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Abstract—Smartphone prompts and notifications are popular 
because they provide users with timely and important 
information. However, they can also be an annoyance if they pop 
up at inopportune times and interrupt important tasks. In this 
paper we introduce Thyme, an intelligent notification front end 
that uses activity recognition and machine learning to identify the 
best times to prompt smartphone users. We evaluate 
performance of an activity-aware prompting approach based on 
47 participants with fixed time and Thyme-based prompts. Our 
results show that responsiveness improves from 12.8% to 93.2% 
using this intelligent approach to timing of smartphone-based 
prompts.  

Keywords—activity recognition; mobile computing; 
notifications; user modeling. 

I.  INTRODUCTION  

Among the valuable functions that a smartphone provides 
are prompts. These can be reminders or notifications that pull 
information related to a user’s schedule, app status, or social 
network events and push that information to a pop-up window 
on the phone. Smartphone prompts are even more valuable 
when they are context aware, providing the user with insights 
corresponding to a time of day or a location. Notifications 
allow users to keep informed and up to date without actually 
firing up an app. If these notifications are in the form of 
prompts to perform an action, they can keep individuals on 
schedule and active. They can even provide a valuable type of 
cognitive prosthetic for individuals who require memory 
assistance [1]. The flip side to the convenience of phone 
prompts is the annoyance of receiving notifications at 
inopportune times. Receiving too many notifications or 
receiving prompts at the wrong times can increase the user’s 
cognitive load, introduce task errors, and cause annoyance not 
only for the users but others nearby. 

We hypothesize that smartphones can customize the timing 
of prompts and notifications using machine learning techniques 
to identify activity-sensitive contexts that are appropriate 
interruption points. We also postulate that adopting this 
activity-aware approach to prompt timing will actually improve 
user response rates to the prompts. 

In this paper we introduce an algorithmic approach to 
providing activity-aware prompt timing. The algorithm is 
called Thyme, named after a plant that has adapted well to 
recent climate change [2]. Like the plant, Thyme adapts prompt 
times to each individual based on the user’s activity context. 

We evaluate Thyme by using it to suggest times to ask users 
for information about their activities. When the user lets the 
query time out, the context is used to generate negative data 
points to a machine learning algorithm that learns appropriate 
prompt timings. If the user does answer the query then not only 
does that context provide a positive data point for Thyme’s 
learner but the user’s activity label is also used to train an 
activity recognizer. The activity labels in turn provide a richer 
source of contextual information to learn appropriate prompt 
times. Data collected from 47 participants indicates that 
appropriate prompt times can be effectively learned and 
providing prompts at these times dramatically increases user 
response rates. 

II. RELATED WORK ON NOTIFICATION TIMING 

Smart phone technology has become ubiquitous – the 
estimated number of worldwide smart phone users in 2017 is 
2.32 billion [3].  With this technology comes an increase in 
user interruptions due to phone calls, reminders, prompts, and 
notifications. As a result, researchers have investigated the 
effect that such numerous interruptions can have on users. 
Certainly these interruptions can derail a user’s attention from 
their current task [4]. They may therefore introduce task errors 
and result in negative psycho-physiological states [5]. 
Receiving too many notifications or receiving prompts at the 
wrong times can increase the user’s perception of mental effort 
[6] as well as externally-observed cognitive load [7], [8]. 

Some mobile device users find that they can multitask 
easily. While this ability to quickly switch between tasks 
generalizes to many domains, it does degrade in situations 
where a person must make an effort to remember where they 
are in an interrupted task when they return back to it [9], [10]. 
Because heavy task switching is associated with reduced gray 
matter in the anterior cingulate cortex, there is evidence that 
extensive overloading of human attention may also lead to 
cognitive loss [11]. In addition to the effect that smart phone-
based interruptions have on users, there is also a deleterious 
effect for app developers themselves because poorly-timed 
prompts reduce favorable response rates [12], decrease the 
ability for the user to swiftly and correctly respond to the 
information [13], [14], and increase the desire to turn off 
notifications, the app, or the device itself [15]. 

In response to these observations, research has been 
initiated to provide user support in the face of these numerous 
interruptions. Some of these efforts have focused on 



identifying interruption situations that should specifically be 
avoided. For example, Gillie and Broadbent [8] have found that 
interruptions are particularly harmful if the user’s current 
activity is similar to the topic of the interruption and if the 
interruption requires greater than average time to process. The 
nature of the current activity is also important: interruptions 
may be worse when the user is taking part in an easily 
distractable activity [16]. On the other hand, there is evidence 
that users are more accepting of notification interruptions when 
they have finished one task and have not yet started another 
[17], [18]. Furthermore, users are more welcoming of 
interruptions when they are at home and not engaged in other 
face-to-face interactions [19]. 

