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ABSTRACT

In machine learning, one of the important criteria for higher classification accuracy is a
balanced dataset. Datasets with a large ratio between minority and majority classes face
hindrance in learning using any classifier. Datasets having a magnitude difference in
number of instances between the target concept result in an imbalanced class distribution.
Such datasets can range from biological data, sensor data, medical diagnostics, or any
other domain where labeling any instances of the minority class can be time-consuming or
costly or the data may not be easily available. The current study investigates a number of
imbalanced class algorithms for solving the imbalanced class distribution present in epi-
genetic datasets. Epigenetic (DNA methylation) datasets inherently come with few dif-
ferentially DNA methylated regions (DMR) and with a higher number of non-DMR sites.
For this class imbalance problem, a number of algorithms are compared, including the
TAN + AdaBoost algorithm. Experiments performed on four epigenetic datasets and sev-
eral known datasets show that an imbalanced dataset can have similar accuracy as a
regular learner on a balanced dataset.
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1. INTRODUCTION

Currently, there is an explosion of data in a number of different scientific areas. New techniques are

being developed every day to analyze, mine, annotate, and classify these data. After retrieval of data, a

natural assumption is that if the dataset contains multiple classes, where each instance can be labeled as

belonging to a particular class, then all classes have equal or almost the same number of instances. Once

machine learning techniques are applied, the classifier tries to learn from the dataset with the assumption that

the target concepts can be learned with equal weights from all instances. Unfortunately, this assumption does

not always hold. Often there exists an unequal distribution among classes. Unequal distributions can range

from a class being slightly larger or smaller than the other to extreme cases where the difference can be of

several orders of magnitude larger, for example, the majority class is 100:1 or 1000:1 of the minority class.

For example, in the case of detection of oil spills from satellite images, the authors had 41 positive examples

against 896 negative examples, where the majority class consists of 96% of the data (Kubat et al., 1998). In

these circumstances, the classifier learns most of the target concepts of the majority class and learns target

concepts from the minority class poorly or not at all. So, once the learning is complete, when the classifier is
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applied to the test set the classifier seems to predict the majority class accurately while failing to predict the

minority class at all. There also may be many instances in the majority class that are redundant, so the

classifier learns from those instances more than learning from important instances in the minority class. Often

the interest is more on the minority class such that getting rare instances from the minority class can be time-

consuming and costly.

An unequal distribution between classes of a dataset is known as the class imbalance problem ( Jap-

kowicz and Holte, 2001; Chawla et al., 2004; Weiss, 2004; He and Garcia, 2009). This problem is prevalent

in many domains such as in credit card fraud detection (Chan and Stolfo, 1998), network intrusion (Cieslak

et al., 2006), text categorization (Dumais et al., 1998), and classification of proteins (Radivojac et al., 2004)

to name a few. The importance of the imbalanced class problem has been more visible recently with the

introduction of this topic in several conferences and journals. Recently, a few workshops have been held

mainly addressing this area such as the Workshop on Class Imbalances: Past, Present, Future (CIPPF, 2012)

and the International Conference on Machine Learning workshop on Learning from Imbalanced Data Sets

(ICML, 03) among others.

The current study addresses the imbalanced class problem in epigenetics (Waddington, 1953; Weber and

Schubeler, 2007; Bock and Lengauer, 2008). The epigenetic data sets were obtained from epigenetic

transgenerational inheritance experiments (Guerrero-Bosagna et al., 2010, 2013; Bhandari et al., 2012a;

Manikkam et al., 2012a,b,c, 2013; Nilsson et al., 2012; Tracey et al., 2013). The gestating female (F0

generation) exposed to environmental compounds had offspring that were bred out three generations to the

F3 (great grand-offspring), and the sperm was collected from the males for analysis. The number of altered

sites with differentially DNA methylated regions (DMR) was identified in a comparison of F3 generation

male sperm from exposure lineage and control lineage F3 generations. For each study observing changes in

DNA methylation between control and exposure lineages, there are only a few DMR sites compared with

thousands of sites that are not altered (non-DMRs). Therefore, using machine learning methods in this

scenario creates a problem of data imbalance. For many biological datasets (e.g., disease outbreaks), this

class imbalance problem is inherent.

One of the main issues with epigenetic datasets is that they are naturally imbalanced. A number of steps in

the analysis such as stringent statistics, intersection between results, and other methods are used to make sure

that the epigenetic sites retrieved from the analysis contain as few false positives as possible. Only a few of

these sites are later confirmed using alternate procedures such as bisulfite sequencing (Chen et al., 2005).

Since such stringent analysis methods pick only a very limited number of epigenetic sites from the whole

genome, the rest of the sites all fall in the majority class and the epigenetic sites fall in the minority class.

Another issue from the machine-learning point of view is that most biological datasets come with high

dimension and low volume. Each site may contain from a few hundred to a few thousand genomic features

ranging from repeat elements to CpG islands (Gardiner-Garden and Frommer, 1987) to other characteristics.

Among the many features, the relevant and important features need to be identified and kept as features in the

dataset. Some of the selection of these features comes from biological knowledge of the dataset.

