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ABSTRACT
We propose a dynamic graph-based relational learning ap-
proach using graph-rewriting rules to analyze how biological
networks change over time. The analysis of dynamic biolog-
ical networks is necessary to understand life at the system-
level, because biological networks continuously change their
structures and properties while an organism performs vari-
ous biological activities to promote reproduction and sustain
our lives. Most current graph-based data mining approaches
overlook dynamic features of biological networks, because
they are focused on only static graphs. First, we generate a
dynamic graph, which is a sequence of graphs representing
biological networks changing over time. Then, our approach
discovers graph rewriting rules, which show how to replace
subgraphs, between two sequential graphs. These rewriting
rules describe the structural difference between two graphs,
and describe how the graphs in the dynamic graph change
over time. Temporal relational patterns discovered in dy-
namic graphs representing synthetic networks and metabolic
pathways show that our approach enables the discovery of
dynamic patterns in biological networks.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; J.3 [Life and
Medical Science]: Biology and genetics—Biological Net-
works

Keywords
Temporal Graph Mining, Graph Rewriting Rules, Biological
Network

1. INTRODUCTION
To investigate bio-organisms and understand the theory

of life, we should consider our bodies are dynamic. Our
bodies are well-organized and vigorous systems, which pro-
mote reproduction and sustain our lives. Well-organized sys-
tems refer to structural properties of biological networks,
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which include various molecules and relationships between
molecules. Vigorous systems refer to dynamic properties of
biological networks, which continuously change their struc-
tures and properties, while an organism performs various bi-
ological activities, such as digestion, respiration and so on.
We assume the structures of biological networks change over
time as they interact with specific conditions, for instance,
a disease.

We propose a novel approach to analyze structural fea-
tures along with temporal features in a time series of bio-
logical networks to enhance our systems-level understanding
of bio-organisms. The temporal patterns in the structural
changes of biological networks can be significant informa-
tion about a disease and help researchers develop new drugs.
During the development period, the temporal patterns in
the structural changes of biological networks after taking
the medicine are also used for the development and evalua-
tion of the new drug. Lactose intolerance is the inability to
digest lactose because of a lack of the lactase enzyme, break-
ing down lactose into galactose and glucose [3]. Two major
treatments are to minimize the intake of lactose products
and take the lactase supplement. Our approach can help us
discover the temporal patterns in the structural changes of
galactose metabolism pathway after these treatments, and
investigate another treatment (i.e., improving the produc-
tion of the lactase enzyme in the pathway).

Temporal data mining can discover temporal features in
the sequence of data. But it is hard for temporal data min-
ing to discover structural features or relational patterns be-
tween two entities. Graph-based data mining is a process
to learn novel knowledge in data represented as a graph
and has been applied to identify relational patterns in bi-
ological networks [24]. However, the current graph-based
data mining approaches overlook dynamic features of net-
works, because most of them are focused on only static
graphs. Our dynamic graph-based relational learning ap-
proach uses graph-rewriting rules to analyze how biological
networks change over time. Graph-rewriting rules define
how one graph changes to another in its topology replac-
ing vertices, edges or subgraphs according to the rewriting
rules. Our discovery algorithm takes a dynamic graph as an
input. The dynamic graph contains a sequence of graphs
representing biological networks changing over time. Then,
the algorithm discovers rewriting rules between two sequen-
tial graphs. After discovery of whole sets of graph rewriting
rules from the dynamic graph, we discover temporal patterns
in the discovered graph rewriting rules.

This paper, first, introduces several preceding approaches



related to dynamic analysis of biological networks. Then,
we present our definition of graph rewriting rules and our
Dynamic Graph Relational Learning (DynGRL) algorithm.
In our experiments, we generate several dynamic graphs of
the yeast metabolic pathways using the KEGG PATHWAY
database and microarray data. Then, we apply our Dyn-
GRL approach to the dynamic graphs. The results show
our discovered graph rewriting rules and temporal patterns
in the rewriting rules. The temporal patterns show which
graph rewriting rules are repeated periodically or temporal
relations among several graph rewriting rules. Our results
also help us to visualize what substructures change over time
and how they change. This approach enables us to investi-
gate dynamic patterns in biological networks in two aspects:
structural and temporal explorations. The ultimate goal
of this research is to discover the temporal patterns in the
structural changes of biological networks for drug discovery
and the systems-level understanding of complex biosystems.

2. RELATED WORK
To understand how biosystems change over time, we need

to follow two aspects: structural and temporal analysis of
dynamic biological networks. Here, we introduce microar-
ray analysis and temporal data mining for the temporal ex-
ploration. Then, related research on biological networks is
followed for the structural exploration.

