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Abstract 
 
In this paper we describe an approach to learning 
node replacement graph grammars. This approach is 
based on previous research in frequent isomorphic 
subgraphs discovery. We extend the search for 
frequent subgraphs by checking for overlap among 
the instances of the subgraphs in the input graph. If 
subgraphs overlap by one node we propose a node 
replacement grammar production. We also can infer a 
hierarchy of productions by compressing portions of 
a graph described by a production and then infer new 
productions on the compressed graph. We validate 
this approach in experiments where we generate 
graphs from known grammars and measure how well 
our system infers the original grammar from the 
generated graph.  
 

Keywords: Grammar Induction, Graph 
Grammars, Graph Mining. 

1. Introduction 
 
String grammars are fundamental to linguistics and 
computer science. Graph grammars can represent 
relations in data which strings cannot. Graph 
grammars can represent hierarchical structures in 
data and generalize knowledge in graph domains. In 
this paper we study the problem of grammar 
inference. We introduce an algorithm which builds 
on previous work in discovering frequent subgraphs 
in a graph [Cook94]. We check if subgraphs overlap 
and if they overlap by one node, we use this node and 
subgraph structure to propose a node replacement 
graph grammar.  
 
We found only a few studies in graph grammar 
inference. Jeltsch and Kreowski [Jeltsch90] did a 
theoretical study of inferring hyperedge replacement 
graph grammars. Oates et al. [Oates03] discuss the 
problem of inferring probabilities of every grammar 
rule for stochastic hyperedge replacement context 
free graph grammars. In terms of similarity to string 
grammar inference we consider the Sequitur system 
developed by Nevill-Manning and Witten [Nevill97]. 

Sequitur infers hierarchical structure by replacing 
substrings based on grammar rules. 
 
The most relevant work to this research is Jonyer et 
al.’s approach [Jonyer04]. Their system starts by 
finding frequently occurring subgraphs in the input 
graphs. Frequent subgraphs are those that when 
replaced by single nodes minimize the description 
length of the graph. They check if isomorphic 
instances of the subgraphs that minimize the measure 
are connected by one edge. If they are, a production 
S→ PS is proposed, where P is the frequent 
subgraph. P and S are connected by one edge. Our 
approach is similar to Jonyer’s in that we also start by 
finding frequently occurring subgraphs, but we test if 
the instances of the subgraphs overlap by one node. 
Jonyer’s method of testing if subgraphs are adjacent 
by one edge limits his grammars to description of 
“chains” of isomorphic subgraphs connected by one 
edge.  

2. Node replacement recursive graph 
grammar 

 
We define a graph with labels on vertices and edges. 
Every edge of the graph can be directed or 
undirected. The definition of a graph grammar 
describes the class of grammars that can be inferred 
by our approach. We emphasize the role of recursive 
productions in the name of the grammar, because the 
type of inferred productions are such that the non-
terminal label on the left side of the production 
appears one or more times in the node labels of a 
graph on the right side. It is the main characteristic of 
our grammar productions. Our approach can also 
infer non-recursive productions. The embedding 
mechanism of the grammar consists of connection 
instructions. Every connection instruction is a pair of 
vertices that indicate where the production graph can 
connect to itself in a recursive fashion.  
 
A labeled graph G is a 6-tuple, 

( )LEVG ,,,,, ηνμ= , where 
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V - is the set of nodes, VVE ×⊆ - is the set of 
edges,  LV →:μ  - is a function assigning labels to 

the nodes, LEv →:  - is a function assigning labels 

to the edges, }1,0{: →Eη - is a function assigning 
direction property to edges (0 if undirected, 1 if 
directed).  L - is a set of labels on nodes and edges.  
 
A node replacement recursive graph grammar is a 
tuple ( )PGr ,,, ΓΔ∑= , where 

∑ - is an alphabet of node labels,  

Δ - is an alphabet of terminal node labels, ∑⊆Δ ,  
Γ - is an alphabet of edge labels, which are all 
terminals,  
P - is a finite set of productions of the 
form ),,( CGd , where Δ−∑∈d , G is a graph, and 
there are two types of productions:  
(1)  recursive productions of the form ),,( CGd , 

with Δ−∑∈d , G is a graph, where there is at least 
one node in G labeled d . C  is an embedding 
mechanism with a set of connection instructions, 

VVC ×⊆ , where V  is the set of nodes of G .  A 

connection instruction Cvv ji ∈),(  implies that 

derivation can take place by replacing iv  in one 

instance of G  with jv  in another instance of G . All 

the edges incident to iv are incident to jv . All the 

edges incident to jv remain unchanged 

 (1) non-recursive production, there is no node in G  
labeled d (our inference system does not infer an 
embedding mechanism for these productions).  