Both random oversampling (Han et al., 2005; Chawla et al., 2011) and random undersampling (Holte

et al., 1989; Mease et al., 2007) have been used widely to address the class imbalance problem. Since they

introduce overfitting and potential loss of subconcepts, many variants of these techniques have been

proposed and used successfully. Using a synthetic dataset to overcome the minority class distribution is a

unique technique. It uses the feature space in the minority class and creates new instances. One successful

technique is synthetic minority oversampling technique (SMOTE) (Chawla et al., 2011). Tomek links is a

data cleaning technique that can be used to create distinct clusters in the training set by removing over-

lapping examples, which helps create better classification rules (Tomek, 1976). Cluster-based oversampling

(CBO) algorithms such as the one that uses K-means clustering create well-defined cluster boundaries and

cluster means ( Jo and Japkowicz, 2004). Cost-sensitive approaches based on the cost matrix have been

used. Three cost-sensitive boosting methods, AdaC1, AdaC2, and AdaC3 (Sun et al., 2007), have been used

where different costs are added in the weight update phase of the boosting algorithm.

An undersampling method called EasyEnsemble (Liu et al., 2009) has been used in this study. It converts

the majority class instances of the training set into a number of subsets and allows a single classifier

(AdaBoost is used to train each classifier) to be trained from each of these subsets plus the minority set. An

ensemble learning system combines the outcome of these classifiers to create the final output. The approach

proposed in this article also uses subset sampling optimization (SSO) (Yang et al., 2009, 2011) and the

AdaBoost + TAN learning technique. These algorithms will be used in the current study.
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2. METHODS

2.1. EasyEnsemble

EasyEnsemble groups majority class instances into equal subsets of the same size of the minority class.

After adding the entire minority class samples to each of these majority class subgroups, it trains a different learner

on each subgroup. EasyEnsemble uses an ensemble-based approach that combines the output of these learners.

Algorithm 1. EasyEnsemble

Input: P: minority class examples

N: majority class examples

T: number of subsets from the majority class examples

si: number of iterations for training AdaBoost ensemble Hi

Output: An ensemble of ensembles

H(x) = sgn
PT
i = 1

Psi

j = 1 ai‚ jhi‚ j(x) -
PT

i = 1 hi

� �

procedure: EasyEnsemble(P,N,T,si)

for i = 1 to T

Create Ni by randomly selecting a subset of examples from N, such that jNij = jPj
Train Hi from P + Ni. Hi consists of si weak classifiers hi,j with weights ai,j

This ensemble Hi has threshold hi

end for

end procedure

One of the characteristics of the EasyEnsemble algorithm is that it looks like an ensemble of ensembles. As

shown in Algorithm 1, the majority class is divided into T balanced subsamples each containing the complete

minority class P. In each iteration a classifier Hi is trained. Classification and regression trees (CART) (Breiman

et al., 1984) are used as the base classifier in EasyEnsemble. Hi is actually an ensemble of si weak classifiers hij

(CART) with weights ai,j. A weak classifier is one that achieves accuracy better than random guessing. If hi,j is

assumed to be a set of features, then Hi is actually a linear classifier built on those features. So features in

different subsets have information of different viewpoints of the majority class. Finally, all those features hi,j

(i = 1‚ 2‚ . . . ‚ T and j = 1‚ 2‚ . . . ‚ si) are used to create the final ensemble classifier. The range of values for

threshold Y used is from -N to +N and the value returned by the weak classifier directly. The value of Y was

chosen to get the entire range for the pairs (false position rate, true positive rate) to build the ROC curve from

the data. The threshold (Y) is computed by summing up all the weight update parameters from each iteration

and dividing by 2. The final threshold for the ensemble is the sum of all T rounds of thresholds. For this article

the number of subsets of negative examples used is T = 4, and the number of iterations to train AdaBoost

classifier is si = 10. For each dataset there are 4 subsets that are sampled, and 10 weak learners are trained based

on them; hence, the final classifier is based on 40 weak learners. Since the imbalance level of the datasets used is

below 40%, the authors (in Liu et al., 2009) chose 40 as an ideal number of weak learners and showed that by

not utilizing all of the majority class examples they can train their classifier faster while minimizing some of the

negative effects (caused by using all the majority class examples). Their classifier is comparable with other

well-known class-imbalanced methods. As EasyEnsemble uses boosting inside of each bag (in bagging), this

combination (boosting reduces bias and bagging reduces variance) of boosting and bagging improves per-

formance. Details of this algorithm are given in the article by Liu et al. (2009).

2.2. Subset sampling optimization

Subset sampling optimization (SSO) is based on the particle swarm optimization (PSO) hybrid system

(Yang et al., 2009, 2011). The SSO algorithm divides the dataset into three sets. While the first two are used

for internal cross validation to perform the internal optimization process, the third set is used for external

cross validation. The internal dataset is again divided into three sets, two for training and the other for

testing. Using the internal dataset the SSO algorithm takes different subset samples of the majority class

and combines them with samples from the minority class for classifier learning (both sets are of equal size).