The microarray is a tool for measuring gene expression
levels for thousands of genes at the same time [4, 17], and
have already produced terabytes of important functional ge-
nomics data that can provide clues about how genes and
gene products interact and form their gene interaction net-
works. Most genes are co-expressed, as most proteins in-
teract with other molecules. Co-expressed genes construct
common processes or patterns in biological networks (gene
regulatory networks or protein networks) in the specific con-
dition or over time. Microarrays can also monitor patterns
in gene expression levels for the period of time or at the
different conditions. Patterns in gene expression levels can
represent changes in the biological status or distinguish two
different states, such as the normal and disease state.

Some microarray research [7, 22] describes patterns in
gene expression values. One approach explores temporal
patterns in gene expression promoting the regulation of a
metabolic pathway [7]. Other research observes more than
half of the yeast genes show periodic temporal patterns dur-
ing metabolic cycles [22]. But the microarray analysis can
overlook structural aspects, which show how the genes or ex-
pressed gene products are related to each other in biological
networks.

Temporal data mining attempts to learn temporal pat-
terns in sequential data, which is ordered with respect to
some index like time stamps, rather than static data [20].
Temporal data mining is focused on discovery of relational
aspects in data such as discovery of temporal relations or
cause-effect association. In other words, we can understand
how or why the object changes rather than merely static
properties of the object. In this research, we are focused
on discovery of temporal patterns and their visualization.
Allen and et al. [2] formalized temporal logic for time inter-
vals using 13 interval relations. This approach allows us to
present temporal relations in sequential data.

There are several approaches to apply temporal data min-
ing in biological data. Ho et al. [11] propose an approach

to detect temporal patterns and relations between medical
events of Hepatitis data. They represent medical informa-
tion of patients as sequential events and classify temporal
patterns and relations of medical testing results in the se-
quential events using the Naive Bayes classifier. Farach-
Colton et al. [9] introduce an approach of mining temporal
relations in protein-protein interactions. They model the
assembly pathways of Ribosome using protein-protein inter-
actions. This approach determines the order of molecular
connections using the distance measure of each interaction
between two proteins.

Temporal data mining approaches discover temporal pat-
terns in data, but they disregard relational aspects among
entities. For example, they can identify temporal patterns
of appearance of genes such that a gene, YBR218C, appears
before another gene, YGL062W, but cannot identify how
these two genes interact with each other.

According to the central dogma in molecular biology, the
genetic information in DNA is transcribed into RNA (tran-
scription) and protein is synthesized from RNA (transla-
tion). These biomolecules (DNA, RNA and proteins) play
central roles in the aspects of the function and structure of
organisms. However, there are few molecules that can work
alone. Each molecule has its own properties and relation-
ships with other molecules to carry out its function. Biolog-
ical networks have various molecules and relations between
them including reactions and relations among genes and pro-
teins. Biological networks including metabolic pathways,
protein-protein interactions and gene regulatory networks,
consist of various molecules and their relationships [13]. In
addition to the structural aspect, we also consider the tem-
poral aspect of biological networks, because the biosystems
always change their properties and structures while inter-
acting with other conditions.

Two approaches have been developed for the analysis of
biological networks. One approach is graph-based data min-
ing [14, 24]. This approach represents biological networks as
graphs, where vertices represent molecules and edges rep-
resent relations between molecules, and discovers frequent
patterns in graphs. Many approaches of graph-based data
mining discover structural features of biological networks,
but they overlook temporal properties. The other approach
is mathematical modeling, which is an abstract model to de-
scribe a system using mathematical formulae [18]. Most of
these approaches, as a type of quantitative analysis, model
the kinetics of pathways and analyzes the trends in the
amounts of molecules and the flux of biochemical reactions.
But most of them disregard relations among multiple molecules.

There are two main points to consider for understanding
biological networks: structural and temporal aspects. The
former reminds us to focus on relations between molecules
as well as a single molecule. The latter is necessary to under-
stand biological networks as dynamic operations rather than
static relations, because every biological process changes
over time and interacts with inner or outer conditions. For
this reason, we need an approach to analyze biological net-
works changing over time in both aspects: structural and
temporal properties.

3. GRAPH REWRITING RULES
This paper focuses on temporal and structural analysis

of biological networks. Our dynamic graph-based relational
learning approach discovers graph rewriting rules in a series
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Figure 1: An example of application of graph rewrit-
ing rules, where the rule derives a graph H from a
graph G by replacing a subgraph L by a subgraph
R.

of graphs changing their structures over time. Each graph
rewriting rule represents topological changes between two
sequential graphs. Here, we define graph rewriting rules for
our approach.

