
Thyme: Improving Smartphone Prompt Timing
through Activity Awareness

Samaneh Aminikhanghahi, Ramin Fallahzadeh, Matthew Sawyer, Diane J. Cook, and Lawrence B. Holder
Washington State University, Pullman, WA

s.aminikhanghahi@wsu.edu, ramin.fallahzadeh@wsu.edu
m.sawyer@wsu.edu, djcook@wsu.edu, holder@wsu.edu

Abstract—Smartphone prompts and notifications are popular
because they provide users with timely and important
information. However, they can also be an annoyance if they pop
up at inopportune times and interrupt important tasks. In this
paper we introduce Thyme, an intelligent notification front end
that uses activity recognition and machine learning to identify the
best times to prompt smartphone users. We evaluate
performance of an activity-aware prompting approach based on
47 participants with fixed time and Thyme-based prompts. Our
results show that responsiveness improves from 12.8% to 93.2%
using this intelligent approach to timing of smartphone-based
prompts.

Keywords—activity recognition; mobile computing;
notifications; user modeling.

I. INTRODUCTION

Among the valuable functions that a smartphone provides
are prompts. These can be reminders or notifications that pull
information related to a user’s schedule, app status, or social
network events and push that information to a pop-up window
on the phone. Smartphone prompts are even more valuable
when they are context aware, providing the user with insights
corresponding to a time of day or a location. Notifications
allow users to keep informed and up to date without actually
firing up an app. If these notifications are in the form of
prompts to perform an action, they can keep individuals on
schedule and active. They can even provide a valuable type of
cognitive prosthetic for individuals who require memory
assistance [1]. The flip side to the convenience of phone
prompts is the annoyance of receiving notifications at
inopportune times. Receiving too many notifications or
receiving prompts at the wrong times can increase the user’s
cognitive load, introduce task errors, and cause annoyance not
only for the users but others nearby.

We hypothesize that smartphones can customize the timing
of prompts and notifications using machine learning techniques
to identify activity-sensitive contexts that are appropriate
interruption points. We also postulate that adopting this
activity-aware approach to prompt timing will actually improve
user response rates to the prompts.

In this paper we introduce an algorithmic approach to
providing activity-aware prompt timing. The algorithm is
called Thyme, named after a plant that has adapted well to
recent climate change [2]. Like the plant, Thyme adapts prompt
times to each individual based on the user’s activity context.

We evaluate Thyme by using it to suggest times to ask users
for information about their activities. When the user lets the
query time out, the context is used to generate negative data
points to a machine learning algorithm that learns appropriate
prompt timings. If the user does answer the query then not only
does that context provide a positive data point for Thyme’s
learner but the user’s activity label is also used to train an
activity recognizer. The activity labels in turn provide a richer
source of contextual information to learn appropriate prompt
times. Data collected from 47 participants indicates that
appropriate prompt times can be effectively learned and
providing prompts at these times dramatically increases user
response rates.

II. RELATED WORK ON NOTIFICATION TIMING

Smart phone technology has become ubiquitous – the
estimated number of worldwide smart phone users in 2017 is
2.32 billion [3]. With this technology comes an increase in
user interruptions due to phone calls, reminders, prompts, and
notifications. As a result, researchers have investigated the
effect that such numerous interruptions can have on users.
Certainly these interruptions can derail a user’s attention from
their current task [4]. They may therefore introduce task errors
and result in negative psycho-physiological states [5].
Receiving too many notifications or receiving prompts at the
wrong times can increase the user’s perception of mental effort
[6] as well as externally-observed cognitive load [7], [8].

Some mobile device users find that they can multitask
easily. While this ability to quickly switch between tasks
generalizes to many domains, it does degrade in situations
where a person must make an effort to remember where they
are in an interrupted task when they return back to it [9], [10].
Because heavy task switching is associated with reduced gray
matter in the anterior cingulate cortex, there is evidence that
extensive overloading of human attention may also lead to
cognitive loss [11]. In addition to the effect that smart phone-
based interruptions have on users, there is also a deleterious
effect for app developers themselves because poorly-timed
prompts reduce favorable response rates [12], decrease the
ability for the user to swiftly and correctly respond to the
information [13], [14], and increase the desire to turn off
notifications, the app, or the device itself [15].

In response to these observations, research has been
initiated to provide user support in the face of these numerous
interruptions. Some of these efforts have focused on

identifying interruption situations that should specifically be
avoided. For example, Gillie and Broadbent [8] have found that
interruptions are particularly harmful if the user’s current
activity is similar to the topic of the interruption and if the
interruption requires greater than average time to process. The
nature of the current activity is also important: interruptions
may be worse when the user is taking part in an easily
distractable activity [16]. On the other hand, there is evidence
that users are more accepting of notification interruptions when
they have finished one task and have not yet started another
[17], [18]. Furthermore, users are more welcoming of
interruptions when they are at home and not engaged in other
face-to-face interactions [19].