Each of these sets is called a particle and has an index in the particle space. Each of these n particles also

has a dimension m equal to the number of instances in it. A particle’s velocity vi,j(t) (index i = 1‚ 2‚ . . . ‚ n
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and j = 1‚ 2‚ . . . ‚ m) and position xi,j(t) are updated using the binary particle swarm optimization (BPSO)

(Kennedy and Eberhart, 1997; Lee et al., 2008) and the following equations.

vi‚ j(t + 1) = wvi‚ j(t) + c1R1(pbesti‚ j - xi‚ j(t)) + c2R2(gbesti‚ j - xi‚ j(t)) (1)

xi‚ j(t + 1) = 0‚ if ::random()qs(vij(t + 1))
1‚ if ::random() < s(vi‚ j(t + 1))

�
(2)

S(vi‚ j(t + 1)) =
1

1 + e - vi‚ j(t + 1)
(3)

Here pbesti,j and gbesti,j are the previous best position and updated best position, w is the fitness weight,

c1, R1, c2, and R2 are the learning rates and social coefficients, while function random provides pseudo-

random numbers to create uniform distribution between 0 and 1. When the value xi,j is 1, then the jth

sample is included in building the classification model, while a value of 0 will have it excluded from the

training. Among these subsets the ones that create better classification accuracy are favored and optimized

in each iteration. The overall fitness of each particle (subset) is evaluated with the following function.

Overall fitness(sample) =
XL

i = 1

w1 · AUC(sample) + w2 · FMeasure(sample) + w3 · Gmean(sample)

L
(4)

L is the number of classifiers in the hybrid system (in the SSO algorithm five classifiers are used for the

training; they are decision tree [J48], k-nearest neighbor [KNN], naive Bayes [NB], random forest [RF], and

logistic regression [LOG]), and w1, w2, and w3 are the fitness weights with equal values w1 = w2 = w3 = 1/3

(
P3

i = 1 wi = 1). In each cross-validation fold all of the particles’ position and velocity are initialized, and in each of T

(150) iterations the particles’ position and velocity are updated based on their overall fitness. After each fold the

particles’ information is saved. Once the training is completed, the subset from each iteration is taken and the

majority class instances are ranked based on their classification accuracy from the SSO algorithm. These instances

are combined with the minority class instances to construct a balanced dataset. The classifiers used for training are

not the same classifiers used for evaluation, which produces an independent unbiased evaluation. Pseudocode for the

algorithm is presented in Algorithm 2. Details of the algorithm are given in Yang et al. (2009) and Yang et al. (2011).

Algorithm 2. Subset Sampling Optimization (SSO)

Input: trainSet: majority and minority class examples

CrossValidationSize = = internalCrossVal(trainFold) //Size of internal cross validation for training

PopulationSize: number of particles // particle = (all examples of minority class) + (subset of majority class)

MajoritySize: dimension of the particle (samples in majority subclass)

T : number of iterations to update the particles’ position and velocity

Output: A ranked list of the majority class examples

procedure: BPSO_Hybrid(trainSet,CrossValidationSize,PopulationSize,MajoritySize,T)

for I = 1 to CrossValidationSize do

for j = 1 to PopulationSize do

for k = 1 to MajoritySize do

initialize position and velocity of particle xi,j(t) // allocate position/velocity of all particles

end for

end for

for t = 0 to T // iteration of T = 150 used

for each particle do

Update internal training set based on particle position

Train classifiers based on updated training set

Evaluate test set with trained classifier and calculate overall fitness value

Overall fitness (sample) =
PL

i = 1
w1 · AUC(sample) + w2 · FMeasure(sample) + w3 · Gmean(sample)

L

Update vij(t) and xi,j(t) // updated using Equations 1–3

end for

end for

resultSet = resultSet W save(particles) // saves these subsets with their classification accuracy

end for

finalmajorityclass = rank(resultSet) // rank subsets based on their classification accuracy by SSO
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2.3. TAN-based AdaBoost

This method uses the tree augmented Bayesian network (TAN) as a base classifier for the AdaBoost

algorithm, so this algorithm is called TAN + AdaBoost. First, the advantages of using TAN (Friedman et al.,

1997) over regular naive Bayes classifier (NBC) need to be explained.

Regular naive Bayes assumes conditional independence among different attributes. Figure 1a shows a

simple network where each feature is pointed to by the parent class node and each attribute can be only a

child node. The joint probability can be calculated through the class probabilities multiplied by the class

conditional probability

p(c‚ x1‚ x2‚ . . . ‚ xn) = p(c)
Y

i

p(xijc)

A tree-augmented naive Bayes classifier (TAN) augments the standard NBC by allowing each attribute

to have an additional incoming edge (Fig. 1b). This augmented edge is created by statistical dependencies

that show the correlation among the features. The TAN outperforms naive Bayes while maintaining

computational simplicity by avoiding double accounting, which is present in naive Bayes where multiple

features are used that have a high correlation value. The TAN model can be created as follows (Hong-Bo

et al., 2002).

1. Compute the conditional mutual information (CMI) between each pair of features,

CMI(X‚ YjC) =
X
x‚ y‚ c

p(x‚ y‚ c) log
p(x‚ yjc)

p(xjc)p(yjc)

where C represents the class variable and fX1‚ . . . ‚ Xng are the features.

