
Using Smart Phones for Context-Aware Prompting in 

Smart Environments 
 

Barnan Das
1
, Adriana M. Seelye

2
, Brian L. Thomas

1
, Diane J. Cook

1
, Larry B. Holder

1
, Maureen Schmitter-

Edgecombe
2
 

1
School of Electrical Engineering and Computer Science, 

2
Department of Psychology 

Washington State University, USA 

{barnandas, aseelye, bthomas1, djcook, holder, schmitter-e}@wsu.edu 

 

 
Abstract—Individuals with cognitive impairment have difficulty 

successfully performing activities of daily living, which can lead 

to decreased independence. In order to help these individuals age 

in place and decrease caregiver burden, technologies for assistive 

living have gained popularity over the last decade. In this work, a 

context-aware prompting system is implemented, augmented by a 

smart phone to determine prompt situations in a smart home 

environment. While context-aware systems use temporal and 

environmental information to determine context, we additionally 

use ambulatory information from accelerometer data of a phone 

which also acts as a mobile prompting device. A pilot study with 

healthy young adults is conducted to examine the feasibility of 

using a smart phone interface for prompt delivery during activity 

completion in a smart home environment. 
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I.  INTRODUCTION  

The world’s population is aging. By 2040, 23% of the US 
population will be age 65+ [1]. The number of individuals who 
will be unable to live independently and need assistance due to 
cognitive impairments, will rise rapidly [2]. Older adults with 
cognitive difficulties experience impairments in daily 
functioning [3, 4]. When activity difficulties are encountered, 
individuals typically receive prompts from family members to 
help them initiate or complete the activity accurately. The 
amount of prompting caregivers offer to older adults and 
individuals with Mild Cognitive Impairment increases as 
cognitive impairment progresses, which increases the amount 
of caregiver responsibility and burden [5]. Functional 
impairment in these individuals may lead to negative 
consequences for individuals, caregivers and society [6]. 
Caregivers report offering prompts to individuals with 
cognitive impairment to assist them with IADLs [7], and 
prompting likely increases as cognitive impairment progresses. 

Over the last decade, smart environment technologies have 
been providing novel solutions to improving aging-in-place 
and increasing the independence of older adults with cognitive 
impairments while also decreasing caregiver burden [7]. 
Automated prompting technologies may assist these 
individuals with activity completion in order to keep them 
functioning independently in their homes longer and decrease 
caregiver burden. Furthermore, using smart phones to deliver 

prompts “on the go” have benefits over traditional interfaces 
such as stationary computers or touch screens.  

In the current work, we use an Android smart phone as a 
prompting interface for our context-aware prompting system. 
Context-awareness employs temporal and environmental 
parameters for identifying a useful context. However, this 
information is not sufficient for the smart environments domain 
where prompts are issued in complex situations that involve 
Activities of Daily Living (ADLs) and Instrumental ADLs 
(IADLs). In order to augment context-awareness, we include 
subject behavioral information by performing real-time 
recognition of basic activities that involve ambulatory 
movement, such as standing, walking, and climbing stairs. This 
is done by building machine learning models on training data 
gathered from a tri-axial accelerometer in the phone. 

In order to facilitate the development of assistive 
technologies to help older adults with cognitive difficulties in 
completing IADLs, a pilot study is conducted with a healthy 
younger adult population to explore the feasibility of smart 
phone prompting technology to assist with IADLs in a smart 
home environment. Specifically, we examined perceived 
prompt usefulness, appropriateness, timing and realism. No 
studies known to us have focused on these parameters of smart 
phone technology acceptance. 

II. SYSTEM ARCHITECTURE 

A. Smart Environment Testbed 

The Center for Advanced Studies in Adaptive Systems’s 
(CASAS) smart environment smart apartment testbed is 
located in an on-campus town house apartment at Washington 
State University.  Younger adults, healthy older adults, and 
older adults with various levels of dementia are brought in to 
perform Activities of Daily Living.  The data collected from 
these experiments are used to train classifiers in identifying 
these ADLs.  The smart apartment also serves as a proving 
ground for new sensor systems and techniques before they are 
integrated into systems that are deployed in private residences. 