Ultimately, apps need to be designed to provide
notifications at times that are best suited for the individual user
[20]. Some attempts have been made to do this. Horvitz and
Apacible [21] build a dynamic Bayesian network to identify
amenable times for interruption based on the user’s current
pose and conversation level. This approach achieved accuracies
as high as 0.63 based on two monitored subjects. Okoshi, et al.
[22] find breakpoints between scripted activities with an
accuracy of 0.83 and interrupt with task information during
those times in order to reduce cognitive load [22]. Pielot, et al.
[23] used phone interaction cues including screen activity,
proximity, and ringer mode to predict user responsiveness to
notifications with an accuracy of 0.71 for 24 instant messaging
users. Smith et al. [24] compared a variety of machine learning
algorithms to also predict user responsiveness based on a
feature vector that included the day of week, month, time,
incoming phone number, cell tower id, and WiFi SSID. After
under sampling the majority class, they were able to predict
responsiveness of 3 subjects over 16 weeks with an accuracy
that approached 0.80.

As these previous studies highlight, mobile computing
systems need to consider context to not only adapt the content
of information but also the timing of the provided information.
Many of these earlier efforts do consider context when
predicting the response of an individual to a notification. Such
context has included the time of day, day of week, and phone
status. In the work described here, we propose to enhance
traditional notions of context-aware systems by introducing a
personalized notification timing approach that is activity-
aware. Activity-aware systems utilize activity recognition to
incorporate a user’s behavioral patterns into the personalized
system. Activity-aware systems have recently been tested for
applications including operating strategy recommendation [25]
and office automation [26]. In the case of Thyme, we
incorporate it into a mobile app that uses awareness of a user’s
activity context to prompt them for information. One unique
aspect of this work is the integration and evaluation of activity
awareness in the timing of notifications. Another unique
component is the fact that instead of predicting user
responsiveness on historic data we test the ability to provide
prompts at convenient times based on real-time data collection.

III. ACTIVITY LEARNING

One type of smartphone app that relies on user interaction
is an activity learner app. Learning and understanding observed
activities is at the center of many fields of study and is essential

when creating apps that are sensitive to the needs of their users.
An activity recognition algorithm learns a mapping from a
sequence of sensor readings to a corresponding activity label.
More formally, let A = {a1, a2, …, aT} be the set of all
activities, where ai corresponds to the ith activity class. Given a
sequence of n observed sensor readings, <r1 r2 .. rn>, a feature
vector X can be extracted from the sequence. An activity
recognition algorithm then learns a function h that maps the
feature vector onto an activity label, h:XA. Activity
recognition has been explored for a variety of sensor platforms
including ambient sensors, smartphones, wearable sensors,
cameras, and microphones [27], [28]. Activity labels provide a
rich vocabulary for describing human behavior and a valuable
way of representing contextual settings.

We have designed a mobile app, called AL [29], [30],
which performs activity learning on iOS and Android mobile
platforms1. AL collects 5 seconds of data at intervals specified
by the user (fixed, custom times, or continuously). When the
data is collected, AL uses its current model to identify the
activity. Updated models are periodically sent to the mobile
device to provide increasingly accurate activity labels.

To learn a mapping from raw sensor values to an activity
label, AL needs to extract features from the raw data. Table 1
summarizes the raw sensor values that are collected from the
phones and the features that are extracted from these readings.
In addition to standard signal processing features, AL also
extracts features that reflect higher-level information about the
entire 5-second data sequence including heading change rate
(percentage of points in the sequence that change directions),
stop rate (percentage of points in the sequence that exhibit a
significant drop in velocity), overall trajectory from start to
finish of the data sequence, and normalized distance to the
user’s mean location.

A second input requirement for AL is a sufficient amount
of labeled training data from which it can learn a model. To
obtain these labels, AL periodically queries the user to ask
them about their current activity. If AL guesses the label
correctly the user can indicate this, otherwise the user selects
an activity label from a list (or defines a new activity category).
The AL interface is shown in Fig. 1.

Given enough training data instances, AL can learn activity
models that map sensor data to activity labels. Many different
supervised machine learning algorithms can be used to perform
the actual mapping. In our experiments with alternative
approaches, the alternative strategies performed comparably
(the results are summarized in Section 5). For our experiments
we utilize a random forest classifier. This algorithm achieves
better performance than other learners on this type of activity
data [29] and is computationally efficient. Our random forest
implementation builds an ensemble of 100 decision trees, each
of which considers a random subset of 20 features at each node
in the decision tree. The resulting ensemble of trees votes on
the final label for a new data point during testing. This
ensemble method addresses the overfit problem that can arise
when using a single decision tree classifier for high-
dimensional data such as AL’s phone sensor data.

1 https://itunes.apple.com/us/app/activity-learning/id1114204788

TABLE 1. Raw data (white), features (green), and activity classes (blue).