Ultimately, apps need to be designed to provide 
notifications at times that are best suited for the individual user 
[20]. Some attempts have been made to do this. Horvitz and 
Apacible [21] build a dynamic Bayesian network to identify 
amenable times for interruption based on the user’s current 
pose and conversation level. This approach achieved accuracies 
as high as 0.63 based on two monitored subjects. Okoshi, et al. 
[22] find breakpoints between scripted activities with an 
accuracy of 0.83 and interrupt with task information during 
those times in order to reduce cognitive load [22]. Pielot, et al. 
[23] used phone interaction cues including screen activity, 
proximity, and ringer mode to predict user responsiveness to 
notifications with an accuracy of 0.71 for 24 instant messaging 
users. Smith et al. [24] compared a variety of machine learning 
algorithms to also predict user responsiveness based on a 
feature vector that included the day of week, month, time, 
incoming phone number, cell tower id, and WiFi SSID. After 
under sampling the majority class, they were able to predict 
responsiveness of 3 subjects over 16 weeks with an accuracy 
that approached 0.80. 

As these previous studies highlight, mobile computing 
systems need to consider context to not only adapt the content 
of information but also the timing of the provided information. 
Many of these earlier efforts do consider context when 
predicting the response of an individual to a notification. Such 
context has included the time of day, day of week, and phone 
status. In the work described here, we propose to enhance 
traditional notions of context-aware systems by introducing a 
personalized notification timing approach that is activity-
aware. Activity-aware systems utilize activity recognition to 
incorporate a user’s behavioral patterns into the personalized 
system. Activity-aware systems have recently been tested for 
applications including operating strategy recommendation [25] 
and office automation [26]. In the case of Thyme, we 
incorporate it into a mobile app that uses awareness of a user’s 
activity context to prompt them for information. One unique 
aspect of this work is the integration and evaluation of activity 
awareness in the timing of notifications. Another unique 
component is the fact that instead of predicting user 
responsiveness on historic data we test the ability to provide 
prompts at convenient times based on real-time data collection. 

III. ACTIVITY LEARNING 

One type of smartphone app that relies on user interaction 
is an activity learner app. Learning and understanding observed 
activities is at the center of many fields of study and is essential 

when creating apps that are sensitive to the needs of their users. 
An activity recognition algorithm learns a mapping from a 
sequence of sensor readings to a corresponding activity label. 
More formally, let A = {a1, a2, …, aT} be the set of all 
activities, where ai corresponds to the ith activity class. Given a 
sequence of n observed sensor readings, <r1 r2 .. rn>, a feature 
vector X can be extracted from the sequence. An activity 
recognition algorithm then learns a function h that maps the 
feature vector onto an activity label, h:XA. Activity 
recognition has been explored for a variety of sensor platforms 
including ambient sensors, smartphones, wearable sensors, 
cameras, and microphones [27], [28]. Activity labels provide a 
rich vocabulary for describing human behavior and a valuable 
way of representing contextual settings. 

We have designed a mobile app, called AL [29], [30], 
which performs activity learning on iOS and Android mobile 
platforms1. AL collects 5 seconds of data at intervals specified 
by the user (fixed, custom times, or continuously). When the 
data is collected, AL uses its current model to identify the 
activity. Updated models are periodically sent to the mobile 
device to provide increasingly accurate activity labels. 

To learn a mapping from raw sensor values to an activity 
label, AL needs to extract features from the raw data. Table 1 
summarizes the raw sensor values that are collected from the 
phones and the features that are extracted from these readings. 
In addition to standard signal processing features, AL also 
extracts features that reflect higher-level information about the 
entire 5-second data sequence including heading change rate 
(percentage of points in the sequence that change directions), 
stop rate (percentage of points in the sequence that exhibit a 
significant drop in velocity), overall trajectory from start to 
finish of the data sequence, and normalized distance to the 
user’s mean location. 

A second input requirement for AL is a sufficient amount 
of labeled training data from which it can learn a model. To 
obtain these labels, AL periodically queries the user to ask 
them about their current activity. If AL guesses the label 
correctly the user can indicate this, otherwise the user selects 
an activity label from a list (or defines a new activity category). 
The AL interface is shown in Fig. 1.  