Graph rewriting is a method to represent topological changes
of graphs using graph rewriting rules [8, 21]. Generally,
graph rewriting rules identify subgraphs in a graph and mod-
ify them. Each graph rewriting rule defines a transforma-
tion between L and R, where L and R are subgraphs in two
graphs G and H respectively, such that L is replaced by R,
L is deleted, or R is created [19]. As shown in figure 1,
L is identified first in graph G. Then L is replaced by R
to produce graph H. There are also several algorithms to
discover the node or edge replacement graph grammar using
the minimum description length principle [12, 15]. However,
their scope is limited to static graphs.

Traditional approaches to the identification of graph rewrit-
ing rules determine which subgraphs will be replaced by
other subgraphs. Our approach is focused on representing
changing structures between two graphs rather than just
what subgraphs change. We define our graph rewriting
rules to represent how substructures change between two
graphs rather than just what subgraphs change. First, we
discover maximum common subgraphs between two sequen-
tial graphs G1 and G2. Then, we derive removal substruc-
tures from G1 and addition substructures from G2. Figure
2 shows an instance of this process. A maximum common
subgraph (denoted by S) is discovered between two graphs,
G1 and G2. Then the remaining structure in G1 and G2 be-
comes removal (denoted by R) and addition (denoted by A)
substructures respectively. These substructures with con-
nection edges rc and ac are elements of graph rewriting rules:
removal and addition rules respectively. For this approach,
we define several preliminary terms.

A directed graph G is defined as G = (V, E), where V is
a set of vertices and E is a set of edges. An edge e (∈ E)
is directed from x to y as e = (x, y), where x, y ∈ V . Here,
we define a dynamic graph DG as a sequence of n graphs
as DG = {G1, G2, · · · , Gn}, where each graph Gi is a graph
at time i for 1 ≤ i ≤ n. Then, we define a set of removal
substructures RG and a set of addition substructures AG as
follows.

RGi = Gi/Si,i+1, AGi+1 = Gi+1/Si,i+1

RGi denotes a set of removal substructures in a graph Gi,
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Figure 2: An example of application of graph rewrit-
ing rules, which shows an removal rule {R, rc} from
a graph G and an addition rule {A,ac} to a graph
H. The removal and addition substructures are con-
nected to G and H by edges rc and ac. S represents
the common subgraph between G and H.

AGi+1 denotes a set of addition substructures in the next
graph Gi+1, and Si,i+1 is a maximum set of common sub-
graphs between two sequential graphs Gi and Gi+1 in a dy-
namic graph DG.

A prior graph Gi is transformed to a posterior graph Gi+1

by application of a set of graph rewriting rules GRi,i+1 as
denoted by

Gi+1 = Gi

M
GRi,i+1

A set of graph rewriting rules GRi,i+1 between two sequen-
tial graphs Gi and Gi+1 is defined as follows.

GRi,i+1 = {(m, p, CEm, CLm), · · · ,
(n, q, CEn, CLn), , · · · , }

m and n are indices of graph rewriting rules in a set GRi,i+1.
p and q are indices of a removal substructure in RGi and
an addition substructure in AGi+1 respectively. CE and
CL are defined as a set of connection edges and a set of
labels of the connection edges. Each element of RG and
AG corresponds to a set of CE and CL, unless a removal
(addition) substructure does not connect to the Gi (Gi+1).
CEk and CLk represent connections between substructures
and the original graphs (k = m or n) as follows.

CE = {(d, X, Y ), · · · }, CL = {labelxy, · · · }

d represents whether the edge is directed or undirected using
d and u. X and Y denote the starting and ending vertices
of the edge. Because the connection edge links the substruc-
ture to the original graph, one end of this edge is from the
substructure and the other is from the original graph. The
end vertex from the substructure starts with “s” followed by
the index of the vertex, and the end vertex from the original
graph starts with “g” followed by the index of the vertex.
For example, (d, g1, s3) represents the directed edge from a
vertex 1 in the original graph to another vertex 3 in the sub-
structure. labelxy represents a label for the corresponding
connection edge between two vertices X and Y . The num-
ber of elements of CE (CL as well) represents the number of
connections between substructures and the original graph.
If a substructure is not connected to the original graph, both
sets of CE and CL are empty.

We describe more detail with an example. Figure 3 shows
an instance of graph rewriting rules between the synthetic
biological networks, G1 and G2. The thick-drawn substruc-
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Figure 3: An instance of graph rewriting rules between

graph G1 and G2 in the synthetic biological networks

tures in both graphs represent the maximum common sub-
structures. The underline labeled elements in G1 represent
removal substructures (from G1) with the rectangle labeled
connection edges. The underline labeled elements in G2 rep-
resent addition substructures (to G2), where this addition
rule does not have any connection edges.