Domain Number Types of Features

Raw Sensor data
16 sensor

values

x / y / z acceleration, x / y / z
rotation, yaw, pitch, roll, course,

speed, horizontal / vertical accuracy,
latitude, longitude, altitude

Phone timing data 2 values Date, time

AL statistical
features (applied

to raw sensor
data)

16 * 16 =
256

features

max, min, sum, mean, std, median,
mean absolute deviation,

median absolute deviation, zero
crossings, interquartile range,

coefficient of variation, skewness,
kurtosis, signal energy,

log signal energy, power
AL relational

features
(comparisons bw

sensor values)

2*(3!) +
16 =
31

features

correlation (between axes for 3-
dimensional sensors), auto-

correlation

AL time features 4 features
auto-correlation, day of week, hour,

minute, second

AL segment
features

4 features
heading change rate, stop rate,

trajectory, normalized distance from
user location center

Thyme features 8 features
Current activity (AL), engagement
level, latitude, longitude, altitude,

day of week, hour, minute
User-specific

activities
2 .. 25
classes

Varies by user

Generalized
activities

11 classes
Bathe, Cook, Drive, Eat, Exercise,

Groom, Hobby, School, Sleep,
Study, Work

In addition, we enhance the random forest algorithm by
making it cost sensitive. Data collected from human
participants reflects the natural behavior of those participants.
As a result, the number of data points in each activity class is
typically far from being uniformly distributed. Because the
goal of supervised learning algorithms or classifiers is to
optimize prediction accuracy for the entire data set, most
approaches ignore performance on the individual class labels.
Therefore, a random classifier that labels all data samples from
an imbalanced class dataset as members of a majority class
would become the highest performing algorithm despite
incorrectly classifying all minority class samples. To address
this problem, during training we weight each data point with a
value that is inversely proportional to the frequency of its class.
These weights will guide the learning algorithm to devote
sufficient attention to activity classes that occur less often. The
effectiveness of cost-sensitive learning methods has been
validated both theoretically [31], [32] and empirically [33],
[34]. Cost-sensitive learning methods have also been coupled
with existing learning methods to boost their performance as
we are doing here [35].

Because of the insights that automated activity recognition
offers on human behavior and the enriched context description
that activity labels bring to mobile systems, activity recognition
is a highly-investigated area of research [36]–[40]. Methods
have been developed that encompass a diversity of sensor
platforms including ambient sensors such as motion detectors,
object sensors, wearable or phone sensors, and audio or video
data. Researchers have utilized and enhanced many diverse
learning approaches including support vector machines,
Gaussian mixture models, decision trees, and probabilistic
graphs [29], [36], [37], [41]–[46]. These models trade off

computational cost, the type of sensor data that can be
processed, and recognition performance. One distinguishing
feature of AL is the ability to perform activity labeling in real
time for unscripted activities. AL does not require data
segmentation and has demonstrated the ability to recognize
activities even in cases where activities are interrupted or
performing in a multi-tasking setting [41].

Fig. 1. AL activity learner app with user-specified activity query frequency

(top), a sample query (middle), and activity reports (bottom).

AL represents a class of apps that requires interaction with
its users. However, if it interrupts the user at inconvenient
times, response rates will decrease and eventually the app will
be stopped or removed. Our goal is thus to learn the contexts in
which users are willing to be interrupted for this type of
interaction. We evaluate our ability to achieve this goal based
on the number of prompts that elicit a response from the user.
Future studies can expand on this performance measure to
include additional aspects of user experience including whether
the user felt the interruption came at a convenient time, if there
was another time that would be preferred, whether the
notification information was understandable, and the ease with
which the user could respond to the query.

We next explain our approach to accomplishing the goal of
our activity-aware prompting system. In some cases, location
and/or time may indicate whether a person is interruptible. For
example, Jim might answer prompts when he is at home but
not when he is working at his job (other than during a lunch
break). Matt is interruptible when he is getting ready for bed at
night but not when he is quickly getting dressed in the
morning. In other situations, however, these two parameters
may be insufficient to determine a person’s context. Sarah may
not mind her phone asking questions while she is walking
alone but not when she is jogging the same route for exercise
with her friends. In these cases, understanding and recognizing
a person’s activity can provide richer contextual information
for learning valuable prompt times.

IV. THYME

Thyme is an intelligent prompting model that takes
advantage of pervasive computing, signal processing, and
machine learning techniques to provide personalized, activity
context-aware prompt timings. Thyme uses both smartphone-
based sensor features and AL-provided activity labels to gather
contextual data. Thyme’s machine learning algorithm maps this

input to a label indicating that the user can be prompted,
“YES”, or cannot be prompted, “NO”, in this context.

The timing of Thyme prompts is personalized to each user.
The Thyme prompting model thus follows the flow shown in
Figure 2. The prompting app (in this case, AL) initially pushes
queries at a fixed rate. The user can choose to answer or to
ignore the query. The corresponding data represents a training
instance for Thyme’s learner and the user’s response (or lack of
response) represents the YES or NO label for the instance.
Each data point with the YES/NO label is input to a decision
tree learner which creates a model mapping data to
corresponding labels.

The prompt content is shown in Figure 1 (middle). The user
is queried about their current activity and whether it matches
the label generated by AL. If the user indicates that the label is
correct then the notification window disappears. If the label is
incorrect then the app is brought up and provides the user with
the chance to indicate the correct label for their current activity.
Information about the prompt including the prompt date,
prompt time, prompted activity label, and user response are
stored in a relational database.