Given enough training data instances, AL can learn activity 
models that map sensor data to activity labels. Many different 
supervised machine learning algorithms can be used to perform 
the actual mapping. In our experiments with alternative 
approaches, the alternative strategies performed comparably 
(the results are summarized in Section 5). For our experiments 
we utilize a random forest classifier. This algorithm achieves 
better performance than other learners on this type of activity 
data [29] and is computationally efficient. Our random forest 
implementation builds an ensemble of 100 decision trees, each 
of which considers a random subset of 20 features at each node 
in the decision tree. The resulting ensemble of trees votes on 
the final label for a new data point during testing. This 
ensemble method addresses the overfit problem that can arise 
when using a single decision tree classifier for high-
dimensional data such as AL’s phone sensor data. 

                                                            
1 https://itunes.apple.com/us/app/activity-learning/id1114204788 



TABLE 1. Raw data (white), features (green), and activity classes (blue). 

Domain Number Types of Features 

Raw Sensor data 
16 sensor 

values 

x / y / z acceleration, x / y / z 
rotation, yaw, pitch, roll, course, 

speed, horizontal / vertical accuracy, 
latitude, longitude, altitude 

Phone timing data 2 values Date, time 

AL statistical 
features (applied 

to raw sensor 
data) 

16 * 16 =    
256 

features 

max, min, sum, mean, std,  median, 
mean absolute deviation,             

median absolute deviation, zero 
crossings, interquartile range, 

coefficient of variation, skewness, 
kurtosis, signal energy,               

log signal energy, power 
AL relational 

features 
(comparisons bw 

sensor values) 

2*(3!) + 
16 =        
31 

features 

correlation (between axes for 3-
dimensional sensors), auto-

correlation 

AL time features 4 features 
auto-correlation, day of week, hour, 

minute, second 

AL segment 
features 

4 features 
heading change rate, stop rate, 

trajectory, normalized distance from 
user location center 

Thyme features 8 features 
Current activity (AL), engagement 
level, latitude, longitude, altitude, 

day of week, hour, minute 
User-specific 

activities 
2 .. 25 
classes 

Varies by user 

Generalized 
activities 

11 classes 
Bathe, Cook, Drive, Eat, Exercise, 

Groom, Hobby, School, Sleep, 
Study, Work 

In addition, we enhance the random forest algorithm by 
making it cost sensitive. Data collected from human 
participants reflects the natural behavior of those participants. 
As a result, the number of data points in each activity class is 
typically far from being uniformly distributed. Because the 
goal of supervised learning algorithms or classifiers is to 
optimize prediction accuracy for the entire data set, most 
approaches ignore performance on the individual class labels. 
Therefore, a random classifier that labels all data samples from 
an imbalanced class dataset as members of a majority class 
would become the highest performing algorithm despite 
incorrectly classifying all minority class samples. To address 
this problem, during training we weight each data point with a 
value that is inversely proportional to the frequency of its class. 
These weights will guide the learning algorithm to devote 
sufficient attention to activity classes that occur less often. The 
effectiveness of cost-sensitive learning methods has been 
validated both theoretically [31], [32] and empirically [33], 
[34]. Cost-sensitive learning methods have also been coupled 
with existing learning methods to boost their performance as 
we are doing here [35]. 

Because of the insights that automated activity recognition 
offers on human behavior and the enriched context description 
that activity labels bring to mobile systems, activity recognition 
is a highly-investigated area of research [36]–[40]. Methods 
have been developed that encompass a diversity of sensor 
platforms including ambient sensors such as motion detectors, 
object sensors, wearable or phone sensors, and audio or video 
data. Researchers have utilized and enhanced many diverse 
learning approaches including support vector machines, 
Gaussian mixture models, decision trees, and probabilistic 
graphs [29], [36], [37], [41]–[46]. These models trade off 

computational cost, the type of sensor data that can be 
processed, and recognition performance. One distinguishing 
feature of AL is the ability to perform activity labeling in real 
time for unscripted activities. AL does not require data 
segmentation and has demonstrated the ability to recognize 
activities even in cases where activities are interrupted or 
performing in a multi-tasking setting [41]. 

   
Fig. 1. AL activity learner app with user-specified activity query frequency 

(top), a sample query (middle), and activity reports (bottom). 

AL represents a class of apps that requires interaction with 
its users. However, if it interrupts the user at inconvenient 
times, response rates will decrease and eventually the app will 
be stopped or removed. Our goal is thus to learn the contexts in 
which users are willing to be interrupted for this type of 
interaction. We evaluate our ability to achieve this goal based 
on the number of prompts that elicit a response from the user. 
Future studies can expand on this performance measure to 
include additional aspects of user experience including whether 
the user felt the interruption came at a convenient time, if there 
was another time that would be preferred, whether the 
notification information was understandable, and the ease with 
which the user could respond to the query. 