3. The algorithm 
 
An example in Figure 1 shows a graph composed of 
three overlapping substructures. The algorithm 
generates candidate substructures and evaluates them 
using the following measure of compression, 

( )
( ) ( )SGsizeSsize

Gsize

|+
 

where G is the input graph, S is a substructure and 
SG | is the graph derived from G  by compressing 

each instance of S into a single node. ( )gsize  can be 
computed simply by summing the number of nodes 
and edges: ( ) ( ) ( )gedgesgverticesgsize += . Another 

successful measure of ( )gsize  is the Minimum 
Description Length (MDL) discussed in detail in 
[Cook94]. Either of these measures can be used to 
guide the search and determine the best graph 

grammar. In our experiments we used only the size 
measure.  
 
The input to our algorithm is a graph G which can be 
one connected graph or set of disconnected graphs. G 
can have directed edges or undirected edges. The 
algorithm assumes labels on nodes and edges. The 
algorithm processes the list of substructures Q. In 
Figure 2 we see an example of a substructure 
definition. A substructure consists of a graph 
definition and a set of instances from the input graph 
that are isomorphic to the graph definition.  
 

 
Figure 1: A graph with overlapping substructures and 

a graph grammar representation of it. 

 
The algorithm starts with a list of substructures where 
every substructure is a single node and its instances 
are all nodes in the graph with this node label. The 
best substructure is initially the first substructure in 
the Q list. We extend each substructure in Q in all 
possible ways by a single edge and a node or only by 
single edge if both nodes are already in the graph 
definition of the substructure. We allow instances to 
grow and overlap, but any two instances can overlap 
by only one node. We keep all extended substructures 
in newQ. We evaluate substructures in newQ. The 
recursive substructure is evaluated along with non-
recursive substructures and is competing with non-
recursive substructures. The total number of 
substructures considered is determined by the input 
parameter Limit. We compress G with best 
substructure.  Compression replaces every instance of 
best substructure with a single node. This node is 
labeled with a non-terminal label. The compressed 
graph is further processed until it cannot be 
compressed any more. In consecutive iterations best 
substructure can have one or more non-terminal 
labels. It allows us to create a hierarchy of grammar 
productions.  The input parameter Beam specifies the 
width of a beam search, i.e., the length of Q. For 
more details about the algorithm see [Cook94, 
Jonyer02, Jonyer04]. 
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Figure 2: Substructure and its instances while 

determining connection instructions (continuation of 
the example from Figure 1). 

4. Hierarchy of productions 
 
In our first example from Figure 1, we described a 
grammar with only one production. Now we would 
like to introduce a complex example to illustrate the 
inference of a grammar which describes a more 
general tree structure. In Figure 3 we have a tree with 
all nodes having the same label. There are two 
repetitive subgraphs in the tree. One has three edges 
labeled “a,” “b,” and “c.” The other has two edges 
with labels “x” and “y.”  There are also three edges 
K1, K2, and K3 which are not part of any repetitive 
subgraph. In the first iteration we find grammar 
production S1. The compressed graph, at this point, 
contains the node S1, edges K1, K2, K3 and 
subgraphs with edges “x” and “y.” In the second 
iteration our program proposes production S2. 
Compressing the tree with production S2 results in a 
graph which we use as an initial production S. 
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Figure 3: The tree (a) and inferred tree grammar (b). 

5. Experiments 

5.1. MDL as a measure of complexity of a 
grammar 

We seek to understand the relationship between 
graph grammar inference and grammar complexity, 
and so need a measure of grammar complexity. One 
such measure is the Minimum Description Length 
(MDL) of a graph, which is the minimum number of 
bits necessary to completely describe the graph. The 
MDL measure, which while not provably minimal, is 
designed to be a near-minimal encoding of a graph. 
See [Cook94] for a more detailed discussion.  

5.2. Error 
We introduce a measure to compare the original 
grammar to the inferred grammar.  
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−+

=
NTg

NTCIgg
Error

#)size(

##),(matchCost
,1min

1

21 ,    

where  
)g,matchCost( 21g  is the minimal number of 

operations required to transform 1g  to a graph 

isomorphic to 2g , or 2g to a graph isomorphic to 

1g . The operations are: insertion of an edge or node, 
deletion of a node or an edge, or substitution of a 
node or edge label. CI#  is the number of inferred 
connection instructions. NT#  is the number of non-
terminals in the original grammar. )size( 1g  is the 
sum of the number of nodes and edges in the graph 
used in the grammar production 

5.3. Experiment 1: Error as a function of 
noise and complexity of a grammar 

We used twenty nine graphs which are all connected 
graphs with one, two, three, four and five nodes in 
grammar productions. We assigned different labels to 
nodes and edges of these graphs except three nodes 
used for non-terminals. As noise we added nodes and 
edges to the generated graph structure. We compute 
the number of added nodes from the formula 
(noise/(1- noise))*number_of_nodes. Similary for 
edges. For every value of noise and MDL we 
generated thirty graphs and take average value of the 
error. We see trends in the plots in Figure 4. Error 
decreases as MDL increases. A low value of MDL is 
associated with small graphs, with three or four nodes 
and a few edges. These graphs, when used on the 
right hand side of a grammar production, generate 
graphs with fewer labels than grammars with high 
MDL.  
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Figure 4: Error as a function of noise and MDL where graph structure was not corrupted. 