2. A complete undirected graph is created where the nodes represent the features. Each edge label

represents the value of the CMI between the features.

3. Construct a maximum weighted spanning tree [e.g., Kruskal’s algorithm (Kruskal, 1956)] from the

graph.

4. Pick any arbitrary node as the root and have all the edges be outward from this root node. This creates

a directed tree T out of an undirected tree.

5. Construct the TAN model by adding a vertex labeled by C (class) and having an arc from C to each

variable xi.

6. So what we have is the TAN model, which is the NB model augmented by edges in T.

7. Now calculate joint probability, which depends upon the conditional probability not only on the class

but also on the feature’s parent node parentx.

p(c‚ x1‚ x2‚ . . . ‚ xn) = p(c)
Yn

i = 1

p(xijparentxi
‚ c)

FIG. 1. The naive Bayes assumes conditional independence among different attributes. (a) The parent node points to

each of the child nodes. (b) A tree augmented naive Bayes has an additional augmented edge from a child node to its

sibling, which is based on statistical dependencies.
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TAN is used as the base classifier for the AdaBoost algorithm. The details of the TAN + AdaBoost algorithm are given

in Algorithm 3.

Algorithm 3. TAN + AdaBoost

Input: An imbalanced dataset

(x1‚ y1)‚ . . . ‚ (xm‚ ym)‚ , where xi in X, yi in Y = { -1, +1}

Output: The final classifier

procedure: TAN + AdaBoost

Initialize D1(i) = 1/m

while (t < T) do: // committee of T classifiers (T = 10)

1. Train the base learner (TAN) using distribution Dt resulting in classifier ht

2. Select a weight update parameter : at = 1
2

ln 1 - et

et

� �
where et = we

w
, the error rate given the weights of the data points (total weight of all data points w = wc + we) and

we =
P

yi 6¼ht
xi at iteration t.

3. Update

Dt + 1(i) = Dt (i)
Zt

· e - at ‚ if ::ht(xi) = yi

eat ‚ if ::ht(xi) 6¼ yi

�

= Dt(i)exp( - atht (xi)yi)/Zt

where Zt is the normalization factor so that Dt + 1 is a distribution

end while

return H(x) = sign
PT
t = 1

atht(x)

� �
end procedure

AdaBoost is based on the boosting approach and is named as one of the top 10 data-mining algorithms

(Wu et al., 2008). In AdaBoost, initially, all instances are given an equal weight. All the classifiers are

trained with the same number of instances. After each iteration AdaBoost increases the weight of the

incorrectly classified instances while decreasing the weight of the correctly classified instances. The goal is

to try to correctly label the more difficult instances that the classifier labeled incorrectly. At the same time,

each classifier is also assigned a weight based on its classification accuracy. This weight is used in the test

phase, where more accurate classifiers get more confidence. When testing a new instance, each classifier

gives a weighted vote, and the final label of the instance is based on the majority vote. Schapire proved that

any weak classifier can be converted into a strong classifier by following the probably approximately

corrected (PAC) learning framework (Freund and Schapire, 1996, 1997). A weak learner is one that

achieves accuracy better than random guessing. Although TAN is considered better than NBC, we still

consider TAN as a weak classifier and use it as the base classifier for AdaBoost. We name our approach

TAN + AdaBoost.

2.4. Data sets

A total of nine different datasets were used in the experiments, all with 10-fold cross-validation. These

datasets are from diverse domains. Five are taken from the University of California Irvine (UCI) repository

(Bache and Lichman, 2013) and four are from the Skinner laboratory at Washington State University. The

epigenetics datasets are from epigenetic transgenerational inheritance experiments and F3 generation somatic

cells or sperm from various exposure lineages, including (i) Sertoli and granulosa somatic cells (Nilsson et al.,

2012; Guerrero-Bosagna et al., 2013), (iii) dioxin (Hip), jet fuel ( Jip), and vinclozolin (Vip) (Guerrero-

Bosagna et al., 2010; Manikkam et al., 2012a, c; Tracey et al., 2013), and (iv) plastics (Bip) and pesticide

(Pip) (Manikkam et al., 2012b, 2013). Another data set, (ii) Sox9-Sry-Tcf21 (Bhandari et al., 2012a,b), will

be used as a negative control for the epigenetic datasets and is a transcription factor binding data set, but was

obtained with similar technology. The Sertoli and granulosa datasets consist of adult vinclozolin lineage F3

generation somatic cells that influence the onset of testis and ovarian disease, respectively. The dioxin, jet

fuel, and vinclozolin datasets consist of ancestral environmental exposures of these three compounds indi-

vidually and are associated with the epigenetic transgenerational inheritance of adult onset diseases. Simi-

larly, the plastics and pesticide datasets consist of ancestral environmental exposures of these compounds and

are associated with the epigenetic transgenerational inheritance of adult onset diseases. The Sox9, Sry, and

Tcf21 are transcription factors involved in the induction of Sertoli cell differentiation and testis development

and the datasets are the specific transcription factor binding sites for these factors, so are not epigenetic data
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and are used as a negative control dataset. Among these datasets the epigenetic datasets (as well as the

negative control dataset) are naturally imbalanced. However, the UCI datasets have been modified to create

imbalance datasets by labeling one of the smaller classes as the minority class and the rest of the classes as the

majority class. Details of these datasets are given in Tables 1 and 2. Table 1 shows the dataset name, features,

total instances, number of features, and the percentage of the minority class to the total class distribution.