The current sensor system is composed of several sensor 
types for motion, ambient light level, temperature, doors, light 
switches, item presence, vibration-based object movement, 
water flow, and power use.  A majority of the sensors are now 



 

wireless, utilizing a low-cost, low power wireless mesh 
network standard: ZigBee, provided by Control4. 

Figure 1.  System Architecture 

A. Middleware Architecture 

The CASAS Lightweight Middleware utilizes XMPP for 
fast and timely communication between the various agents that 
comprise the smart environments.  We replicate a Publish-
Subscribe model where agents can publish and/or subscribe to 
channels of information.  By using XMPP, we can take 
advantage of the ability to communicate over networks and 
easily integrate data sources and sinks across multiple 
computers and agents. 

The Manager manages the event channels, accepting events 
from various agents and adding a timestamp to the event (this 
is done to prevent issues of clock skew across different 
computers), then sending the event to all subscribers of that 
channel. The Scribe agent records the events to disk before 
securely transferring them to the main CASAS database every 
15 minutes. The Control4 agent publishes events as they occur.  
The agent can also receive standardized commands for 
controlling relays and actuators, and in turn send the command 
through the Control4 ZigBee mesh network to the requested 
device. The ReminderLogic agent watches for patterns in the 
sensor events from the smart environment.  When it sees a 
pattern that meets the defined criteria for issuing a prompt, it  
sends messages to the Prompting Users and Control Kiosk 
(PUCK) agent on the smart phone.  The Experimenter 
Reminder Control allows experimenters to send prompts to a 
specific device to be played in the smart apartment. 

B. Smart Phone Infrastructure 

A Samsung Captivate™ smart phone is used as the device 
running Android 2.1.  Due to the security configuration of the 
smart apartment only a local network connection could be 
made to the XMPP server, so we could only use the phone's 
WiFi connection for connecting to the local CLM. For the 
purpose of real-time basic activity recognition, accelerometer 
data was collected at 20 Hz from the phone's accelerometer. 

III. CONTEXT MODELING 

Providing time-based rules for reminders is not enough as 
everyday life involves many other complex activities with 
which people would need help. Therefore, taking overall 
context of the smart home inhabitant under consideration is a 
better solution to the problem. Context-awareness as defined 
by Schilit and Theimer [8], is synonymous to location 
awareness. Dey et al. [9] proposed a definition of context 
which considers context to be any information that can be used 
to characterize the situation where an entity could be anything 
relevant to the interaction between a user and an application, 
not excluding the user and application themselves. Over the 
last decade, context-awareness has found a wide spectrum of 
applications in health care, pervasive games, middleware, 
semantic webs, user interfaces, and information retrieval.  

With an increased growth of smart environment 
technologies for health monitoring and assistive living, context 
aware computing has found its place in this area as well. There 
have been some projects focused primarily on context-aware 
prompting such as Cybreminder [10] and ComMotion [11]. 
These systems use temporal and complex location-based 
contextual information to determine when and how to deliver 
the prompts. The HYCARE system [12] of the CogKnow 
project is a hybrid context-aware reminding framework based 
on a scheduling mechanism. Chang et al. [13], on the other 
hand, emphasize on increasing accuracy of contextual unique-
to-the-user prompts. 

A. Context Model 

In the current work, we hypothesize that temporal and 
location-based contextual information is not sufficient to 
represent complicated contexts of daily life. Therefore, 
behavioral information of an individual based on ambulatory 
movements could be valuable contextual input for customized 
prompts. We have not found any work that uses sophisticated 
environmental and behavioral information to determine prompt 
situations in a smart environment.  As shown in Figure 2, we 
formulate context awareness on the basis of three parameters: 
Temporal, Environmental and Behavioral. 

Figure 2.  Context-Awareness for Determining Prompt Situation 

Temporal Context: In a smart environment, temporal 
contexts can be crucial to set reminders. Daily life can include 
activities like taking medication, doing laundry, paying utility 
bills, or writing letters to friends. Time can refer to a specific 
time in a day, week, month, year; a time window; or, a duration  
of time, for example 5 minutes. 

