways, as guided by the input graphs, to generate candidate subgraphs.
Subdue maintains the instances of subgraphs (in order to avoid
subgraph isomorphism) and uses graph isomorphism to determine the
instances of the candidate substructure in the input graph. Candidate
substructures are evaluated according to classification accuracy or the
minimum description length principle introduced by [7].

The length of the search beam determines the number of can-
didate substructures retained for further expansion. This procedure
repeats until all substructures are considered or the user imposed
computational constraints are exceeded. At the end of this procedure
the positive examples covered by the best substructure are removed.
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The process of finding substructures and removing positive examples
continues until all the positive examples are covered.

The model learned by Subdue thus consists of a decision list each
member of which is connected graph. Applying this model to classify
unseen examples involves conducting a subgraph isomorphism test;
if any of the graphs in the decision list are present in the example, it
is predicted as positive, if all the graphs in the decision list are absent
it the example, it is predicted as negative.

B. Frequent Subgraph Mining in Conjunction with SVMs

The approach introduced by [2] for graph classification involves
the combination of work done in two diverse fields of study, namely,
frequent subgraph mining and support vector machines. First, we
present a quick overview of the work done on the frequent subgraph
mining problem.

The frequent subgraph mining problem is to produce the set of
subgraphs occurring in at least ε of the given n input example
graphs (which are referred to as transactions). The initial work in
this area was the AGM system proposed by [8] which uses the
apriori level-wise search approach. The FSG system proposed by
[9] takes a similar approach and further optimizes the algorithm
for improved running times. The gSpan system proposed by [10]
uses DFS codes for canonical labeling and is much more memory
and computationally efficient than the previous approaches. The most
recent work on this problem is the Gaston system proposed by [11]
which efficiently mines graph datasets by first considering frequent
paths which are transformed to trees which are further transformed
to graphs. Contrasting to all these approaches to frequent subgraph
mining which are complete, the systems Subdue by [12] and GBI by
[13] are based on heuristic, greedy search.

The key idea in combining frequent subgraph miners and SVMs
in order to perform graph classification is to use a frequent subgraph
mining system to identify frequent subgraphs in the given examples,
then to construct feature vectors for each example where each feature
is the presence or absence of a particular subgraph and train a support
vector machine to classify these feature vectors.

The model produced by this approach thus consists of a list of
graphs and a model produced by the SVM. Applying this model
to classify unseen examples involves conducting a subgraph isomor-
phism test; a feature vector for the unseen example is produced
wherein each feature represents the presence or absence of a graph
in the list in the unseen example and this feature vector is classified
as positive or negative by the model produced by the SVM.

C. Walk-based Graph Kernels

Another approach to applying SVMs to graph classification is to
use graph kernels which, given two input graph output a similarity
measure between the tow graphs. This similarity measure is basically
the inner product of the feature vectors of these graphs over a
high dimensional feature space which can feasibly computed without
actually having to generate the feature vectors. The key work on
this approach is due to [5] who introduced the walk-based (direct
product) kernel and the cycle-based graph kernel, and [6] who recently
introduced another kernel based on random walks on graphs. Here we
describe the walk-based (direct product) kernel in detail.

To describe the direct product kernel we need some more notions
and notation. A walk w in a graph g is a sequence of edges
e1, e2, ...en such that for every ei = (u, v) and ei+1 = (x, y), v = x
is obeyed. Every walk is associated with a sequence of vertex and
edge labels.

An adjacency matrix Mg of graph g is defined as,

[Mg]ij =

(
1, if (vi, vj) ∈ E

0, otherwise

A direct product of two graphs g1 = (V1, E1, α1, β1) and g2 =
(V2, E2, α2, β2) (with identical edge label alphabet Σ) g1 × g2 is
defined as,

1) Vg1×g2 = {(v1, v2) ∈ V1 × V2}
2) Eg1×g2 = {((u1, u2), (v1, v2)) ∈ E1 × E2} such that,

a) (u1, v1) ∈ E1

b) (u2, v2) ∈ E2

c) α(u1) = α(u2)
d) α(v1) = α(v2)
e) β1((u1, v1)) = β2((u2, v2))

An important observation here that taking a walk on a direct product
graph g1 × g2 is equivalent to taking an identical walk on graphs g1

and g2. Stated differently, this means that we can take a certain walk
on g1 × g2 if and only if there exists a corresponding identical walk
in both g1 and g2.