Table 3 shows the general description of the datasets and also shows the target class.

Genomic feature extraction (data collection) mining of epigenetic profiles starts with extraction of

interesting properties from the DNA sequence data near DMR. After retrieving the training set, often the

DMR locations are annotated to find the nearest gene name and the orientation of the gene. FASTA files are

created from upstream and downstream of the target genes up to 100 kb. After construction of FASTA files

for extraction of genomic features, tools such as RepeatMasker (Smit et al., 1996–2010) are used to find

SINE, LINE, ERVL, ERV, and other repeat elements to the upstream and downstream of the DMR

locations. One of the common ways of extracting genomic features from sequences is through identification

of repeat elements. Identifying repeat elements and consensus sites helps to detect interesting patterns from

these sites. Other genomic features are GC content (% of G [guanine] and C [cytosine] in the sequence) and

CpG sites and density. Tools such as CpGislandSearcher (Takai and Jones, 2003) can be used to find CpG

islands in these regions. CpG islands denote high frequency of CpG sites. A CpG site is denoted by a C

followed immediately by a G. Epigenetic sites have been found in low CpG density regions, and therefore

identification of a decrease in CpG density in interesting sites will be helpful.

Another important genomic feature is DNA sequence motifs (Stormo, 2000; Das and Dai, 2007).

Common patterns among biologically relevant sites can be identified using motif findings. Motifs are DNA

sequences that come with a probability matrix for each base position such that a certain combination of

those sequences matches with every subsequence. These motifs are usually constructed by running DMR

Table 1. Description of Selected Datasets

Dataset name Type of features Total instances Number of features % Minority class

Sertoli-granulosa Numeric 1842 75 28.39

Sox9 Sry Tcf21 Numeric 5001 75 23.47

Dioxin, jet fuel, vinclozolin Numeric 2446 52 30.08

Plastics, pesticide Numeric 3879 74 16.94

Abalone Numeric/nominal 4177 8 6.2

Letter Numeric 20,000 17 3.79

Car Numeric/nominal 1728 6 3.99

Balance Numeric 625 4 7.84

Vehicle Numeric 946 18 25.05

The table contains dataset names, types of features, total instances, number of features, and the total percentage of the minority class

of the entire dataset.

Table 2. Description of the University of California Irvine and Epigenetics Dataset

Dataset name Description

Sertoli-granulosa Adult somatic cell (Sertoli cell) that influences the onset of a specific disease

(male infertility)

Sox9 Sry Tcf21 Induction of Sertoli cell differentiation and testis development

Dioxin, jet fuel,

vinclozolin

Ancestral environmental exposures (3 compounds) associated

with adult onset disease

Plastics, pesticide Ancestral environmental exposures (2 compounds) associated with

adult onset disease

Abalone Age prediction of abalone from physical measures (number of rings)

Letter Classify English alphabet based on image characteristics (fonts)

Car Car acceptability evaluation based on price, comfort, etc.

Balance Balance scale L,R,B based on weight and distance

Vehicle Classify a given silhouette as one of the vehicles

Table contains the name and short description of each dataset.
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sites from related experiments through some of the popular motif-finding tools. The amount of genomic

features can be enormous, and finding relevant genomic features that help to identify DMR sites is a

challenge. For the murine imprinted gene project, the authors initially looked into 4 million genomic

features (Luedi et al., 2005). Most of these features were constructed by combining different variations of

features, ranking them based on which are more relevant, and then picking 4,000 of the most statistically

significant ones for the final analysis (Luedi et al., 2005). For this study several motif-finding algorithms

were used in order to discover motif sites and consensus sequence binding sites in the DMR regions that

were used as important features in the extracted datasets.

3. RESULTS

The three algorithms (EasyEnsemble, SSO, and TAN + AdaBoost) were applied on the nine imbalanced

datasets. Among them, three are epigenetic datasets (Guerrero-Bosagna et al., 2010, 2013; Manikkam et al.,

2012a,b,c, 2013; Nilsson et al., 2012; Tracey et al., 2013), one dataset (nonepigenetic) for specific DNA

sequence binding site for Sry and Sox9 (Bhandari et al., 2012a,b), and five others are UCI datasets (Bache

and Lichman, 2013).

The nine datasets were run using five popular nonimbalanced classifiers: (1) SVM, (2) logistic, (3)

decision tree, (4) RandomForest, and (5) AdaBoost. Then, the nine datasets were run using the three

imbalanced classifiers: (1) EasyEnsemble, (2) SSO, and (3) AdaBoost + TAN. For all algorithms, classifier

accuracy measurements were done using area under the curve (AUC), F-measure, and G-mean. These

results are given in Table 4 (AUC), Table 5 (F-measure), and Table 6 (G-mean).