 

Smaller numbers of labels in the graph increase the 
inference error, because everything in the graph looks 
similar, and the approach is more likely to propose 
another grammar which is very different than the 
original. One error occurs when inferred graph 
structure contains two overlapping copies of the 
graph used in the original grammar production. The 
structure has significant error, yet does subjectively 
capture the recursive structure of the original 
grammar. 

5.4. Experiment 2: Error as a function of 
number of labels and complexity of a 
grammar 

 
We would like to evaluate how error depends on the 
number of different labels used in a grammar. We 
restricted graph structures used in productions to 
graphs with five nodes. Every graph structure we 
labeled with 1, 2, 3, 4, 5 or 6 different labels. For 
every value of MDL and number of labels we 
generated 30 different graphs from the grammar and 
computed average error between them and the 
learned grammars. The generated graphs were 
without noise. We show the results for one, two, and 
three non-terminals in Figure 5. We see that the error 
increases as the number of different labels decreases.  
We see on the two dimensional plots the shift in error 
towards graphs with higher MDL when the number 
of non-terminals increases.  
 
The average error for graphs with only one label is 1 
or very close to 1. The most frequent inference error 
results from the tendency of our algorithm to propose 
one-edge grammars when inferred from a graph with 
only one label. We illustrate this in Figure 6 where 
we see a production with a pentagon using only one 
label “a”.  
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Figure 5 Error as a function of MDL and number of 
different labels used in a grammar definition (two 

non-terminals). 

                original grammar          inferred grammar 

         
Figure 6: Error where inferred grammar is reduced to 

production with single edge.  

5.5. Experiment 3: Chemical structure 
 
As an example from the real-world domain of 
chemistry, we use the structure of cellulose with 
hydrogen bonding as the input graph in our next 
experiment. Figure 7 shows the structure of the 
molecule and the grammar production we found in 
this structure. The grammar production we found 
captures the underlying motif of the chemical 
structure. It shows the repetitive connected 
component, the basic building block of the structure. 
We can search for such underlining building motifs 
in different domains, hoping that they will improve 
our understanding of chemical, biological, computer, 
and social networks.  
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(a) 

 
(b) 

Figure 7: The structure of cellulose with hydrogen 
bonding (a) and the inferred grammar production (b). 

6. Conclusion and future work 
 
We described an algorithm for inferring certain types 
of graph grammars we call recursive node 
replacement graph grammars. The algorithm is based 
on previous work in frequent substructure discovery. 
It checks if frequent subgraphs overlap by a node and 
proposes a graph grammar if they do. The algorithm 
we described has its limitations: the left side of the 
production is limited to one single node; only 
connecting two single nodes is allowed in 
derivations. The algorithm finds recursive 
productions if repetitive patterns occur within an 
input graph and they overlap. If such patterns do not 
exist, the algorithm finds non-recursive productions 
and builds hierarchical structure of the input data. 
Grammar productions with graphs of higher 
complexity measured by MDL are inferred with 
smaller error. There is little dependency of error on 
noise if the generated graphs are not corrupted. The 
error of grammar inference increases as the number 
of different labels used in the grammar decreases. 
There is no dependency between the size of a sample 
graph and inference error. If all labels on nodes are 
the same and all labels on edges are the same, the 
algorithm produces a grammar which has only one 
edge in the graph definition. One-edge grammars 
over-generalize if the input graph is a tree, and they 
are inaccurate in many other graphs. This tendency to 

find one-edge grammars from large, connected 
graphs is due to the fact that one-edge grammars 
score high because they can compress the graph well.  
 
Grammars inferred by the approach developed by 
Jonyer et al. [Jonyer04] were limited to chains of 
isomorphic subgraphs which must be connected by a 
single edge. Since the connecting edge can be 
included in the production’s subgraph, and 
isomorphic subgraphs will overlap by one vertex, our 
approach can infer Jonyer et al.’s  class of grammars. 
We noticed in our experiments that when the 
subgraphs overlap by more than one node, our 
algorithm still looks for overlap on only one node and 
infers a grammar which cannot generate the input 
graph. Therefore, one extension to the algorithm 
would be a modification which would allow for 
overlap larger than a single node. 
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