We next explain our approach to accomplishing the goal of 
our activity-aware prompting system. In some cases, location 
and/or time may indicate whether a person is interruptible. For 
example, Jim might answer prompts when he is at home but 
not when he is working at his job (other than during a lunch 
break). Matt is interruptible when he is getting ready for bed at 
night but not when he is quickly getting dressed in the 
morning. In other situations, however, these two parameters 
may be insufficient to determine a person’s context. Sarah may 
not mind her phone asking questions while she is walking 
alone but not when she is jogging the same route for exercise 
with her friends. In these cases, understanding and recognizing 
a person’s activity can provide richer contextual information 
for learning valuable prompt times. 

IV. THYME 

Thyme is an intelligent prompting model that takes 
advantage of pervasive computing, signal processing, and 
machine learning techniques to provide personalized, activity 
context-aware prompt timings. Thyme uses both smartphone-
based sensor features and AL-provided activity labels to gather 
contextual data. Thyme’s machine learning algorithm maps this 



input to a label indicating that the user can be prompted, 
“YES”, or cannot be prompted, “NO”, in this context. 

The timing of Thyme prompts is personalized to each user. 
The Thyme prompting model thus follows the flow shown in 
Figure 2. The prompting app (in this case, AL) initially pushes 
queries at a fixed rate. The user can choose to answer or to 
ignore the query. The corresponding data represents a training 
instance for Thyme’s learner and the user’s response (or lack of 
response) represents the YES or NO label for the instance. 
Each data point with the YES/NO label is input to a decision 
tree learner which creates a model mapping data to 
corresponding labels. 

The prompt content is shown in Figure 1 (middle). The user 
is queried about their current activity and whether it matches 
the label generated by AL. If the user indicates that the label is 
correct then the notification window disappears. If the label is 
incorrect then the app is brought up and provides the user with 
the chance to indicate the correct label for their current activity. 
Information about the prompt including the prompt date, 
prompt time, prompted activity label, and user response are 
stored in a relational database. 

Once the model is learned, the initial fixed prompt intervals 
can be replaced with prompt times suggested by Thyme. 
Although we test Thyme prompt timing with the AL activity 
learner app, Thyme can be used as a prompt timing selector for 
any app.  To use Thyme, the app such as AL continues to 
collect data and prepare user queries as normal. However, AL 
first checks with Thyme to determine if it is a good context in 
which to prompt or not. If it is not, the prompt is suppressed. If 
it is, the prompt is delivered to the user and the response can be 
used to refine the models for both Thyme and AL. 

As Fig. 2 indicates, the activity recognition performed by 
the AL algorithm is used in two ways. First, AL labels the 
collected sensor data with corresponding activity classes and 
becomes part of the inferred user context in order to learn user-
customized times for user interaction and prompting. Second, 
AL is the app which itself relies on user prompting in order to 
obtain sufficient labeled examples of activity categories. In 
theory, the learned user context model would become stronger 
with time as more activity labels are provided and activity 
recognition is more reliable. In practice for our evaluation, 
however, we do not update the AL models once prompting 
begins. This allows us to report AL accuracy that would remain 
fixed throughout the evaluation period. As a result, we can 
observe the responsiveness of the user to an activity-aware 
prompt strategy and discuss the likely impact of activity 
recognition on that responsiveness. 

An activity-aware system utilizes knowledge of the current 
activity being performed, in addition to other contextual 
information such as time and location, to adapt the system and 
its related services. Identifying current activities providers a 
rich source of information for systems that can adapt to each 
user’s behavioral patterns [47]. In addition to the current 
activity label, Thyme utilizes eight additional features in order 
to learn user-sensitive times to prompt for activity labels. The 
set of features are described in Table 1 and consist of the 
current user activity (identified by AL), the day of the week, 
hour of the day, number of minutes past midnight, the user’s 

current location, and the user’s recent level of engagement with 
the app (indicated by how quickly the user responded to the 
previous prompt). 