For two graphs g1 = (V1, E1, α1) and g2 = (V2, E2, α2) (with
identical edge label alphabet Σ) let Mg1×g2 be the adjacency matrix
of their direct product graph g1 × g2. With a sequence of weights
λ0, λ1, ... such that λi ∈ R and λi ≥ 0 for all i ∈ N, the direct
product kernel k×(g1,g2) is defined as,

k×(g1,g2) =

|Vg1×g2 |X

i,j=1

» ∞X

!=0

λ!M
!
g1×g2

–

ij

if the limit exists.
Intuitively, the direct product kernel computes the powers of the

adjacency matrix of the direct product graph Mg1×g2 and sums them.
This is equivalent to counting the identical walks that can be taken in
both the input graphs. This is because any walk in g1×g2 corresponds
to an identical walk in both g1 and g2 and the %th power of Mg1×g2

captures all walks of length % in Mg1×g2 .
The authors describe two ways in which the direct product kernel

can be computed, the first based on matrix diagonalizing and the
second based on matrix inversion. The key issue in computing the
kernel is that of computing the powers of the adjacency matrix of the
direct product graph. The approach based on matrix diagonalizing
involves diagonalizing the adjacency matrix of the direct product
graph. If Mg1×g2 can be expressed as Mg1×g2 = T−1DT , then
Mn

g1×g2 = (T−1DT )n. Then, Mn
g1×g2 = T−1DnT and computing

arbitrary powers of the diagonal matrix D can be performed in linear
time. It follows that the hardness of computing the direct product
kernel is equivalent to that of diagonalizing the adjacency matrix
of the direct product graph. Matrix diagonalizing is O(m3) where
m is the size of the matrix. The second approach based on matrix
inversion involves inverting a matrix equal in size to the product graph
(for details refer to [5]). The point to note here is that this approach
involves inverting a matrix equal in size to the adjacency matrix of
the direct product graph, and matrix inversion is O(m3) where m is
the size of the matrix.

D. Frequent Subgraph Mining in Conjunction with AdaBoost
The approach proposed by [4] involves combining aspects of

frequent subgraph miners and AdaBoost in a more integrated way that
FSG+SVM approach by [2] discussed before. Broadly speaking, the
approach involves boosting decision stumps where a decision stump
is associated with a graph and represents an existence/nonexistence
test in an example to be classified.
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The novelty of this work is that the authors have adapted the
search mechanism of gSpan which is based on canonical labelling
and the DSF code tree for the search for such decision stumps. The
key idea behind canonical labelling and the DSF code tree in gSpan
is to prune the search space by avoiding the further expansion of
candidate subgraphs that have a frequency below the user specified
threshold as no supergraph of a candidate can have a higher frequency
than itself. This idea cannot be directly applied to graph classification
as the objective of the search is not to find frequent subgraphs but
subgraphs whose presence or absence distinguishes positive examples
form the negative ones. [4] prove a tight upper bound on the gain
any supergraph g′ of a candidate subgraph g can have. Using this
result, the proposed algorithm uses the search mechanism of gSpan,
calculates and maintains the current highest upper bound on gain
τ and prunes the search space by avoiding the further expansion
of candidate subgraphs that have a gain lower that τ . The boosting
of these decision stumps is identical to the meta learning algorithm
AdaBoost introduced by [14].

E. DT-CLGBI

The approach proposed by [3] involves combining aspects of
frequent subgraph mining system GBI [13] and decision trees. The
approach induces a decision tree where every node is associated with
a graph and represents an existence/nonexistence test in an example
to be classified.

As described before, the GBI system performs a heuristic, greedy
search. In this approach, a variant of the GBI system, B-GBI proposed
by [15] which deals with overlapping candidate subgraphs is used for
feature generation. Broadly speaking, the approach involves a typical
decision tree algorithm except that B-GBI is invoked to generate
features at each node, the gain of each feature is computed on the
basis of how the existence the feature graph splits the examples at
that node and this the procedure is recursively applied until pure
nodes with examples only from a single class are reached. In order
to avoid over fitting, pessimistic pruning identical to C4.5 by [16] is
performed.

III. COMPARISON WITH REAL WORD DATA SETS

In this section we present our experiments and results with real
world data. First, we discuss the datasets and the graph-based repre-
sentation of the data.