Environmental Context: Location in a smart home is a 
vital environmental context for complicated daily activities like 



cooking and housekeeping. In addition, specific sensor patterns 
derived from motion, object interaction, door and temperature 
sensors in the smart environment and different states of these 
sensors are also crucial. A prompt situation can be determined 
by formulating a sensor pattern that either includes or strictly 
follows a certain sensor sequence.  

Behavioral Context: Behavior context can be derived from 
ambulatory movements. Raw data collected in real-time from a 
phone, when it is carried by the individual, is used to predict 
basic activities like sitting, standing, walking, running and 
climbing stairs. Predictions done with the help of a machine 
learning model can be helpful in situations where the smart 
environment has multiple inhabitants or pets. This can ensure 
that the target pattern is not triggered by somebody other than 
the individual for whom the prompts were designed.  

As there can be an innumerable number of context 
combinations for a prompt situation contextual rules need to be 
defined from which caregivers can make choices. Here are 
examples of some prompt situations: 

• Taking medication everyday at 8:00 AM. This is an 
example of purely temporal context.  

• Taking medication some time in between 7:00 AM and 
8:30 AM, right after breakfast. This is a combination 
of temporal (time window based) and environmental 
(target pattern indicating breakfast is over) context.  

• Notifying individuals that they have met their evening 
walking goal. The basic activity recognition from the 
phone can be used to recognize that the subject has 
been continuously walking for a certain period of time 
in the evening and may head back home. 

B. Low Level Representation 

The higher level prompt situations explained above are 
represented by a key-value-based formalism. Every rule is 
represented by a combination of a predetermined set of key-
value pairs. The keys represent different types of contextual 
information such as time of day, day of week, and context. 
Every prompt rule is implemented with the help of a pair of 
logic functions: 

• stTime(t) ˄ dayOfWeek(d) ˄stPattern(p) → prompt(f) 

• endTime(t)˅endPattern(p) ˅ repeats(r) → stopPrompt() 

The first function issues a prompt upon identifying the 
prompt situation as per the triggering pattern. The second 
function stops issuing the prompt on the basis of an end pattern 
and ensures that the prompt is repeated until the end pattern is 
identified. Thus the examples given in the previous sub-section 
can be represented in a logical format as the following: 

• Taking medication at 8:00 everyday. 

stTime(8:00:00) ˄ dayOfWeek() ˄ stPattern() → 

prompt(medication.wav) 

endTime() ˅ endPattern() ˅ repeats(1) → stopPrompt() 

• Taking medication sometime in between 7:00 AM and 
8:30 AM, right after breakfast. 

startTime(7:00:00) ˄ dayOfWeek()˄ 

triggerPattern(M013,sitting,walking-standing,M016-

M017-M018) → prompt(medication.wav) 

endTime(8:30:00) ˅ endPattern(D007, I002 ABSENT) ˅ 

repeats(10) → stopPrompt() 

• Notifying individuals that they have met their evening 
walking goal. 

startTime(4:00:00) ˄ dayOfWeek()˄ 

triggerPattern(walking-running,30mins) → 

prompt(evening_walk.wav) 

endTime(7:00:00) ˅ endPattern(D001 OPEN, D001 CLOSE) 

˅ repeats(2) → stopPrompt() 

IV. MOVEMENT-BASED ACTIVITY RECOGNITION 

Tri-axial accelerometer data can be exploited to determine 
patterns of an individual’s ambulatory movement, which can in 
turn help in recognizing activities such as sitting, walking, and 
running. Accelerometers have been successfully used for 
achieving this goal [14]. The major issue involved with this 
approach is the obtrusive nature of so many additional devices 
on the body. As a solution, commercial mobile devices, like 
cell phones equipped with tri-axial accelerometer and a 
gyroscope, are being used. Some groups used the Nokia N95 to 
recognize ambulatory activities in real time but trained the 
model separately for each user. Kwapisz et al. [15] improved 
this approach by forming a universal model for six activities 
performed by 29 participants.  