 
Fig. 2. An overview of the Thyme prompting model 

V. EVALUATION OF PERSONALIZED PROMPT TIMINGS 

To evaluate our Thyme-based prompt timings, we recruited 
n=47 adult participants to respond to queries using the AL app 
with and without Thyme selection of prompt times. 
Participants include 14 females and 33 males, ages 21-31. We 
collected participant data in two phases, each one week in 
length. The same pool of participants were used for both 
phases of data collection. In the first phase, AL generated 
activity label queries at fixed intervals of 30 minutes, 24 hours 
a day. We instructed participants to only respond to prompts at 
convenient times, otherwise they could select “Ignore” or let 
the query time out after 7 minutes of not responding. The AL-
generated sensor data was collected, encrypted and transmitted 
to our server where it was stored in a password-protected SQL 
database together with the user response. 

We used the collected data in two ways. First, the AL 
activity learner used features extracted from the data to learn a 
mapping from sensor data to the activity classes that the users 
defined.  The first week of data is used for this purpose with 
the features summarized in Table 1. Second, Thyme used the 
response (or lack of a response) together with the AL-
generated activity label to learn a mapping from the user’s 
activity-enriched context to a decision of whether a prompt can 
be generated (YES) in this context or not (NO). 

During the second data collection phase, we inserted 
Thyme into the front end of AL. The second week of data is 
used for this purpose. Although the prompt queries were still 
generated every 30 minutes, AL checked with Thyme whether 
it was an appropriate context for querying the user. Only in 
situations where Thyme output “YES” did the user receive the 
actual prompt. A total of 64,000 data samples were collected 
over the two phases. From the original forty-seven participants 
we created models for the users who responded to queries for 
the entire two weeks, or thirty-one users. 

There are several aspects of the activity-aware prompt 
models that we evaluated in this study. First, because activity 



labels are a key part of activity-aware prompt timing, we 
evaluate how well the AL activity models are learned for each 
user individually and for the whole group. Second, we evaluate 
how well Thyme learns prompt timing models individually and 
for the group as a whole. Finally, we observe the effect of 
Thyme-based prompt timings on user response rate for the AL 
app. The results indicate the usability of activity-aware prompts 
and notifications for apps that customize to particular users or 
to an entire population. The learned decision trees themselves 
also shed light on the features that are particularly valuable in 
learning activities and prompt timings for this study. 

A. Evaluation of Activity Learning 

To generate prompts for Thyme, we used data collected in 
the first phase to train AL activity models. Our participants 
produced a wide variety of responses both in frequency of 
responses and in number of defined activity classes. As Table 1 
indicates, the number of activity classes ranged from 2 to 25. A 
total of 11,482 data instances were provided with activity 
labels but the number of instances for individuals ranged from 
39 to 2,645. The results of Thyme-based prompting depend to a 
large extent on the ability of AL to correct identify an activity-
based user context. We therefore evaluate AL’s performance 
on this collected week of data in three ways, each based on 10-
fold cross validation. First, we perform activity recognition 
separately for each user. As shown in Figure 3, AL achieves an 
average of 82% accuracy when training and testing is 
performed separately for each user. In addition to accuracy we 
also report an extended geometric mean, or g-mean, which is 
calculated as the nth root of the product of sensitivity and 
specificity for all classes. The last performance measure is the 
area under the ROC curve, or AUC value. The last two 
measures are particularly valuable when reporting classifier 
performance on imbalanced datasets. As shown in Fig. 3, AL 
achieved an average g-mean of 0.83 and an AUC value of 0.88. 

 
Fig. 3. AL performance averaged over the participant group where models are 

learned and tested separately for each user. 

We performed the same experiment with alternative 
classifiers and report their accuracy and g-mean values in Fig. 
4. The compared classifiers include a support vector with a 
linear kernel (SVC Linear), a naïve Bayes (NBC), a support 
vector with a radial basis function kernel (SVC RBF), a k-
nearest neighbor with k=3 (KNN), a decision tree (DT), and a 
random forest (RF). Random forest consistently performs the 
best, so we use this classifier for the remaining experiments. 

While learning a separate activity model for each user 
allows prompt timings to be customized for each person, it also 
requires a sufficient number of training data points from each 
person to train the model. This constraint places the burden of 
training models on the user and may not be practical in all 
situations. For this reason, we also test the activity models for 
user generalizability. In this case, we collapse the 124 different 

activity labels we observed across the participant set into 11 
more general activity classes. To do this, we merge activities 
into one class if they are synonyms (e.g., Bake, Cook, Cooking, 
Meal Preparation are merged into a single class “Cook”) or one 
is a hypernym of another (e.g., Run, Running With Pup, Walk, 
and Walking Dog are merged a single class “Exercise”) as 
defined by WordNet  [48]. The final classes consist of the 
activities Bathe, Cook, Drive, Eat, Exercise, Groom, Hobby, 
School, Sleep, Study, and Work. 