GR1,2 represents a set of graph rewriting rules, which is
applied to G1 and produces G2 using G2 = G1

L
GR1,2 as

described in the previous section. It has four graph rewrit-
ing rules. For example, r1 (r denotes removal.) represents
an index into the set of removal rules including a removal
subgraph (rSub1), which contains a single vertex A. rSub1

was connected by an edge (d, s1, g2), which is labeled by
PPrel : − − −. This edge is a directed edge (indicated
by ‘d’). One end of this edge is s1, which denotes a ver-
tex number 1 in rSub1 (s denotes the substructure.). The
other end is g2, which denotes a vertex number 2 in G1 (g
denotes the original graph.). a1 and a2 represent addition
rules similarly. But these two cases look somewhat different.
a1 has ∅ (emptyset) as the addition substructure, because
a1 is a rule representing a blue edge PPrel : −p in G2 with-
out any addition substructure. a2 also has ∅s for edges and
edge labels, because aSub1 represents a disconnected graph
including vertices H and I in G2.

GR1,2 = {(r1, rSub1, {(d, s1, g2)}, {PPrel : −−−}),
(r2, rSub2, {(d, g4, s1), (d, g5, s1)},
{PPrel : +p, PPrel : −− >}),
(a1, ∅, {(d, g3, g4)}, {PPrel : −p}),
(a2, aSub1, ∅, ∅)}

The graph rewriting rules show how two sequential graphs
are structurally different. After collecting all sets of graph
rewriting rules in a dynamic graph, we also discover tem-
poral patterns in graph rewriting rules, which can describe
how the graphs change over time as well as what structures
change.

4. APPROACH
This section describes our graph rewriting rule discovery

system, DynGRL, that discovers graph rewriting rules in a
dynamic graph. Our approach extends Cook and Holder’s
earlier work [5, 6], which is a graph-based relational learn-
ing approach to discover subgraphs. Their approach evalu-

ates discovered subgraphs using the Minimum Description
Length (MDL) principle to find the best subgraphs that min-
imize the description length of the input graph after being
compressed by the subgraphs. The description length of
the substructure S is represented by DL(S), the descrip-
tion length of the input graph is DL(G), and the description
length of the input graph after compression is DL(G|S). The
approach tries to minimize the Compression of the graph
as follows.

Compression =
DL(S) + DL(G|S)

DL(G)

Their approach, which is called as DiscoverSub() in our
algorithms, tries to maximize the V alue of the subgraph,
which is simply the inverse of the Compression. Even though
we can use a frequent subgraph mining approach [16, 23] for
DiscoverSub(), we choose the compression-based approach,
because there is no need to choose a proper minimum sup-
port and many times the best-compressing subgraph bet-
ter captures the patterns of interest than the most frequent
subgraph. A more detailed comparison between the two ap-
proaches is left for future work.

The algorithm starts with a dynamic graph DG consisting
of a sequence of n graphs as shown in algorithm 1. First,
the algorithm creates a list of n virtual graphs, V GL, corre-
sponding to n time series of graphs at line 1. Our approach
uses a virtual graph to specify the application locations of
graph rewriting rules. Because a graph may have multiple
graph rewriting rules and several same-labeled vertices and
edges, the exact locations of connection edges and rewriting
rules are important to reduce the discovery error. The next
procedure is to create a two-graph set, Graphs, including
two sequential graphs Gi and Gi+1 (line 5) and to specify the
limit based on unique labeled vertices and edges of Gi and
Gi+1 (line 6). UV L and UEL denote the number of unique
vertex labels and edges in Gi and Gi+1. The Limit specifies
the number of substructures to consider when searching for
a common substructure (line 6). The Limit based on the
number of labels in the input graph bounds the search space
within polynomial time and ensure consideration of most of
the possible substructures.

The inner loop (lines 7 to 14) represents the procedure
to discover common substructures between two sequential
graphs. DiscoverSub() is used to find the maximum com-
mon subgraph. Although to find the maximum common
subgraph is NP-Complete, DiscoverSub() can be used as a
polynomial-time approximation to this problem using Limit
and iteration as described later. After discovery of the best
substructure, the algorithm checks whether the substructure
is a subgraph of both graphs Gi and Gi+1. In the affirmative
case, the best substructure is added into ComSubSet and
the two target graphs are compressed by replacing the sub-
structure with a vertex. If the best substructure does not be-
long to one of the two graphs, the algorithm just compresses
the graphs without adding any entry into ComSubSet. Af-
ter compression, the algorithm discovers another substruc-
ture at the next iteration until there is no more compression.