Once the model is learned, the initial fixed prompt intervals
can be replaced with prompt times suggested by Thyme.
Although we test Thyme prompt timing with the AL activity
learner app, Thyme can be used as a prompt timing selector for
any app. To use Thyme, the app such as AL continues to
collect data and prepare user queries as normal. However, AL
first checks with Thyme to determine if it is a good context in
which to prompt or not. If it is not, the prompt is suppressed. If
it is, the prompt is delivered to the user and the response can be
used to refine the models for both Thyme and AL.

As Fig. 2 indicates, the activity recognition performed by
the AL algorithm is used in two ways. First, AL labels the
collected sensor data with corresponding activity classes and
becomes part of the inferred user context in order to learn user-
customized times for user interaction and prompting. Second,
AL is the app which itself relies on user prompting in order to
obtain sufficient labeled examples of activity categories. In
theory, the learned user context model would become stronger
with time as more activity labels are provided and activity
recognition is more reliable. In practice for our evaluation,
however, we do not update the AL models once prompting
begins. This allows us to report AL accuracy that would remain
fixed throughout the evaluation period. As a result, we can
observe the responsiveness of the user to an activity-aware
prompt strategy and discuss the likely impact of activity
recognition on that responsiveness.

An activity-aware system utilizes knowledge of the current
activity being performed, in addition to other contextual
information such as time and location, to adapt the system and
its related services. Identifying current activities providers a
rich source of information for systems that can adapt to each
user’s behavioral patterns [47]. In addition to the current
activity label, Thyme utilizes eight additional features in order
to learn user-sensitive times to prompt for activity labels. The
set of features are described in Table 1 and consist of the
current user activity (identified by AL), the day of the week,
hour of the day, number of minutes past midnight, the user’s

current location, and the user’s recent level of engagement with
the app (indicated by how quickly the user responded to the
previous prompt).

Fig. 2. An overview of the Thyme prompting model

V. EVALUATION OF PERSONALIZED PROMPT TIMINGS

To evaluate our Thyme-based prompt timings, we recruited
n=47 adult participants to respond to queries using the AL app
with and without Thyme selection of prompt times.
Participants include 14 females and 33 males, ages 21-31. We
collected participant data in two phases, each one week in
length. The same pool of participants were used for both
phases of data collection. In the first phase, AL generated
activity label queries at fixed intervals of 30 minutes, 24 hours
a day. We instructed participants to only respond to prompts at
convenient times, otherwise they could select “Ignore” or let
the query time out after 7 minutes of not responding. The AL-
generated sensor data was collected, encrypted and transmitted
to our server where it was stored in a password-protected SQL
database together with the user response.

We used the collected data in two ways. First, the AL
activity learner used features extracted from the data to learn a
mapping from sensor data to the activity classes that the users
defined. The first week of data is used for this purpose with
the features summarized in Table 1. Second, Thyme used the
response (or lack of a response) together with the AL-
generated activity label to learn a mapping from the user’s
activity-enriched context to a decision of whether a prompt can
be generated (YES) in this context or not (NO).

During the second data collection phase, we inserted
Thyme into the front end of AL. The second week of data is
used for this purpose. Although the prompt queries were still
generated every 30 minutes, AL checked with Thyme whether
it was an appropriate context for querying the user. Only in
situations where Thyme output “YES” did the user receive the
actual prompt. A total of 64,000 data samples were collected
over the two phases. From the original forty-seven participants
we created models for the users who responded to queries for
the entire two weeks, or thirty-one users.

There are several aspects of the activity-aware prompt
models that we evaluated in this study. First, because activity

labels are a key part of activity-aware prompt timing, we
evaluate how well the AL activity models are learned for each
user individually and for the whole group. Second, we evaluate
how well Thyme learns prompt timing models individually and
for the group as a whole. Finally, we observe the effect of
Thyme-based prompt timings on user response rate for the AL
app. The results indicate the usability of activity-aware prompts
and notifications for apps that customize to particular users or
to an entire population. The learned decision trees themselves
also shed light on the features that are particularly valuable in
learning activities and prompt timings for this study.

A. Evaluation of Activity Learning

To generate prompts for Thyme, we used data collected in
the first phase to train AL activity models. Our participants
produced a wide variety of responses both in frequency of
responses and in number of defined activity classes. As Table 1
indicates, the number of activity classes ranged from 2 to 25. A
total of 11,482 data instances were provided with activity
labels but the number of instances for individuals ranged from
39 to 2,645. The results of Thyme-based prompting depend to a
large extent on the ability of AL to correct identify an activity-
based user context. We therefore evaluate AL’s performance
on this collected week of data in three ways, each based on 10-
fold cross validation. First, we perform activity recognition
separately for each user. As shown in Figure 3, AL achieves an
average of 82% accuracy when training and testing is
performed separately for each user. In addition to accuracy we
also report an extended geometric mean, or g-mean, which is
calculated as the nth root of the product of sensitivity and
specificity for all classes. The last performance measure is the
area under the ROC curve, or AUC value. The last two
measures are particularly valuable when reporting classifier
performance on imbalanced datasets. As shown in Fig. 3, AL
achieved an average g-mean of 0.83 and an AUC value of 0.88.

Fig. 3. AL performance averaged over the participant group where models are

learned and tested separately for each user.