A. Datasets and Representation

For experiments with real world data, we selected the Mutagenesis
data set introduced by [17] and the Predictive Toxicology Challenge
(PTC) data introduced by set[18]. The Mutagenesis data set has been
used as a benchmark data set in graph classification for many years.
The data set has been collected to identify mutagenic activity in a
compound based on its molecular structure. The Predictive Toxicology
Challenge (PTC) data set has also been used in the literature for
several years. The PTC carcinogenesis databases contain information
about chemical compounds and the results of laboratory tests made on
rodents in order to determine if the chemical induces cancer. The data
consists of four categories: male rats MR, female rats FR, male mice
MM, or female mice FM. Each of the data sets were represented
as graphs by introducing a vertex for every atom, labeled with its
compound and by introducing an edge for every bond, labeled with
its type. An example of such a representation for a compound in the
Mutagenesis dataset is shown in Figure 1. A barchart of the number
of examples in each class along with box-and-whisker plots of the
vertices, number of edges, average degree number of vertex labels and

Fig. 1. Graph-based Representation for a compound in the Mutagenesis
Dataset

(a) Number of Examples (b) Number of Vertices

(c) Number of Edges (d) Average Degree

(e) Vertex Labels (f) Edge Labels

Fig. 2. Characteristics of the Datasets

the number of edge labels of the graphs in these datasets is illustrated
in Figure 2.

B. Algorithms and Implementation

As mentioned earlier, the empirical comparison included Sub-
dueCL, frequent subgraph mining in conjunction with SVMs, walk-
based graph kernel, frequent subgraph mining in conjunction with
AdaBoost and DT-CLGBI. For SubdueCL, we use the implementation
from the Subdue described in [19]. For frequent subgraph mining
in conjunction with SVMs we use the Gaston system by [11] and
SVMLight by [20]. The walk-based (direct product) graph kernel
was implemented using SVMLight. The frequent subgraph mining
in conjunction with AdaBoost approach was implemented using code
from Gaston and the Weka machine learning framework by [21]. The
DT-CLGBI was also implemented using code form Gaston and the
Weka machine learning framework.
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(a) Accuracy (b) AUC

Fig. 3. Performance on real world data

C. Results and Analysis

We compared the performance of the five algorithms/approaches
on the five datasets using a five fold cross validation. We measured
accuracy for all the five algorithms/approaches and the area under the
ROC curve (AUC) discussed in [22] for all the algorithms/approaches.
Computing the AUC for SubdueCL involves some difficulties which
are described next.

In order to plot ROC curves and compute the AUC it is essential to
produce a real valued prediction between zero and one representing
the degree of membership (where zero implies the negative class and
one the positive class). Binary predictions made by classifiers can
be trivially converted to a real valued predictions, by considering the
learning algorithm and the way in which the model is applied. For
example, for decision trees, the class distribution at the leaf can be
translated to such a real valued prediction. For SubdueCL, producing
such a value is not straightforward. As mentioned before, the model
learned by Subdue consists of a decision list each member of which
is a connected graph. If any of the graphs in the decision list are
present in the example, it is predicted as positive. If all the graphs in
the decision list are absent it the example, it is predicted as negative.
We considered applying approaches studied by [23] for scenarios like
this, all of which are based on combining and reporting the confidence
of the rules (in the decision list) on the training set. Strategies for
combining the confidence include voting, weighted voting, using the
first matching rule, applying a random rule and applying rule with
lowest false positive rate. None of these is in accordance with the
particular way in which the model learned by SubdueCL is supposed
to be applied. The key problem here is that absence of a single graph
(in the decision list) in an unseen example, does not imply that the
example is predicted to be negative. All the graphs in the decision list
have to be absent in the example for it to be predicted as negative. We
therefore approximate the AUC for SubdueCL using a single point in
the ROC space. This does not accurately reflect the performance of
SubdueCL but is a reasonable approximation of the same.

The results of the experiments are reported in Figure 3. None of
the approaches/algorithms had significantly better performance than
the others on the real world datasets we considered. Revisiting, our
original question on the comparative strengths and weaknesses of the
algorithms/approaches, we decided to further compare their actual
predictions and the agreements/disagreements among predictions on
specific examples. The intuition behind this comparison is that com-
parable performance does not imply similar behavior. Two algorithms
could differ in predictions, make different mistakes and be correct on
different examples and end up in having comparable performance,
overall.