Using the complete list of common substructures, ComSubSet,
the algorithm acquires removal substructures, remSubs, and
addition substructures, addSubs, (lines 15 and 17). First,
the algorithm identifies vertices and edges not part of com-
mon substructures and finds each disconnected substructure
in Gi and Gi+1 using the modified Breadth First Search



Algorithm 1 DynGRL discovery Algorithm

Require: DG = {G1, G2, · · · , Gn }
1. Create V GL = {V G1, V G2, · · · , V Gn}
2. RRL = {}
3. for i = 1 to n− 1 do
4. RemRuleSet =AddRuleSet = ComSubSet = {}
5. Graphs = {Gi, Gi+1}
6. Limit = UV L + 4(UEL− 1)
7. while No more compression do
8. BestSub = DiscoverSub(Limit, Graphs)
9. if BestSub ∈ Gi & Gi+1 then

10. Add BestSub into ComSet
11. end if
12. Compress Graphs by BestSub
13. Mark BestSub on V Gi and V Gi+1

14. end while
15. Get remSubs, CE from V Gi

16. Add remSubs into RemSubSet and CE into
RemCESet

17. Get addSubs, CE from V Gi+1

18. Add addSubs into AddSubSet and CE into
AddCESet

19. Create RR from RemSubSet, AddSubSet,
RemCESet, AddCESet

20. Add RR into RRL
21. end for
22. return RRL

(mBFS), which adds each edge as well as each vertex into
the queues as visited or to be visited. The marked sub-
structures in Gi and Gi+1 are removal and addition sub-
structures respectively. While mBFS searches these removal
and addition substructures, it also finds connection edges,
CE, as described previously. These edges are added into
RemCESet and AddCESet, where removal and addition
substructures are added into RemSubSet and AddSubSet
respectively (in lines 16 and 18). Using these rewriting sub-
structures and connection edges, rewriting rules (RR) are
created and stored into RRL (in lines 19 to 20).

The main challenge of our algorithm is to discover max-
imum common subgraphs between two sequential graphs,
because this problem is known to be NP-hard [10]. To avoid
this problem, first we use the Limit to restrict the number
of substructures to consider in each iteration. The Limit is
computed using the number of unique labels of vertices and
edges in graphs. Second, our algorithm does not try to dis-
cover the whole common substructures at once. In each step,
the algorithm discovers a portion of common, connected sub-
structure and iterates the discovery process until discovering
the whole maximum common subgraphs. Usually, the size
of graphs representing biological networks is not too large.
Therefore, discovery of graph rewriting rules is still feasi-
ble. However, we still have challenges to analyze very large
graphs.

5. DATASETS: MICROARRAY DATA AND
GRAPH

We prepare dynamic graphs representing the yeast metabolic
pathways in combination with microarray data. As described
in section 2, microarrays can be used in two ways: monitor-
ing the change of gene expression levels over time or distin-
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Figure 4: The oscillation curves of the changing gene
expression values of three yeast genes: YNL071W,
YER178W, and YBR221C.
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Figure 5: An instance of the graph representation
for a metabolic pathway.

guishing patterns in two different states. Here, we use time-
based microarray data to generate a dynamic graph, where
each column of data represents the gene expression values
at a particular time. The microarray data used in our re-
search observes periodic gene expression of Saccharomyces
cerevisiae using microarray analysis [22]. The microarray
data has 36 columns where each column represents one time
slice. Their results show more than 50% of genes have three
periodic cycles in the gene expression. We normalize each
gene expression value of microarray data from 0 to 1, because
we are focused on trends of the changes of gene expression
values. Figure 4 shows normalized gene expression values of
three genes shown in the glycolysis pathway.

Here, we prepare 10 dynamic graphs, each of which con-
tains 36 consecutive graphs representing one yeast metabolic
pathway changing over time (36 time slices) correspond-
ing to 36 columns in microarray data. The 10 dynamic
graphs represent 10 metabolic pathways: glycolysis (00010),
TCA (00020), Pentose phosphate pathway (00030), Purine
metabolism (00230), Pyrimidine metabolism (00240), Urea
cycle (00220), Glutamate metabolism (00251), Arginine and
proline metabolism (00330), Glycerolipid metabolism (00561)
and Glycerophospholipid metabolism (00564), where each
number denotes the identification number of the pathways
in the KEGG data [1]. The first three pathways are involved
in the carbohydrate metabolism, the second two pathways
are involved in the nucleic acids, the next three pathways
are involved in the amino acids metabolism and the last two
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Figure 6: A visualization of time points when the
substructure including each gene is removed from
or added to graphs representing the glycolysis path-
way at the experiment of threshold 0.6. The points
above the time axis represent the time points when
the substructures including the specified genes or
relation are removed (Genes with (-)). The points
below the time axis represent the time points when
the substructures including the specified genes or re-
lation are added (Genes with (+)). Relation points
represent the time points when the enzyme-enzyme
relations are shown in the pathway.

pathways are involved in the lipid metabolism.
First, we generate a static graph to represent each metabolic

pathway from the KEGG PATHWAY database [1], where
vertices represent compounds, genes, enzymes, relations and
reactions, and edges represent relationships between ver-
tices. Figure 5 shows an example of the graph represen-
tation. “ECrel:Compound” represents a relation between
two enzymes (gene products). One enzyme is produced by
one or more genes, which is represented as edges “G to E”.
“RN:Rxxxxx” represents a reaction and “cpd:Cyyyyy” rep-
resents chemical compounds, where xxxxx and yyyyy repre-
sent the identification number in the KEGG database. Here,
we assume only genes change over time based on gene ex-
pression values and other molecules like compounds remain
the same amount.