  
Fig. 4. AL accuracy and g-mean values by alternative classifiers, averaged over 

the participant group where models are learned for each user. 

For our second activity recognition experiment, we test AL 
on this combined dataset. As shown in Fig. 5, the accuracy 
drops to 78%. However, the performance is significantly 
(p<.05) better than random labeling, which would yield an 
accuracy of 9% for this data. The results indicate how the 
learned model would perform for a new user even in the 
absence of training data for the new user. 

 
Fig. 5. AL performance averaged 
over the participant group where a 

single model is learned for the entire 
collection of data. 

Fig. 6. AL performance for leave-one-
subject-out testing, averaged over all 

the participants. 

For the third experiment, we test AL with for the 11 activity 
classes using leave-one-subject-out testing. Here the 
performance is quite a bit lower than situations where training 
data is available for the same user that is being tested, as shown 
in Fig. 6. The performance is still significantly (p<.05) better 
than random guess but the results of this experiment clearly 
indicate that some labeled data will be needed for each user to 
effectively learn an activity model that can be used to inform 
prompt timing. So, we utilize the first week of collected data to 
train a model for each user then collect a second week of data 
with Thyme-informed timings for the same set of users. 

One other point we want to note is the distribution of labels 
across the generalized set of 11 activity classes. This 
distribution is shown in Fig. 7. We note that the greatest 
number of activity occurrences is in the Hobby category, with 
many fewer occurring in the Work and School categories. 
Interestingly, we later observe that users are more reluctant to 
answer queries at work or school than while they are relaxing 
with a hobby. This becomes a cyclic problem because 
notifications were used to obtain initial activity labels and these 
labels are used to learn prompt times. If we cannot adequately 
learn the activities when users should not be prompted then the 
prompt times will suffer. 



 
Fig. 7. Distribution of data points for the generalized activity classes. 

B. Evaluation of Prompt Timing 

Given the activity labels provided by AL and the user 
responses from the first phase of our experiment, we can now 
train the Thyme models to learn appropriate prompt times for 
each user. To perform this task, Thyme maps a vector of 
features representing a contextual situation to a YES or NO 
value. A value of YES indicates that a prompt can be given in 
the corresponding context and NO indicates that this is not a 
good time to prompt. Based on the nature of the training data, 
we can infer that a YES label also indicates a high likelihood of 
the user responding to the app at the prompt time, while a NO 
label is likely to a situation which is inappropriate or 
inopportune for prompting-based interruptions. 

Evaluation of the learned Thyme models is based on a 
second week of prompting users for activity labels. During this 
week, prompts are only provided in contexts where the Thyme 
model suggests a YES value. Figs. 8-13 summarize the results 
of learning the prompt models. In this case we are determining 
whether there are patterns to user responses that can be 
captured by sensor data and modeled by a standard supervised 
learning algorithm. We first evaluate the performance based on 
a separate model for each user that uses the individualized AL 
models described in the previous section and evaluated in Fig. 
3. We evaluate the models using 10-fold cross validation and 
the results are shown in Fig. 8. 

  
Fig. 8. Thyme performance averaged 

over the participant group. 
Fig. 9. Thyme performance averaged 

over the participants. No activity 
feature is used for these models. 

Because the class distribution is heavily skewed we also 
perform minority class resampling [49]. The individual models 
yield an average accuracy of 95% for the thirty-one participants 
that generated at least one week’s worth of data for each phase. 
Because of the heavily skewed class distribution we report g-
mean and AUC values in addition to accuracy values. To 
determine the impact that including an activity label has on 
performance, we also run the experiment without this 
information included in the input vector. In this case the 
performance does degrade to 94%. The difference in 
performance, however, is not statistically significant. 

As before, we are also interested in assessing how well a 
generalized model of prompt timing could perform if it is 
adapted to a population of individuals rather than customized 
for each person. In this case we use the generalized AL model 
for ten activities and from this information build a single 
Thyme prompting model. The generalized model results in a 
99% accuracy with (Fig. 10) and without (Fig. 11) activity 
information. In this case, the difference in performance 
between the model that utilizes activity information and the one 
that does not is extremely statistically significant (p<.01). 

  

Fig. 10. Thyme performance with one 
model learned from data for the entire 

group. 

Fig. 11. Thyme performance with one 
model learned from data for the entire 
group. No activity feature is used for 

these models. 