In our work, an approach similar to that of Kwapisz is 
considered. We perform real-time activity recognition on 5 
activities: sitting, standing, walking, running and climbing 
stairs. As our model runs on an Android smart phone platform, 
we use a lightweight classifier and a minimum number of 
features that can be easily extracted in real-time. 

A. Building Machine Learning Model 

Data Collection 
The data was collected at the CASAS Lab with a lab member. 

It has been found that accelerometers placed close to the thigh 

[16] give better classification accuracy for activities that are 

mainly related to lower body movement. Therefore, the phone 

was placed in pants pocket. The lab member performed all the 

basic activities for 4 mins and the time stamp for the beginning 

and end of each activity performance was recorded. The 

accelerometer data collected from the phone was stored and all 

activities were parsed according to the time stamps.  

Feature Generation 
The phone accelerometer produces time series data for X, Y 

and Z axes, as shown in Figure 3. However, this data cannot 

be directly used by the classification algorithms. Therefore, 

the data is converted into training examples with additional 

features that can help the learning models classify the different 

activities accurately. In order to do that, we consider 5 secs 

time segments of the data at a time and generate features on 

that. The length of the time segment has been considered as 5 

secs because of its significance in prompt situation 

identification. While other works have considered different 

time segments, 5 secs is suitable for our goal. As the activity 



recognition runs in real-time we ensure that the features are 

generated fast enough in real-time. Table I summarizes the 

features that have been used for this work. 

Figure 3.  Accelerometer Data for X, Y and Z Axes for activities “running” 

and “climbing stairs”  

TABLE I.     GENERATED FEATURES 

Features Description 

Arithmetic Mean 

(X, Y and Z axes) 

Arithmetic mean of the values of an axis in the time 

segment. 

Root Mean 

Square (X, Y and 

Z axes) 

2 2 2
...1 2x x xn

xrms
n

+ + +

= where n is the 

time segment size (same for yrms and zrms ). 

Difference 

Between Max 

and Min Values 

Difference between the maximum and the minimum 

values in the time segment on a particular axis. 

 

Machine Learning Models 
Four machine learning techniques are considered for 
experimentation and determining the model that would be 
suitable for real-time activity recognition on the phone. In the 
following, we give a brief overview of the four models, for 
better understanding. 

Naïve Bayes: A naïve Bayes classifier is a simple 
probabilistic classifier that assumes each feature of a class to be 
unrelated to any other features. It applies Bayes’ theorem to 
learn a mapping from the features to a classification label.  

Decision Tree: A decision tree classifier uses a statistical 
property that measures how well a given attribute separates the 
training examples according to their target classification, to 
create a classification model.  

Support Vector Machine: A Support Vector Machine 
(SVM) [17] is a training algorithm for data classification which 
maximizes the classification margin between the training 
examples and the class boundary.  

K-Nearest Neighbor: The k-Nearest Neighbor is an 
instance based learning method in which algorithm assigns a 
class label to a data point that represents the most common 
value among the k training examples which are nearest to the 
data point.  

B. Experimentation and Results  

The experiments are done with the machine learning 
techniques mentioned above, using 10 fold cross validation. 
Figure 4 (left) shows the average performance accuracy of the 

learners. With the nine different features mentioned earlier, 
naïve Bayes gives an average performance accuracy of 
98.67%. SMO and K-star perform comparably, while J48 is 
around 92%. 

Figure 4.  (left) Accuracies of Different Classifiers, (right) Accuracies for 

Different Activties with Naïve Bayes Classifier 

SMO and K-star require a substantial amount of 
computation, which is difficult to achieve with an Android 
phone that has a 1Ghz processor. Among the less 
computationally expensive classifiers, Naïve Bayes performs 
better and therefore it is chosen to run on the phone. Figure 4 
(right) shows the performance accuracy of the five different 
activities separately with Naïve Bayes classifier. We also tested 
the performance of Naïve Bayes for real-time activity 
recognition and the average accuracy is more than 85%. 