We conducted a literature survey on how such a comparison can
be performed and to our knowledge no framework for such analysis
was found in literature. We therefore introduced the following visual
mechanism to perform such an analysis. Note here that the purpose

(a) (b)

Fig. 4. Comparing predictions made by the classifiers

of the mechanism is exploratory and not confirmatory.
The key idea is to generate a scatterplot between the predictions

made by two classifiers on a set of test examples. Note here that
all the algorithms/approaches except for SubdueCL can be made to
predict a real value between zero and one representing the degree
of membership (where zero implies the negative class and one the
positive class). Given a set of test examples, we first separate them
according to their class and for two classifiers, say, A and B, get a
scatterplot of their predictions on the positive set and the negative set.
When such a scatterplot is generated with both the X-axis and the
Y-axis having a range from zero to one, we get two plots as shown
in Figure 4. Every point on such scatterplots would fall in one of
the following four zones assuming the threshold to be at 0.5, both
classifiers make a similar correct prediction, both classifiers make
similar incorrect predictions, A is correct and B is incorrect and vise
versa. Note here that the positive and negative examples need to be
separated as the four zones are different for each case. Furthermore,
by looking at how far a point is from each axis, we can get an
indication of how much the predictions are similar/dissimilar.

Figure 5 illustrate such scatterplots for each of the five datasets
(note that SubdueCL was omitted from this analysis). On all the
datasets, a higher agreement is observed between the predictions made
by the graph kernel and the FSG+SVM approach. There is a much
larger disagreement observed among all other algorithms/approaches.
We stress here that this observation is exploratory in nature, we cannot
conclude disagreement at a statistically significant level as this is a
null hypothesis (r = 0) as in correlation analysis and can only be
rejected. However, for the purposes of our study this was sufficient
indication that a further comparison on artificial datasets wherein we
could evaluate the algorithms/approaches on specific parameters of
interest was necessary.

IV. COMPARISON WITH ARTIFICIAL DATA SETS

In this section we discuss our experiments and results with artificial
datasets. First, we discuss our artificial dataset generator.

A. Artificial Data Generator

Our artificial dataset generator comprises two major components,
namely, the graph generator and concept generator. The graph
generator generates connected graphs based on five user specified
parameters, namely, NV which is the number of vertices, NE which
is the number of vertices, Nα which is the number of vertex labels,
Nβ is the number of edge labels and S is the seed for the random
number generator. It is required that NE ≥ NV − 1, to ensure
a connected graph. Based on these parameters, a connected graph
gS = (VS , ES , αS , βS) is generated as follows.

1) NV vertices are generated and assigned labels from αS (uni-
form) randomly.

2) These vertices are connected by adding NV − 1 edges, forcing
them to form a path of length NV . These edges are assigned
labels from βS (uniform) randomly.
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(a) Mutagenesis (b) MR (c) FR (d) MM (e) FM

(f) Positive Examples (Mutagen-
esis)

(g) Negative Examples (Mutage-
nesis)

(h) Positive Examples (MR) (i) Negative Examples (MR)

(j) Positive Examples (FR) (k) Negative Examples (FR) (l) Positive Examples (MM) (m) Negative Examples (MM)

(n) Positive Examples (FM) (o) Negative Examples (FM)

Fig. 5. ROC curves and agreement/disagreement between the classifier predictions

3) Lastly, NE − NV + 1 edges are added to the graph by first
picking two vertices from VS , (uniform) randomly and adding
an edge between these two vertices with a label from βS

selected (uniform) randomly.

The concept generator is similar to the graph generator except that
the concept is a graph that is not assumed to be connected. So the
generation process is identical except that step 2 is not performed and
in step 3, NE edges are added.

For any dataset generation, given user specified parameters for the
graphs and the concepts, first a concept is generated. A negative ex-
ample is simply any graph generated by the user specified parameters.
A positive example is any graph in which the concept is embedded.

We describe the embedding procedure below. It is required that the
number of vertices in the concept are less that or equal to the number
of vertices in the input graph.

1) Select n vertices randomly from the example graph where n is
the number of vertices in the concept. Each selected vertex in
the example graph is assigned to a vertex in the concept.

2) Change the labels of the n selected vertices in the graph so that
they match the vertices in the concept.

3) For every edge between two vertices in the concept introduce an
edge between the corresponding vertices in the example graph.
If such an edge already exists, only a label change is required.
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Overall, the assumptions underlying the generation process are as
follows.