 
Fig. 12. Thyme averaged performance for leave-one-subject-out testing,  

Finally, we perform leave-one-subject-out testing with the 
Thyme-learned prompt models. As Figs. 12 and 13 show, 
performance is much weaker in these cases, with and without 
the activity information. The difference in accuracy between 
the model with and without activity information is not 
statistically significant. These results are consistent with our 
observations that preferred prompt times are highly 
individualized and need to be adapted to each person. 

 
Fig. 13. Thyme performance for leave-one-subject-out testing, averaged over 

all participants. No activity information is used in these models. 

Thyme utilizes many features to define context, which 
includes the traditional time-based context features and 
location-based features as well as user engagement level (how 
quickly the user responded to the previous prompt) and the 
automatically-recognized current activity. We are interested in 
performing feature selection to determine which contextual 
features provided the strongest indication that the user was 
interruptible and willing to respond to a prompt. For this 
experiment, we used a decision tree classifier to learn Thyme-
based prompt contexts. We examine the rules learned by the 



decision tree to see if the activity labels are critical in 
differentiating the classes. Decision tree learners provide this 
valuable feature because they select features to query in a 
greedy manner based on each feature’s ability to discriminate 
between the alternative target class values [50]. 

In the case of the learned generalized prompting model, the 
user’s engagement level was the most discriminating feature. 
This is an intuitive result because if a user is willing to respond 
to an earlier query that level of engagement will stay high for a 
period. The next most discriminating feature was the activity 
label. As an example, participants did not like to respond to AL 
queries when they were at work but were generally responsive 
when they were relaxing or working on a hobby. The day of 
the week and time of day were generally used next, followed 
by actual user GPS coordinates. The GPS coordinates do not 
generalize well to an entire population. In contrast, however, 
they were very discriminating when learning separate 
prompting models for each user. 

We compare the decision tree-based feature selection 
method, which is based on the reduction in entropy over the 
dataset that is afforded by each feature, with alternative 
statistical methods. Specifically, mutual information and chi2 
feature selection methods also rank user engagement as the top 
feature, followed by activity label. The remainder of the feature 
ordering varies between selection methods. 

C. User Response Rate 

The previous experiments are useful because they provide 
an indication that activities can be learned from smartphone 
sensor data and that prompt times can be learned as well. Smart 
phone sensor data provides an enough data to learn these 
models and there are clear rules which govern when prompts 
should and should not be given. In our final experiment, we 
measure actual user responses with fixed-time prompts (phase 
one) and with Thyme-based prompts (phase two). Figure 14 
plots the response rate for both conditions, averaged across our 
set of participants. As the graph shows, Thyme generates a 
much more favorable response from users than fixed times. 
The fixed-time strategy yields an average user response rate of 
12.8%. In contrast, the Thyme strategy yields an average user 
response rate of 93.2%. The difference in performance is 
extremely statistically significant (p<0.01). 

We made several observations about the nature of the data 
collected in our study. First, our participants were recruited 
locally. As a result, their locations and activity classes were 
more homogeneous that we would find in the general 
population. In addition, because data collection occurred over a 
small period of time the “day of week” feature was not 
consistently helpful in discriminating activities or prompt 
times. For both of these reasons, Thyme needs to be tested for a 
greater diversity of users over a long period of time to ascertain 
its generalizability. Finally, we note that because users 
appeared to be less likely to respond to prompts at work, at 
school, or while sleeping, there were fewer data points from 
these categories to train AL and thus to train Thyme. 

In the future, we can consider one-class learning strategies 
to identify prompt contexts from heavily-skewed class 
distributions or only from activities and contexts in which users 

are responsive to prompts and notifications. We also want to 
extend our study to evaluate the overall user experience. 
Feedback from users can indicate general preferences of 
timings for prompts and for content of prompts, both of which 
can provide valuable pointers for creating effective interfaces 
and notification timings. 

 
Fig. 14. Average user response rate for fixed-interval prompts and for 

customized prompts based on Thyme. 

VI. CONCLUSION 

In this paper, we introduce an activity-aware approach to 
customizing smartphone prompts and notifications. The 
proposed approach, implemented in our Thyme system, can be 
used to manage any smart phone notification strategy. 
Experimental results, obtained for a set of participants answer 
activity queries for a mobile app, indicate that the proposed 
algorithm outperforms traditional time-based prompting. The 
resulting app increases user response rates and decreasing 
inappropriate notifications. The resulting approach is useful for 
presenting information and interacting with users in an 
effective manner without creating interruption overload. 