V. USER STUDY 

A. Method 

Two healthy younger adults participated in this study. 
Participants were given a smart phone to carry in their pocket 
and received two questionnaires that assessed prompt 
helpfulness, appropriateness of timing, and natural feeling 
using a 5-point Likert scale, along with open-ended feedback to 
improve the technology.  

Participants completed six IADLs in the smart 
environment testbed: sweeping, filling a medication organizer, 
cooking, watering plants, hand washing, and cleaning kitchen 
counters. In the smart apartment, a bedroom was used as a 
control room to monitor live video feed of the participants 
from the installed web-cams. The prompts were pre-recorded 
by the experimenters, preprogrammed into the server, selected 
by the experimenter to be delivered when an activity occurred, 
and delivered through the smart phone. When an error in 
activity completion occurred, the experimenter typed a code 
into the main computer to initiate prompt delivery. Timing of 
prompt delivery was determined by the experimenter’s clinical 
judgment. Participants performed each activity four times. The 
first time, participants completed the activity accurately. The 
next three times, participants made one or more specific errors 
to test the prompting technology (e.g., skip a step). Audio 
prompts were delivered through the smart phone interface. 
After completing the activities, participants offered feedback 
on the usability and effectiveness of the technology. 

B. Results 

To evaluate the perceived helpfulness, appropriateness of 
timing, and natural feel of the smart phone prompts, descriptive 
statistics were analyzed (Table II). As an example, participants 

 



rated the prompts delivered during the sweeping task as very 
helpful (M=5), somewhat to very appropriately timed (M=4.5), 
and somewhat to very natural feeling (M=4.5). Participants 
rated the prompts delivered during the medication task as very 
helpful, appropriately timed, and natural feeling (M=5). 
Feedback from participants focused on improving the timing of 
prompts and shortening the task instructions.  Both participants 
commented on the volume of the prompts for one of the tasks 
and indicated that environment noise (i.e., running water) 
interfered with understanding the prompt. 

TABLE II.  MEAN RATING OF PROMPTS 

 Helpfulness 
Appropriate 

Timing 

Natural 

Feeling 

Likelihood 

of Use 

Sweeping 5 4 4.5 - 

Medication 5 5 5 - 

Water 

Plants 
5 5 5 - 

Cooking 5 5 5 - 

Hand 

Washing 
4.5 4.5 4.5 - 

Countertop 

Washing 
5 4 5 - 

Overall 4.5 3 4 3 

C. Discussion 

The study findings indicate that the smart phone prompts 
were generally natural and useful. Qualitative data gathered 
from participants indicates that the main areas for improvement 
of the prompting technology are timing and better audio clarity 
of the prompts. Specifically, prompts that are delivered, 
immediately after an error occurs, will be most helpful for 
older adults with cognitive impairment. These individuals may 
forget quickly what they are supposed to be doing between the 
time that they make an error and receive a prompt. Appropriate 
timing of prompt delivery represents a challenge in this area of 
research because there are individual differences in activity 
step completion and length of time to complete activities. 
Appropriate volume of prompts is particularly important for 
older adults who may have hearing impairments. 

VI. CONCLUSION AND FUTURE WORK 

In the current work, a context-aware approach is taken to 
identify prompt situations in a smart home environment setting 
and issue audio prompts on an Android smart phone. We 
augment context-awareness by including ambulatory 
information of individuals captured by a phone. To receive user 
feedback on usability of smart phone technology as a 
prompting system interface, a user study is conducted in which 
pre-recorded audio prompts are initiated by an experimenter 
and delivered to participants through a smart phone when 
errors are committed on IADLs in a smart apartment. 

Future versions of the smart phone software will include 
the ability for a user to reply to prompts (e.g., I will do it now, I 
will do it later, I will not do it).  Additionally, the context-
aware system can ask the user limited multiple-choice 
questions to help clarify its understanding of the state of the 
world. User studies will be conducted with larger, non-biased 
sample sizes of clinical population (e.g. older adults with 
cognitive impairment) and will address the comments for 
technology improvement made by participants in the current 
study, such as prompt timing and volume. 
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