1) The distribution of vertex labels, edge labels and the degree
distribution is assumed to be uniform and independent of each
other, both in the concept and the example graph.

2) Examples are generated using a random process, based on the
user specified parameters and are connected graphs.

3) Concepts are generated using a random process, based on the
user specified parameters.

4) Positive examples are generated by embedding the concept in
an example, negative examples are those examples in which the
concept has not been embedded.

B. Results

We use the artificial dataset generator described in the previous sub-
section to compare the performance of the five algorithms/approaches
across various parameters of interest. For each experiment, five
training sets and five test sets are generated, using different seeds.
The algorithms are trained on the trained set and prediction accuracy
is measured on the test set. All plots show mean accuracy on the five
test sets versus a parameter of interest.

1) Varying Number of Concept Vertices: We vary the number
of concept vertices from 1 to 10 adding a single edge with every
additional vertex, with the example set to 100 vertices and 100 edges,
50 positive example and 50 negative examples both in the training
and test sets. Figure 6 (a, b, c, d) shows the mean accuracies for
different number of vertex and edge labels. It can be observed in all
the plots that initially when the number of vertices in the concept
is small, all classifiers perform poorly as the training examples and
test examples are indistinguishable. This changes as the number of
vertices in the concept are gradually increased and the performance
of all the classifiers improves. Eventually, the concept is large enough
to sufficiently distinguish the examples and all the classifiers achieve
high accuracy. Another observation is that as the number of vertex
and edge labels increases, the task becomes easier as it is possible to
distinguish the examples by learning a small part of the concept.

The difference in performance of the algorithms is noticeable only
with both vertex labels and edge labels equal to 2. This difference
was found to be significant at only concept size 3, 4, 5 and 6 and we
conclude that overall the performance was found to be comparable.

2) Varying Concept Degree: We vary the concept degree by
increasing the number of concept edges with the example set to 100
vertices and 100 edges, 50 positive example and 50 negative examples
both in the training and test sets. Figure 6 (e, f, g) shows the mean
accuracies for different number of vertices in the concept. It can be
observed in all the plots that initially all classifiers perform poorly as
the training examples and test examples are indistinguishable. This
changes as edges are gradually added to the concept. All the algo-
rithms/approaches except for the graph kernel are able to use these
additional distinguishing features to improve on their performance at a
significant level. The graph kernel performs poorly and gains accuracy
slowly as compared to the all the other algorithms/approaches.

As the degree of the concept increases, distinguishing the examples
does become easier but capitalizing on this difference to improve the
performance requires learning concepts with structure (like trees and
graphs). We postulate that the hypothesis space of the kernel is walks
and it is insufficient at capturing concepts involving structure.

3) Varying Number of Example Vertices: We vary the number of
vertices in the example by increasing the number of vertices adding
a single edge with every additional vertex, with the concept set to 10
vertices and 10 edges, 50 positive example and 50 negative examples

both in the training and test sets. Figure 6 (h) shows the mean
accuracies for different number of vertices in the concept. It can be
observed that the performance of SubdueCL and the graph kernel
drops with additional example size. This difference was found to be
significant at all the cases with example vertices greater that 100.

As the number of vertices in the example increases, the concept
which is a disconnected graph and embedded at random positions is
spread over larger distances. We postulate that the hypothesis space of
SubdueCL is connected graphs and it demonstrates poor performance
as it fails to learn disconnected concepts.

4) Varying Example Degree: We vary the degree of the example
by increasing the number of edges with the concept set to 5 vertices
and 5 edges, example vertices set to 10, 50 positive example and 50
negative examples both in the training and test sets. Figure 6 (i) shows
the mean accuracies for different number of vertices in the concept.
It can be observed that the performance of SubdueCL and the graph
kernel drops with additional example size. This difference was found
to be significant at all the cases with number of edges greater that
30.

In the case of SubdueCL, we postulate that this poor performance
is due to the increased number of candidates in the search which
causes the greedy search to miss relevant concepts. The graph kernel
also has to consider a increased number of walks which causes a poor
performance.

5) Varying Concept Noise: Varying the concept noise involves
varying two parameters: how many examples contain the noisy
concept and by what amount is the concept is made noisy. We vary
the noise in the concept by changing the labels on the vertices and
edges in the concept. We refer to this as the noise level. Noise level
in the concept is measured as the fraction of the labels changed.
Experiments are performed by introducing an increasing number of
noisy examples for a variety of noise levels. Figure 6 (j, k, l, m, n, o)
shows the performance at different noise levels. Accuracy drops as the
number of noisy examples increase and as the noise level increases.