Table 3. The Area Under the Curve Scores from the Experiments

Sertoli-

granulosa

Sox9-Sry-

Tcf21

Hip-Jip-

Vip

Bip-

Pip Abalone Letter Car Balance Vehicle

DMR DMR DMR DMR Class 6 Find R Class good Class B Opel

Objective

Initial min 523 1173 736 101 259 758 69 49 212

Initial maj 1319 3828 1710 495 3918 19242 1659 576 634

Unbalanced

SMO 0.8138 0.5 0.935 0.884 0.5 0.604 0.5 0.5 0.5

Logistic 0.9647 0.852 0.999 0.968 0.897 0.942 0.975 0.414 0.857

J48 0.9399 0.775 1 0.999 0.498 0.928 0.975 0.489 0.768

RandomForest 0.9477 0.88 0.999 0.999 0.831 0.99 0.988 0.397 0.84

AdaBoost 0.9677 0.847 1 1 0.872 0.948 0.959 0.217 0.758

EasyEnsemble

Initial min 523 1173 736 101 259 758 69 49 212

Initial maj 1319 3828 1710 495 3918 19242 1659 576 634

AUC 0.9755 0.8416 0.866 0.9835 0.9113 0.9964 0.7692 0.4878 0.8295

Using SSO

Reduced min 523 1173 736 101 259 758 69 49 212

Reduced maj 523 1173 736 101 259 758 69 49 212

SSO + SMO 0.8432 0.845 0.947 0.906 0.873 0.972 0.877 0.296 0.762

SSO + Logistic 0.9565 0.959 0.999 0.95 0.939 0.996 0.949 0.198 0.898

SSO + J48 0.9379 0.937 0.999 0.995 0.884 0.987 0.964 0.54 0.821

SSO + RandomForest 0.9445 0.94 0.999 0.997 0.943 0.999 0.999 0.697 0.909

SSO + AdaBoost 0.9626 0.955 1 0.995 0.918 0.996 0.902 0.409 0.789

TAN + AdaBoost 0.965 0.812 0.997 0.998 0.874 0.993 0.973 0.489 0.774

Table contains the minority–majority class for each dataset (nine in total). The AUC values of the different classifiers applied to

these datasets. SSO first balanced the dataset to equal class examples and then the same classifiers are applied as unbalanced dataset to

calculate the AUC values. The last row contains the AUC values of TAN + AdaBoost approach on all datasets. AUC, area under the

curve; SSO, subset sampling optimization. Bold indicates best classifier(s).
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For all datasets, 10-fold cross-validation was used to evaluate each of the three imbalanced class

algorithms, EasyEnsemble, SSO, and TAN + AdaBoost. The SSO algorithm converts the data into a bal-

anced distribution by selecting some examples from the majority class while keeping the minority class

examples intact. This converted dataset was again input to the same five classifiers (SMO, Logistic, J48,

RandomForest, and AdaBoost) using 10-fold cross-validation, and the results are given in the tables.

Figures 2, 3, and 4 are barplots created from Tables 3, 4, and 5 for better visualization.

From Table 3, comparing AUC values across the four experiments, the AUC value improves for subset

sampling optimization after SSO has converted the imbalanced distribution to a balanced class distribution.

However, overall EasyEnsemble has a better AUC value on the four UCI datasets, while TAN + AdaBoost

has better AUC values on the epigenetic datasets. The bold entry shows the best result obtained by a

classifier for that particular dataset. The F-measure has decreased after having used SSO on the imbalanced

dataset (Table 4). Considering F-measure, EasyEnsemble performs poorly on the five UCI datasets (Fig. 3).

TAN + AdaBoost has a better F-measure on the epigenetic datasets. Comparing the G-mean score in Table

5, SSO again improves over imbalanced class distribution and closely matches EasyEnsemble on G-mean

Table 4. The F-Measure Score

Sertoli-

granulosa

Sox9-

Sry-Tcf21

Hip-Jip-

Vip

Bip-

Pip Abalone Letter Car Balance Vehicle

Unbalanced

SMO 0.931 0.867 0.972 0.975 0.968 0.984 0.98 0.959 0.857

Logistic 0.956 0.857 0.992 0.977 0.968 0.985 0.979 0.959 0.865

J48 0.97 0.881 1 0.999 0.968 0.994 0.992 0.959 0.858

RandomForest 0.952 0.89 0.989 0.99 0.962 0.996 0.993 0.948 0.867

AdaBoost 0.972 0.867 1 1 0.968 0.982 0.98 0.959 0.858

EasyEnsemble 0.8354 0.7094 0.6519 0.8889 0.3712 0.6329 0.053 0.1176 0.5931

SSO

SSO + SMO 0.854 0.853 0.946 0.902 0.867 0.343 0.86 0.343 0.753

SSO + Logistic 0.891 0.884 0.981 0.869 0.873 0.237 0.902 0.237 0.828

SSO + J48 0.927 0.931 0.999 0.995 0.865 0.618 0.962 0.618 0.788

SSO + RandomForest 0.904 0.907 0.984 0.975 0.849 0.611 0.955 0.611 0.828

SSO + AdaBoost 0.928 0.933 1 0.995 0.869 0.408 0.922 0.408 0.749

TAN + AdaBoost 0.972 0.875 0.99 0.993 0.874 0.994 0.975 0.959 0.856

Table contains F-measure values from the algorithms applied to the nine datasets. Bold indicates best classifier(s).