We performed the same experiment with alternative
classifiers and report their accuracy and g-mean values in Fig.
4. The compared classifiers include a support vector with a
linear kernel (SVC Linear), a naïve Bayes (NBC), a support
vector with a radial basis function kernel (SVC RBF), a k-
nearest neighbor with k=3 (KNN), a decision tree (DT), and a
random forest (RF). Random forest consistently performs the
best, so we use this classifier for the remaining experiments.

While learning a separate activity model for each user
allows prompt timings to be customized for each person, it also
requires a sufficient number of training data points from each
person to train the model. This constraint places the burden of
training models on the user and may not be practical in all
situations. For this reason, we also test the activity models for
user generalizability. In this case, we collapse the 124 different

activity labels we observed across the participant set into 11
more general activity classes. To do this, we merge activities
into one class if they are synonyms (e.g., Bake, Cook, Cooking,
Meal Preparation are merged into a single class “Cook”) or one
is a hypernym of another (e.g., Run, Running With Pup, Walk,
and Walking Dog are merged a single class “Exercise”) as
defined by WordNet [48]. The final classes consist of the
activities Bathe, Cook, Drive, Eat, Exercise, Groom, Hobby,
School, Sleep, Study, and Work.

Fig. 4. AL accuracy and g-mean values by alternative classifiers, averaged over

the participant group where models are learned for each user.

For our second activity recognition experiment, we test AL
on this combined dataset. As shown in Fig. 5, the accuracy
drops to 78%. However, the performance is significantly
(p<.05) better than random labeling, which would yield an
accuracy of 9% for this data. The results indicate how the
learned model would perform for a new user even in the
absence of training data for the new user.

Fig. 5. AL performance averaged
over the participant group where a

single model is learned for the entire
collection of data.

Fig. 6. AL performance for leave-one-
subject-out testing, averaged over all

the participants.

For the third experiment, we test AL with for the 11 activity
classes using leave-one-subject-out testing. Here the
performance is quite a bit lower than situations where training
data is available for the same user that is being tested, as shown
in Fig. 6. The performance is still significantly (p<.05) better
than random guess but the results of this experiment clearly
indicate that some labeled data will be needed for each user to
effectively learn an activity model that can be used to inform
prompt timing. So, we utilize the first week of collected data to
train a model for each user then collect a second week of data
with Thyme-informed timings for the same set of users.

One other point we want to note is the distribution of labels
across the generalized set of 11 activity classes. This
distribution is shown in Fig. 7. We note that the greatest
number of activity occurrences is in the Hobby category, with
many fewer occurring in the Work and School categories.
Interestingly, we later observe that users are more reluctant to
answer queries at work or school than while they are relaxing
with a hobby. This becomes a cyclic problem because
notifications were used to obtain initial activity labels and these
labels are used to learn prompt times. If we cannot adequately
learn the activities when users should not be prompted then the
prompt times will suffer.

Fig. 7. Distribution of data points for the generalized activity classes.

B. Evaluation of Prompt Timing

Given the activity labels provided by AL and the user
responses from the first phase of our experiment, we can now
train the Thyme models to learn appropriate prompt times for
each user. To perform this task, Thyme maps a vector of
features representing a contextual situation to a YES or NO
value. A value of YES indicates that a prompt can be given in
the corresponding context and NO indicates that this is not a
good time to prompt. Based on the nature of the training data,
we can infer that a YES label also indicates a high likelihood of
the user responding to the app at the prompt time, while a NO
label is likely to a situation which is inappropriate or
inopportune for prompting-based interruptions.

Evaluation of the learned Thyme models is based on a
second week of prompting users for activity labels. During this
week, prompts are only provided in contexts where the Thyme
model suggests a YES value. Figs. 8-13 summarize the results
of learning the prompt models. In this case we are determining
whether there are patterns to user responses that can be
captured by sensor data and modeled by a standard supervised
learning algorithm. We first evaluate the performance based on
a separate model for each user that uses the individualized AL
models described in the previous section and evaluated in Fig.
3. We evaluate the models using 10-fold cross validation and
the results are shown in Fig. 8.

Fig. 8. Thyme performance averaged

over the participant group.
Fig. 9. Thyme performance averaged

over the participants. No activity
feature is used for these models.

Because the class distribution is heavily skewed we also
perform minority class resampling [49]. The individual models
yield an average accuracy of 95% for the thirty-one participants
that generated at least one week’s worth of data for each phase.
Because of the heavily skewed class distribution we report g-
mean and AUC values in addition to accuracy values. To
determine the impact that including an activity label has on
performance, we also run the experiment without this
information included in the input vector. In this case the
performance does degrade to 94%. The difference in
performance, however, is not statistically significant.

As before, we are also interested in assessing how well a
generalized model of prompt timing could perform if it is
adapted to a population of individuals rather than customized
for each person. In this case we use the generalized AL model
for ten activities and from this information build a single
Thyme prompting model. The generalized model results in a
99% accuracy with (Fig. 10) and without (Fig. 11) activity
information. In this case, the difference in performance
between the model that utilizes activity information and the one
that does not is extremely statistically significant (p<.01).

Fig. 10. Thyme performance with one
model learned from data for the entire

group.