The difference in performance of the algorithms is noticeable
with in all the cases. The graph kernel and SubdueCL perform
poorly and lose accuracy faster as compared to the all the other
algorithms/approaches. This difference was found to be significant
at noise levels 0.1 and 0.2. It must be noted here that both SubdueCL
and the graph kernel had poor performance even without noise. We
postulate that their poor performance is due to difficulty learning the
concept, even without noise.

6) Varying Mislabelled Examples: We vary the number of mis-
labelled examples, by mislabelling positive examples, mislabelling
negative examples and swapping class labels on positive and neg-
ative examples. For the experiments involving mislabelling positive
examples and mislabelling negative examples an additional amount
of positive examples and negative examples were added to ensure
a balanced dataset. This was because we wanted to analyze the
effect of mislabelled examples and the increased negative and positive
examples (mislabelled) would skew the training data and it would not
be possible to determine if the effect was due to the skewed training
data or the noise (we also perform experiments with skewed training
data which are reported later). The experiment involving swapping
labels on positive and negative examples did not have this problem.
The results are shown in Figure 6 (p, q, r). Performance drops as the
number of mislabelled examples are increased.

The difference in performance of the algorithms is noticeable with
in all the cases. SubdueCL and DT-CLGBI outperform the others in
the mislabelled positives case and the mislabelled negatives case. In
the case where the labels are swapped, SubdueCL outperforms all the
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Fig. 6. Results on Artificial Datasets
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others.
The model learned by SubdueCL is a list of graphs present only

in the positive examples. Due to this, mislabelled examples do not
affect its performance as much as the other algorithms/approaches are
affected. Eventually however as the number of mislabelled examples
increases to 50% of the training data, its performance drops to that
of random guessing.

7) Varying Number of Training Examples: We vary the number
of training examples and an increase in performance is observed as
shown in Figure 6 (s). The difference in performance of the algorithms
is noticeable with in all the cases. The best performance is achieved
by FSG+AdaBoost and DT-CLGBI, the next better performance is
achieved by FSG+SVM followed by SubdueCL and graph kernel.

8) Varying Class Skew: We vary the class skew in the training
examples by increasing in turn, the positive and negative examples
while holding the others constant. The results are presented in Figure
6 (t, u). SubdueCL and graph kernels show poor performance as
compared to others in both the cases.

It must be noted here that the graph kernel had poor performance
even without the skew. We postulate that their poor performance is
due to difficulty learning the concept, even without the skew. In the
case of SubdueCL the poor performance is because it learns a list
of graphs present only in the positive examples. Due to this, it is
affected more by the skew.

V. CONCLUSIONS AND FUTURE WORK

We performed an empirical comparison of the major approaches
for graph classification introduced in literature, namely, SubdueCL,
frequent subgraph mining in conjunction with SVMs, walk-based
graph kernel, frequent subgraph mining in conjunction with AdaBoost
and DT-CLGBI. Experiments were performed on performed on five
real world data sets from the Mutagenesis and Predictive Toxicology
domain, and a corpus of artificial data sets. The conclusions of the
comparison are as follows.

In datasets where the underlying concept has a high average
degree, walk-based graph kernels perform poorly as compared to
other approaches. The hypothesis space of the kernel is walks and
it is insufficient at capturing concepts involving significant structure.
In datasets where the underlying concept is disconnected, SubdueCL
performs poorly as compared to other approaches. The hypothesis
space of SubdueCL is connected graphs and it is insufficient at cap-
turing concepts which consist of a disconnected graph. FSG+SVM,
FSG+AdaBoost, DT-CLGBI have comparable performance in most
cases.

Given the overall goal of conducting a comprehensive empirical
comparison of approaches for graph classification in order to identify
their underlying strengths and weaknesses, our empirical comparison
has two major limitations. Firstly, the artificial datasets were generated
according to a model that assumed a uniform distribution of vertex
labels, edge labels and a uniform degree distribution. Furthermore,
it assumed that these distributions are independent. Secondly, a
qualitative comparison of the learned models was not performed.
An approach that learns a model involving fewer/smaller graphs is
superior as prediction involves performing subgraph isomorphism. We
plan to expand on our initial empirical comparison by working with
a more realistic data generator and by comparing the complexity of
the models generated by the different approaches.
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