Table 5. The G-Mean Score

Sertoli-

granulosa

Sox9-Sry-

Tcf21

Hip-Jip-

Vip

Bip-

Pip Abalone Letter Car Balance Vehicle

Unbalanced

SMO 0.7925 0 0.9325943 0.8770159 0 0.4577 0 0 0

Logistic 0.9073 0.576348 0.9869621 0.9324628 0 0.6071 0.4935 0 0.6501

J48 0.9399 0.7371003 1 0.9989894 0 0.8994 0.9277 0 0.6806

RandomForest 0.8804 0.6767352 0.979014 0.9576386 0.3741 0.898 0.8822 0 0.5974

AdaBoost 0.9255 0 1 1 0 0.3306 0 0 0.3928

EasyEnsemble 0.8697 0.8312 0.7972 0.9706 0.8635 0.9748 0.3845 0.4619 0.7312

SSO

SSO + SMO 0.8397 0.8433 0.94687 0.90484 0.8717 0.2872 0.8681 0.2872 0.761

SSO + Logistic 0.89 0.88331 0.98097 0.8710621 0.876 0.2707 0.9051 0.2707 0.8278

SSO + J48 0.9263 0.93116 0.99932 0.99509 0.8667 0.4536 0.9631 0.4536 0.7942

SSO + RandomForest 0.8967 0.89976 0.98437 0.9751344 0.8494 0.5622 0.9555 0.5622 0.8227

SSO + AdaBoost 0.9229 0.92553 1 0.9950372 0.8706 0.4082 0.9247 0.4082 0.7617

TAN + AdaBoost 0.9309 0.7024798 0.981984 0.9929 0.3926 0.9057 0.5587 0 0.4285

Table contains G-measure values from the algorithms applied to the nine datasets. Bold indicates best classifier(s).
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scores. The G-mean is zero for many of the unbalanced classes, because the classifier predicts only the

majority class correctly while predicting all the minority class incorrectly. This shows the power of

imbalanced class learning over nonimbalanced. This also justifies the need for using the proper evaluation

method. On the three epigenetic datasets, Sertoli-granulosa, Hip-Jip-Vip, and Bip-Pip, TAN + AdaBoost

had a higher AUC, F-measure, and G-mean than the rest of the algorithms. While on the negative-control

dataset Sox9-Sry-Tcf21, TAN + AdaBoost underperforms in comparison with the others. The reason is that

a biologically and molecularly different dataset is used for Sertoli cell transcription factor–binding sites

(Bhandari et al., 2012a,b), and its motif and consensus binding sites differ from DMR sites. The datasets

(Sertoli-granulosa, Hip-Jip-Vip, and Bip-Pip) consist of DMR sites that have differential DNA methylation

changes between the F3 generation treatment and control lineages cells. These epigenetic data come from

investigations of the actions of environmental factors during fetal development that induce epigenetic

change in the germ line and promote epigenetic transgenerational inheritance of adult-onset diseases

(Skinner et al., 2010). The other dataset (Sox9-Sry-Tcf21) consists of genome-wide transcription factor–

binding sites in fetal Sertoli cells for Sry and Sox9. The Sox9-Sry-Tcf21 dataset includes identification of

direct binding targets using a modified Chip–Chip comparative hybridization analysis (Bhandari et al.,

FIG. 3. The F-measure (from Table 4) of three imbalanced class learners on nine datasets (x-axis is the F-measure score).

FIG. 2. The AUC scores (from Table 3) of three imbalanced class learners (TAN + AdaBoost, SSO, and Easy-

Ensemble) on the nine datasets. The x-axis is the calculated AUC score. AUC, area under the curve; SSO, subset

sampling optimization.
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2012a,b) and so is not an epigenetic dataset but only a transcription factor–binding site set of data. The

genomic features of this dataset are distinct from the epigenetic dataset. So the analysis should not perform

well with this negative dataset. This dataset is used as a negative control for the epigenetic dataset to show

that the classifier TAN + AdaBoost has a lower combined average (as we expect) compared with other

imbalanced class learners (e.g., SSO) on this negative dataset. An explanation as to why TAN + AdaBoost

underperforms compared with SSO in conjunction with the other five classifiers is that SSO has the

advantage of initially being trained on the entire dataset to undersample the majority class to create a

balanced class distribution. So it has already been trained on the dataset, whereas TAN + AdaBoost gets to

examine the test set only after the training is completed on the training set. So TAN + AdaBoost performs

better for the epigenetic datasets and underperforms for the negative dataset (as expected), in contrast to the

other imbalanced class learners (Table 6).

For each dataset all three performance criteria (AUC, F-measure, and G-mean) were averaged (Table 6).

Then, an additional column is created based on the combined average performance on the three epigenetic

datasets (Sertoli-granulosa, Hip-Jip-Vip, and Bip-Pip). Sox9-Sry-Tcf21 was left out as it is not an epige-

netic dataset. Then, another column was created out of the combined average performance of all the

classifiers on the five UCI datasets. Then, a combined average performance of all nine datasets is created.