Fig. 11. Thyme performance with one
model learned from data for the entire
group. No activity feature is used for

these models.

Fig. 12. Thyme averaged performance for leave-one-subject-out testing,

Finally, we perform leave-one-subject-out testing with the
Thyme-learned prompt models. As Figs. 12 and 13 show,
performance is much weaker in these cases, with and without
the activity information. The difference in accuracy between
the model with and without activity information is not
statistically significant. These results are consistent with our
observations that preferred prompt times are highly
individualized and need to be adapted to each person.

Fig. 13. Thyme performance for leave-one-subject-out testing, averaged over

all participants. No activity information is used in these models.

Thyme utilizes many features to define context, which
includes the traditional time-based context features and
location-based features as well as user engagement level (how
quickly the user responded to the previous prompt) and the
automatically-recognized current activity. We are interested in
performing feature selection to determine which contextual
features provided the strongest indication that the user was
interruptible and willing to respond to a prompt. For this
experiment, we used a decision tree classifier to learn Thyme-
based prompt contexts. We examine the rules learned by the

decision tree to see if the activity labels are critical in
differentiating the classes. Decision tree learners provide this
valuable feature because they select features to query in a
greedy manner based on each feature’s ability to discriminate
between the alternative target class values [50].

In the case of the learned generalized prompting model, the
user’s engagement level was the most discriminating feature.
This is an intuitive result because if a user is willing to respond
to an earlier query that level of engagement will stay high for a
period. The next most discriminating feature was the activity
label. As an example, participants did not like to respond to AL
queries when they were at work but were generally responsive
when they were relaxing or working on a hobby. The day of
the week and time of day were generally used next, followed
by actual user GPS coordinates. The GPS coordinates do not
generalize well to an entire population. In contrast, however,
they were very discriminating when learning separate
prompting models for each user.

We compare the decision tree-based feature selection
method, which is based on the reduction in entropy over the
dataset that is afforded by each feature, with alternative
statistical methods. Specifically, mutual information and chi2
feature selection methods also rank user engagement as the top
feature, followed by activity label. The remainder of the feature
ordering varies between selection methods.

C. User Response Rate

The previous experiments are useful because they provide
an indication that activities can be learned from smartphone
sensor data and that prompt times can be learned as well. Smart
phone sensor data provides an enough data to learn these
models and there are clear rules which govern when prompts
should and should not be given. In our final experiment, we
measure actual user responses with fixed-time prompts (phase
one) and with Thyme-based prompts (phase two). Figure 14
plots the response rate for both conditions, averaged across our
set of participants. As the graph shows, Thyme generates a
much more favorable response from users than fixed times.
The fixed-time strategy yields an average user response rate of
12.8%. In contrast, the Thyme strategy yields an average user
response rate of 93.2%. The difference in performance is
extremely statistically significant (p<0.01).

We made several observations about the nature of the data
collected in our study. First, our participants were recruited
locally. As a result, their locations and activity classes were
more homogeneous that we would find in the general
population. In addition, because data collection occurred over a
small period of time the “day of week” feature was not
consistently helpful in discriminating activities or prompt
times. For both of these reasons, Thyme needs to be tested for a
greater diversity of users over a long period of time to ascertain
its generalizability. Finally, we note that because users
appeared to be less likely to respond to prompts at work, at
school, or while sleeping, there were fewer data points from
these categories to train AL and thus to train Thyme.

In the future, we can consider one-class learning strategies
to identify prompt contexts from heavily-skewed class
distributions or only from activities and contexts in which users

are responsive to prompts and notifications. We also want to
extend our study to evaluate the overall user experience.
Feedback from users can indicate general preferences of
timings for prompts and for content of prompts, both of which
can provide valuable pointers for creating effective interfaces
and notification timings.

Fig. 14. Average user response rate for fixed-interval prompts and for

customized prompts based on Thyme.

VI. CONCLUSION

In this paper, we introduce an activity-aware approach to
customizing smartphone prompts and notifications. The
proposed approach, implemented in our Thyme system, can be
used to manage any smart phone notification strategy.
Experimental results, obtained for a set of participants answer
activity queries for a mobile app, indicate that the proposed
algorithm outperforms traditional time-based prompting. The
resulting app increases user response rates and decreasing
inappropriate notifications. The resulting approach is useful for
presenting information and interacting with users in an
effective manner without creating interruption overload.

ACKNOWLEDGMENT

The authors would like to thank Bryan Minor and Larry
Holder for their help with designing the AL app. This research
was supported in part by NIH grant R25AG046114.

REFERENCES
[1] A. M. Seelye, M. Schmitter-Edgecombe, B. Das, and D. J. Cook,

“Application of cognitive rehabilitation theory to the development of
smart prompting technologies.,” IEEE Rev. Biomed. Eng., vol. 5, pp.
29–44, Jan. 2012.

[2] H. Thompson, “Ten species that are evolving due to the changing
climate,” Smithsonian Magazine, 2014. .

[3] Statistica, “Number of smartphone users worldwide from 2014 to 2020,”
The STatistics Portal, 2017. .

[4] E. Horvitz and J. Apacible, “Learning and reasoning about interruption,”
in International Conference on Multimodal Interfaces, 2003, pp. 20–27.