We use a threshold t to apply the numeric gene expression
values on graph. At each time, we assume a gene, which has
more than t gene expression value, is shown in the graph.
One particular point is our graph representation has enzyme
vertices, which do not exist in the KEGG data. One enzyme
needs one or more genes to synthesize. At a specific time,
only one gene can be expressed out of two genes, which are
needed for one enzyme. Naturally, the enzyme is not syn-
thesized at that time. We use enzyme vertices to represent
this scheme. Only when all genes are expressed, the enzyme
vertex is shown in the graph. At that time, the reaction,
which is catalyzed by the enzyme, is also shown. In this
way, we can observe the structure of the glycolysis pathway
based on microarray gene expression at each time.

6. EXPERIMENTS AND RESULTS
Our approach discovers graph rewriting rules in each dy-

namic graph. First, we discuss temporal patterns in graph
rewriting rules. Then, we represent how the discovered sub-
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Figure 7: A visualization of time points when a par-
ticular substructure is removed from or added to
graphs representing the glycolysis pathway at the
experiment of threshold 0.6. Each substructure in-
cludes a relation, which is an enzyme-enzyme rela-
tion between two gene, where ECrel(x, y) represents
the relation, and x, y represent the id of enzymes.

structures in the rewriting rules link to the original graphs
at the specific time.

6.1 Temporal patterns
As described in the previous section, the goal of this re-

search is to discover temporal patterns in graph rewriting
rules to describe structural changes of metabolic pathways
over time. Because the result of the microarray data [22] rep-
resents three periodic cycles of gene expression, we observe
similar temporal patterns in graph rewriting rules. Here,
we are focused on graph rewriting rules involving enzyme-
enzyme relations as well as genes. The enzyme-enzyme re-
lation represents a relationship between two enzymes. As
shown in figure 5, one or more genes produce an enzyme, and
the enzyme can have a relation with one other enzyme. The
relation vertex labeled as “ECrel:Compound” exists, only
when there exist two enzyme vertices. Each enzyme ver-
tex exists only when the linked genes exist (biologically, the
linked genes produce the enzyme). The left enzyme exists
only when two genes, YER178W and YER221C exist. The
right enzyme exists only when one gene YAL038W exists.

Figure 6 shows a visualization of the changes to the par-
tial pathway including the above three genes of the glycol-
ysis pathway. The complete pathway is shown in figure 10
(Sub F ). The points above the time axis represent the time
points when the substructures including the specified genes
or relation are removed. The points below the time axis
represent the time points when the substructures including
the specified genes or relation are added. The points on the
axis represent the time when the relation exists. The result
clearly shows the temporal patterns in removal and addition
rules as three cycles. Three genes are added and the relation
is shown in the pathway. After several time intervals, one
of three genes starts to be removed from the pathway and
the relation disappears, too. Like the microarray research
[22], we can notice the genes are added and removed three
times periodically. In addition, we discover the removal and
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Figure 8: Visualization of three periodic cycles in removals and additions of Enzyme Relations in TCA cycle
(A), urea cycle (B), glutamate metabolism (C), glycerophospholipid metabolism (D), purine metabolism (E)
and pyrimidine metabolism (F) at the experiment of threshold 0.5. The points marked as “X” above the time
axis represent removals, and the points marked as rectangles represent additions.

Table 1: Running time of ten dynamic graphs. Path-
way denotes the name of the pathway represented
by the dynamic graph. Max. Size and Min. Size
denote the maximum and minimum size of a graph
in the dynamic graph. Total Size denotes

P
size(Gi)

for Gi ∈ DG. Time is in seconds
Pathway Max. Size Min. Size Total Size Time

00010 522 65 7738 69.86
00020 294 46 4667 9.44
00030 192 57 4069 3.82
00220 236 58 4147 4.58
00251 394 110 7928 172.88
00330 184 61 4277 4.65
00561 183 44 2425 3.38
00564 231 57 4937 4.96
00230 643 161 10259 54.06
00240 486 85 6040 18.03

addition of some relations also show temporal cycles. Sup-
pose there are two genes and a relation between two genes.
One gene is always shown in the pathway, and the other is
shown three times periodically. The relation is also shown
three times like the latter gene, because the relation is ac-
tivated only when both genes are activated. Because most
genes and proteins work together, the temporal patterns in
the relations between the molecules are also important as
well as the temporal patterns in the existence of genes and
proteins.