From here it is evident that TAN + AdaBoost performs better on the three epigenetic datasets (score 0.9801)

while total performance based on the nine datasets degrades as the performance of Sox9-Sry-Tcf21

(0.8032) alone pulls down its performance (0.8251). The pair-wise t-test results are given in Table 7 with

statistically significant values with p-value < 0.05 in bold. The values show statistical significance of the

classifiers in rows compared with the classifier in the columns. For example, the TAN + AdaBoost row

shows that TAN + AdaBoost significantly outperforms SMO, AdaBoost, and EasyEnsemble on the nine

datasets. The ANOVA result did not show any of the classifiers to be statistically significant with a p-value

of 0.3989.

4. DISCUSSION

Although the goal of this study is to focus on epigenetic datasets and show which algorithm performs

best, we make a number of observations involving imbalanced datasets. Preprocessing the data does not

always result in increased performance. The imbalanced class problem can be addressed at the data level or

at the algorithm level. While both EasyEnsemble and SSO initially preprocessed the data through intel-

ligent undersampling and then perform algorithm-level class balancing, when compared with TAN +
AdaBoost on epigenetic datasets, the advantage of using data preprocessing instead of just doing algo-

rithmic-level class balancing is not obvious.

FIG. 4. The G-mean (from Table 5) of three imbalanced class learners on nine datasets (x-axis is the G-mean score).
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Not all algorithms perform well with data having high dimension. With datasets containing many

features (the epigenetic datasets have 52, 74, and 75 features), the performance of TAN + AdaBoost is

superior (combined average of 0.9801; Table 5) over other imbalanced class learners. One explanation is

that the TAN-based classifier has high bias, and adding features helps increase its classification accuracy

compared with other tree-based classifiers that have lower bias.

Labeling any dataset to be imbalanced is not always an easy task. How to know if the dataset is

imbalanced or at what ratio of majority and minority class it can be said comfortably that the class is

imbalanced? While some datasets are often called imbalanced when the minority class can be 33% of all

examples, more extreme imbalance cases often occur, where the minority class is a few hundred- or a

thousand-fold smaller than the majority class. Correctly labeling a dataset to be imbalanced is difficult,

and whether an imbalanced learner will perform better than any regular learner is a difficult question.

There has been a study in which the level of imbalance has been changed in order to find the best ratio for

using the C4.5 classifier (Weiss and Provost, 2003). Authors of the EasyEnsemble approach mention that

if an ordinary (nonimbalanced) classifier has an AUC score of >0.95, then class imbalanced learning will

not be helpful for those kind of datasets regardless of the majority minority class ratio (Liu et al., 2006).

In a previous study (Chan and Stolfo, 1998), the authors found that for a regular learner 50:50 class ratio

is best for training.

Some algorithms perform better on naturally imbalanced dataset than others. By running the algorithms

on a number of different imbalanced datasets, these algorithms have shown better performance than regular

classifiers on naturally imbalanced datasets. Correctly labeling a dataset to be imbalanced and applying an

imbalanced class learner on them is important. Previous work shows that if imbalanced class learners are

applied to regular balanced datasets, then often the results show performance degradation (Weiss and

Provost, 2003). This is why it is often important to notice whether the given dataset is balanced or not, and

only such algorithms should be applied to imbalanced datasets.

Ensemble-based approaches have advantages on imbalanced class learning. Although many different

novel algorithms have been used to counter the imbalanced class problem, an ensemble-based approach

using multiple standard classifiers often performs better than more complex algorithms. An ensemble-based

approach is usually one in which the data are partitioned into subgroups and a separate classifier is run on

each subgroup of data. Finally, the results of these classifiers are combined and voting is used to label an

instance in the test set. Using a combined approach often leads to performance enhancement rather than

using single classifiers. Also, several boosting approaches have been used and found to be successful in the

imbalanced class problem.

5. CONCLUSION

This study introduces the imbalanced class problem present in epigenetics and tries to address this issue

by using well-known algorithms that have been applied to the imbalanced class problem in other biological

datasets. Five regular classifiers (nonimbalance learners) were tested on the imbalanced datasets and

showed that by using algorithms designed for imbalanced problems we can achieve better results. Algo-

rithms EasyEnsemble, Subset Sampling Optimization, and AdaBoost + TAN were compared with each

other and with the five nonimbalanced class learners.

Evaluation is based on the AUC, F-measure, and G-mean, three popular performance measures for the

imbalanced class problem. Experimental results show that SSO improves over imbalanced datasets from the

UCI repository, and while AdaBoost + TAN gives overall better accuracy on the epigenetic datasets, the

SSO + RandomForest is better than the other algorithms on the five UCI datasets and the combined result based

on all the datasets. Future work will involve improving the AdaBoost + TAN method to classify epigenetic

datasets so that it will be comparable against the other methods. One approach is to use TAN as a base

classifier for the EasyEnsemble method that uses both boosting and bagging. Another approach is to have the

majority class examples, which are easily predicted, be removed in further iterations to speed up training.
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