[5] B. P. Bailey and J. A. Konstan, “On the need for attention award
systems: Measuring effects of interruption on task performance, error
rate, and affective state,” J. Comput. Hum. Behav., vol. 22, no. 4, pp.
709–732, 2006.

[6] T. Okoshi, J. Ramos, H. Nozaki, J. Nakazawa, A. K. Dey, and H.
Tokuda, “Reducing users’ perceived mental effort due to interruptive
notifications in multi-device mobile environments,” in International
Joint Conference on Pervasive and Ubiquitous Computing, 2015, pp.
475–486.

[7] T. Okoshi, J. Ramos, H. Nozaki, J. Nakazawa, A. Dey, and H. Tokuda,
“Attelia: Reducing user’s cognitive load due to interruptive notifications
on smart phones,” in IEEE International Conference on Pervasive
Computing and Communications, 2015, pp. 96–104.

[8] T. Gillie and D. Boradbent, “What makes interruptions disruptive? A
study of length, similarity, and complexity,” Psychol. Res., vol. 50, no.
4, pp. 243–250, 1989.

[9] A. L. Zulas, “Modifying smart home to smart phone notifications using
reinforcement learning algorithms,” Washington State University, 2017.

[10] N. Yeung and S. Monsell, “Switching between tasks of unequal
familiarity: The role of stimulus-attribute and response-set selection,” J.
Exp. Psychol. Hum. Percept. Perform., vol. 29, no. 2, p. 455, 2003.

[11] K. K. Loh and R. Kanai, “Higher media multi-tasking activity is
associated with smaller gray-matter density in the anterior cingulate
cortex,” PLoS One, vol. 9, no. 9, p. e106698, 2014.

[12] V. Pejovic and M. Musolesi, “InterruptMe: Designing Intelligent
Prompting Mechanisms for Pervasive Applications,” in Proceedings of
the 2014 ACM International Joint Conference on Pervasive and
Ubiquitous Computing - UbiComp ’14 Adjunct, 2014, pp. 897–908.

[13] J. G. Kreifeldt and M. E. McCarthy, “Interruption as a test of the user-
computer interface,” in Annual Conference on Manual Control, 1981,
pp. 655–667.

[14] B. Sullivan and H. Thompson, “Brain, interrupted,” The New York
Times, May-2013.

[15] H. Lopez-Tovar, A. Charalambous, and J. Dowell, “Managing
smartphone interruptions through adaptive modes and modulation of
notifications,” in International Conference on Intelligent User Interfaces,
2015.

[16] Y. Miyata and D. A. Norman, “Psychological issues in support of
multiple activities,” in User Centered System Design: New Perspectives
on Human-Computer Interaction, D. A. Norman and S. W. Draper, Eds.
Boca Raton, FL: CRC Press, 1986, pp. 265–284.

[17] J. E. Fischer, C. Greenhalgh, and S. Benford, “Investigating episodes of
mobile phone activity as indicators of opportune moments to deliver
notifications,” in International Conference on Human Computer
Interaction with Mobile Devices and Services, 2011, pp. 189–190.

[18] A. Exler, M. Braith, A. Schankin, and M. Beigl, “Preliminary
investigations about interruptibility of smartphone users at specific place
types,” in ACM International Joint Conference on Pervasive and
Ubiquitous Computing, 2016, pp. 1590–1595.

[19] G. H. ter Hofte, “Xensible interruptions from your mobile phone,” in
International Conference on Human Computer Interaction with Mobile
Devices and Services, 2007, pp. 178–181.

[20] M. Pielo, K. Church, and R. De Oliveira, “An in-situ study of mobile
phone notifications,” in International Conference on Human-Computer
Interaction with Mobile Devices and Services, 2014, pp. 233–242.

[21] E. Horvitz, P. Koch, and J. Apacible, “BusyBody: Creating and Fielding
Personalized Models of the Cost of Interruption,” in Proceedings of
CSCW, Conference on Computer Supported Cooperative Work, 2004,
pp. 507–510.

[22] T. Okoshi, J. Ramos, H. Nozaki, J. Nakazawa, A. K. Dey, and H.
Tokuda, “Attelia: Reducing user’s cognitive load due to interruptive
notifications on smart phones,” in 2015 IEEE International Conference
on Pervasive Computing and Communications (PerCom), 2015, pp. 96–
104.

[23] M. Pielot, R. de Oliveira, H. Kwak, and N. Oliver, “Didn’t you see my
message? Predicting attentiveness to mobile instant messages,” in
SIGCHI Conference on Human Factors in Computing Systems, 2014,
pp. 3319–3328.

[24] J. Smith, A. Lavygina, J. Ma, A. Russo, and N. Dulay, “Learning to
recognise disruptive smartphone notifications,” in International
Conference on Human Computer Interaction with Mobile Devices and
Services, 2014, pp. 121–124.

[25] A. Doryab and J. E. Bardram, “Designing activity-aware recommender
systems for operating rooms,” in Workshop on Context-Awareness in
Retrieval and Recommendation, 2011, pp. 43–46.