Figure 7 shows a visualization of three periodic cycles of
10 relations in the glycolysis pathway. In this experiment,
the dynamic graph with threshold 0.6 shows a maximum of
13 relations at each time slice. 10 out of the 13 relations
clearly show periodic cycles three times. Figure 8 shows
the similar temporal patterns in the six other pathways,
TCA cycle (A), urea cycle (B), glutamate metabolism (C),
glycerophospholipid metabolism (D), purine metabolism (E)
and pyrimidine metabolism (F). The points (marked as ”X”)
above the time axis represent the patterns of removals and
the points (marked as the rectangles) below the time axis
represent the patterns of additions. The two time points
with the same distance over the axis represent the removals
and additions of the same subgraphs. The six visualizations
show the temporal patterns in the graph rewriting rules of
the major metabolic pathways. Even though there are some
time points that do not show clear cycles, all ten pathways
show the three periodic cycles of enzyme-enzyme relations.
We can conclude that the removals and additions of the
subgraphs including genes and relations show the temporal
patterns of three periodic cycles. Table 1 shows the running
time of Algorithm 1 on the ten dynamic graphs representing
the ten metabolic pathways. Most cases are finished within
a minute.

Figure 9 shows the temporal patterns in maplink-relations,
which represent the relations between two enzymes that
belong to two different pathways. Link(+) denotes the
time points when two pathways are linked to each other,
and Link(−) denotes the time points when they are discon-
nected. Because these relations are also activated by the
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Figure 9: A visualization of three periodic cycles in
time points when two pathways (Purine metabolism
(00230) and Glutamate metabolism (00251)) are
linked to each other at the experiment of threshold
0.5.

gene expression values, they also show three periodic cycles
like enzyme-relations. In fact, all metabolic pathways in a
cell are connected to each other. Practically, we classify
the metabolic pathways for each function such as glycoly-
sis, urea cycle and so on. The temporal patterns in the
maplink-relations show when two pathways are connected
or disconnected to each other. In addition to the temporal
patterns, our results show the structural properties related
to these patterns in next section.

Our results show three periodic cycles of enzyme-relations
and maplink-relations over ten major metabolic pathways.
We can observe similar temporal patterns in the four major
categories of pathways. These temporal patterns of rela-
tions describe periodic cycles in the behaviors of the yeast
biosystem corresponding to the periodic cycles of the gene
expression of the yeast. The major events and behaviors of
the biosystems accord with the metabolic cycles [22].

The experiments show that DynGRL discovers graph rewrit-
ing rules from dynamic graphs representing the yeast metabolic
pathways changing over time. These graph rewriting rules
represent temporal patterns that describe how the struc-
ture of the metabolic pathways change over time by showing
which elements change periodically. These temporal pat-
terns and graph rewriting rules help us to understand dy-
namic properties of the metabolic pathways. The results
show not only temporal patterns in structural changes of
metabolic pathways, but also temporal patterns in the con-
nections between two different pathways.

6.2 Structural patterns
The other goal of this research is to show structural pat-

terns in metabolic pathways as well as temporal patterns.
Because an advantage of the graph representation is visu-
alization, we can understand metabolic pathways better us-
ing structural analysis with temporal analysis. This section
illustrates the use of discovered substructures with graph
rewriting rules.

Figure 10 shows structural changes of the dynamic graph

representing the partial glycolysis pathway introduced in fig-
ure 6. Gi represents the graph at time i. This dynamic
graph contains 36 time series of graphs starting with a sin-
gle vertex graph in time 1 to no vertex in time 36. The blue
edge with the boxed labels between two sequential graphs
represents the graph transformation using removal (-) or ad-
dition (+) of one of the six substructures (Sub A to F ). For
example, graph G5 is transformed to G6 with removal of
Sub C and addition of Sub B. The red edges with the dot
boxed labels in the rules represent the connection edges as
described previously. The connection edges describe how
the discovered substructures connect to the original graph.

As described previously, we show the graph rewriting rules
between two graphs as a formula. Here, we show two exam-
ples of graph rewriting rules GR1,2 and GR5,6 as follows,

GR1,2 = {a1, addA, CE, CL)},
CE = {(d, S2, G2)}, CL = {G to E}

GR5,6 = {(r1, remC , ∅, ∅), (a1, addB , ∅, ∅)}

where am and rn denote the indices of the removal and addi-
tion rule in each graph rewriting rule, addx and remy denote
the substructure (Sub A to F ) in figure 10. CE and CL de-
note the connection edges and connection edge labels respec-
tively. The connection edge with a label G to E links Sub
A to a gene YER178W in G1 so that an enzyme is activated
by two genes, YBR221C and YER178W, and a relation is
created with the other enzyme that is activated by a gene,
YNL071W. But CE and CL are all ∅ in GR5,6 because there
is no connection edge between the substructures (remC and
addB) and the original graphs (G5 and G6) respectively.

Figure 11 shows our visualization results of a removal and
addition rule. The left figure shows a removal rule in our
output and the right figure shows the same rule marked on
the KEGG pathway map. The labels marked by “-[]” repre-
sent the labeled vertices and edges belonging to the substruc-
tures of removal rules. The labels are marked by “+[]” in the
case of addition rules. Connection edges between the discov-
ered substructures and original graphs are marked by “()”.
The removal of a gene YKL060C causes the removal of two
enzyme-relations with one other gene YDR050C and a reac-
tion R01070, which is a catalyzed by an enzyme produced
by YKL060C (There can exist more than one relation with
different properties between two genes in the KEGG data.).
The graph also loses several connection edges between the
removal structures and original graph. The DynGRL system
helps us visualize removal or addition rules on the original
graph with the connection edges. The results show how the
substructures in graph rewriting rules are structurally con-
nected to the original graphs and how the graphs change
after removal or addition rules are applied.

In addition to the change of one element, our results show
how the changes are related to other elements (i.e., which el-
ements are removed or added at the same time) as shown in
the discovered subgraphs and how the subgraphs are linked
to the original graphs. Our results show patterns in the
structural changes, not merely changes of amount. It al-
lows us to better understand the structural properties as
the pathways change over time.

In summary, we evaluated our algorithm in the experi-
ments with 10 dynamic graphs each containing 36 graphs
representing the yeast metabolic pathways in combination
with the microarray data of yeast. 35 sets of graph rewrit-
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Figure 10: Structural changes of a dynamic graph representing the partial glycolysis pathway. Gi denotes a
graph at time i for 1 ≤ i ≤ 36. The blue arrows with boxed labels between two graphs, Gx and Gy, represent
the transformation from Gx to Gy by application of the rule in the label of the arrow. Sub p (A to F ) represents
the substructure in each rule (removal and addition), where the red arrows with the dot boxed labels from
the substructures represent the connection edges. For example, G1 is transformed to G2 by addition of Sub
A, which is connected by a connection edge labeled “G to E”.

ing rules for removals and additions are discovered during
35 time intervals. Temporal patterns in the graph rewriting
rules show a number of substructures are removed and added
periodically as showing three cycles. The graph rewriting
rules and our visualization results describe how the discov-
ered substructures are connected to the original graph and
how the structures of graphs change over time. These tem-
poral patterns and graph rewriting rules help us to under-
stand temporal properties as well as structural properties of
biological networks. Some discovered temporal and struc-
tural patterns in a specific disease can show us how they
are different from normal patterns and help us investigate
disease and develop a new treatment.

7. CONCLUSION
This research formalizes graph rewriting rules to describe

structurally changing biological networks and proposes an
algorithm, DynGRL, to discover graph rewriting rules in a
dynamic graph. The algorithm is evaluated with the dy-
namic graphs representing the yeast metabolic pathways in
combination with the microarray data. Our approach repre-
sents structural and temporal properties at the same time,
and discovers novel patterns in both properties. The results
show our dynamic graph-based relational learning approach
discovers several novel temporal patterns in graph rewriting
rules of the metabolic pathways such that some relations be-
tween genes and pathways are shown periodically. Addition-
ally, the results show periodic cycles of temporal patterns in
connections between two pathways. DynGRL can also help
us to visualize the removed or added substructures to show
how the graphs structurally change or how the substructures
in rewriting rules are related to the original graphs.

The graph rewriting rules of biological networks can de-
scribe how the complex biosystems change over time. The
learned temporal patterns in the rewriting rules can describe
not only structural changes of metabolic pathways but also
temporal patterns in series of the structural changes. Our
approaches help us to better explore how biological networks
change over time and guide us to understand the structural
behaviors of the complex biosystems. Specifically, the tem-
poral patterns in structural changes of the biosystems under
specific conditions (e.g., infection) can provide essential in-
formation for drug discovery or disease treatment.

The future works follow several directions. First, we need
more systematic evaluation for the discovered graph rewrit-
ing rules. Our evaluation will also include regenerating a
dynamic graph using the discovered graph rewriting rules to
compare with the original dynamic graph from real world
data. In addition, we will also focus on the fully automated
approach to learn temporal patterns in the discovered graph
rewriting rules. Finally, we will evaluate how this approach
can be used to predict future structures of biological net-
works using the learned temporal and structural patterns.
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