[26] P. Jaramillo and O. Amft, “Improving energy efficiency through
activity-aware control of office appliances using proximity sensing - a
real-life study,” in IEEE International Conference on Pervasive
Computing and Communications, 2013, pp. 664–669.

[27] D. J. Cook and Narayanan C. Krishnan, Activity Learning: Discovering,
Recognizing, and Predicting Human Behavior from Sensor Data. Wiley,
2015.

[28] L. Chen, J. Hoey, C. D. Nugent, D. J. Cook, and Z. Yu, “Sensor-based
activity recognition,” IEEE Trans. Syst. Man, Cybern. Part C Appl.
Rev., vol. 42, no. 6, pp. 790–808, 2012.

[29] K. D. Feuz and D. J. Cook, “Modeling skewed class distributions by
reshaping the concept space,” in National Conference on Artificial
Intelligence, 2017, p. under review.

[30] K. Bouchard, L. Holder, and D. J. Cook, “Extracting generalizable
spatial features from smart phone datasets,” in AAAI Conference on
Artificial Intelligence, 2016.

[31] C. Elkan, “The foundations of cost-sensitive learning,” in International
Joint Conference on Artificial Intelligence, 2011, pp. 973–978.

[32] M. Maloof, “Learning when data sets are imbalanced and when costs
and unequal and unknown,” in ICML Workshop on Learning from
Imbalanced Data Sets II, 2003.

[33] K. McCarthy, B. Zabar, and G. Weiss, “Dost cost-sensitive learning beat
sampling for classifying rare classes?,” in Workshop on Utility-Based
Data Mining, 2005, pp. 69–77.

[34] X. Liu and Z. Zhou, “The influence of class imbalance on cost-sensitive
learning: An empirical study,” in International Conference on Data
Mining, 2006, pp. 970–974.

[35] F. Provost, T. Fawcett, and R. Kohavi, “The case against accuracy
estimation for comparing induction algorithms,” in International
Conferenceon Machine Learning, 1998, p. 445.

[36] A. Bulling, U. Blanke, and B. Schiele, “A tutorial on human activity
recognition using body-worn inertial sensors,” ACM Comput. Surv., vol.
46, no. 3, pp. 107–140, 2014.

[37] O. Lara and M. A. Labrador, “A survey on human activity recognition
using wearable sensors,” IEEE Commun. Surv. Tutorials, vol. 15, no. 3,
pp. 1192–1209, 2013.

[38] N. Yala, B. Fergani, and A. Fleury, “Feature extraction for human
activity recognition on streaming data,” in International Symposium on
Innovations in Intelligence Systems and Applications, 2015, pp. 1–6.

[39] Y. Zheng, W.-K. Wong, X. Guan, and S. Trost, “Physical activity
recognition from accelerometer data using a multi-scale ensemble
method,” in Innovative Applications of Artificial Intelligence
Conference, 2013, pp. 1575–1581.

[40] J.-H. Hong, J. Ramos, and A. K. Dey, “Toward personalized activity
recognition systems with a semipopulation approach,” IEEE Trans.
Human-Machine Syst., vol. 46, no. 1, pp. 101–112, 2016.

[41] N. C. Krishnan and D. J. Cook, “Activity recognition on streaming
sensor data,” Pervasive Mob. Comput., vol. 10, pp. 138–154, Feb. 2014.

[42] T. Barger, D. Brown, and M. Alwan, “Health status monitoring through
analysis of behavioral patterns,” IEEE Trans. Syst. Man, Cybern. Part A,
vol. 35, no. 1, pp. 22–27, 2005.

[43] J. K. Aggarwal and M. S. Ryoo, “Human activity analysis: A review,”
ACM Comput. Surv., vol. 43, no. 3, pp. 1–47, 2011.

[44] S.-R. Ke, H. L. U. Thuc, Y.-J. Lee, J.-N. Hwang, J.-H. Yoo, and K.-H.
Choi, “A review on video-based human activity recognition,”
Computers, vol. 2, no. 2, pp. 88–131, 2013.

[45] A. Reiss, D. Stricker, and G. Hendeby, “Towards robust activity
recognition for everyday life: Methods and evaluation,” in Pervasive
Computing Technologies for Healthcare, 2013, pp. 25–32.

[46] S. Vishwakarma and A. Agrawal, “A survey on activity recognition and
behavior understanding in video surveillance,” Vis. Comput., vol. 29,
no. 10, pp. 983–1009, 2013.

[47] R. Fisher and R. Simmons, “Smartphone interruptibility using density-
weighted uncertainty sampling with reinforcement learning,” in
International Conference on Machine Learning and Applications, 2011,
pp. 436–441.

[48] G. A. Miller, “WordNet: A lexical database for English,” Commun.
ACM, vol. 38, no. 11, pp. 39–41, 1995.

[49] N. Chawla, K. Bowyer, L. Hall, and W. P. Kegelmery, “SMOTE:
Synthetic minority over-sampling technique,” J. Artif. Intell. Res., vol.
16, pp. 321–357, 2002.

[50] J. R. Quinlan and R. L. Rivest, “Inferring Decision Trees Using the
Minimum Description Length Principle,” Inf. Comput., vol. 80, pp. 227–
248, 1989.