ACKNOWLEDGMENT  

The authors would like to thank Bryan Minor and Larry 
Holder for their help with designing the AL app. This research 
was supported in part by NIH grant R25AG046114. 

REFERENCES 
[1] A. M. Seelye, M. Schmitter-Edgecombe, B. Das, and D. J. Cook, 

“Application of cognitive rehabilitation theory to the development of 
smart prompting technologies.,” IEEE Rev. Biomed. Eng., vol. 5, pp. 
29–44, Jan. 2012. 

[2] H. Thompson, “Ten species that are evolving due to the changing 
climate,” Smithsonian Magazine, 2014. . 

[3] Statistica, “Number of smartphone users worldwide from 2014 to 2020,” 
The STatistics Portal, 2017. . 

[4] E. Horvitz and J. Apacible, “Learning and reasoning about interruption,” 
in International Conference on Multimodal Interfaces, 2003, pp. 20–27. 

[5] B. P. Bailey and J. A. Konstan, “On the need for attention award 
systems: Measuring effects of interruption on task performance, error 
rate, and affective state,” J. Comput. Hum. Behav., vol. 22, no. 4, pp. 
709–732, 2006. 

[6] T. Okoshi, J. Ramos, H. Nozaki, J. Nakazawa, A. K. Dey, and H. 
Tokuda, “Reducing users’ perceived mental effort due to interruptive 
notifications in multi-device mobile environments,” in International 
Joint Conference on Pervasive and Ubiquitous Computing, 2015, pp. 
475–486. 

[7] T. Okoshi, J. Ramos, H. Nozaki, J. Nakazawa, A. Dey, and H. Tokuda, 
“Attelia: Reducing user’s cognitive load due to interruptive notifications 
on smart phones,” in IEEE International Conference on Pervasive 
Computing and Communications, 2015, pp. 96–104. 

[8] T. Gillie and D. Boradbent, “What makes interruptions disruptive? A 
study of length, similarity, and complexity,” Psychol. Res., vol. 50, no. 
4, pp. 243–250, 1989. 



[9] A. L. Zulas, “Modifying smart home to smart phone notifications using 
reinforcement learning algorithms,” Washington State University, 2017. 

[10] N. Yeung and S. Monsell, “Switching between tasks of unequal 
familiarity: The role of stimulus-attribute and response-set selection,” J. 
Exp. Psychol. Hum. Percept. Perform., vol. 29, no. 2, p. 455, 2003. 

[11] K. K. Loh and R. Kanai, “Higher media multi-tasking activity is 
associated with smaller gray-matter density in the anterior cingulate 
cortex,” PLoS One, vol. 9, no. 9, p. e106698, 2014. 

[12] V. Pejovic and M. Musolesi, “InterruptMe: Designing Intelligent 
Prompting Mechanisms for Pervasive Applications,” in Proceedings of 
the 2014 ACM International Joint Conference on Pervasive and 
Ubiquitous Computing - UbiComp ’14 Adjunct, 2014, pp. 897–908. 

[13] J. G. Kreifeldt and M. E. McCarthy, “Interruption as a test of the user-
computer interface,” in Annual Conference on Manual Control, 1981, 
pp. 655–667. 

[14] B. Sullivan and H. Thompson, “Brain, interrupted,” The New York 
Times, May-2013. 

[15] H. Lopez-Tovar, A. Charalambous, and J. Dowell, “Managing 
smartphone interruptions through adaptive modes and modulation of 
notifications,” in International Conference on Intelligent User Interfaces, 
2015. 

[16] Y. Miyata and D. A. Norman, “Psychological issues in support of 
multiple activities,” in User Centered System Design: New Perspectives 
on Human-Computer Interaction, D. A. Norman and S. W. Draper, Eds. 
Boca Raton, FL: CRC Press, 1986, pp. 265–284. 

[17] J. E. Fischer, C. Greenhalgh, and S. Benford, “Investigating episodes of 
mobile phone activity as indicators of opportune moments to deliver 
notifications,” in International Conference on Human Computer 
Interaction with Mobile Devices and Services, 2011, pp. 189–190. 

[18] A. Exler, M. Braith, A. Schankin, and M. Beigl, “Preliminary 
investigations about interruptibility of smartphone users at specific place 
types,” in ACM International Joint Conference on Pervasive and 
Ubiquitous Computing, 2016, pp. 1590–1595. 

[19] G. H. ter Hofte, “Xensible interruptions from your mobile phone,” in 
International Conference on Human Computer Interaction with Mobile 
Devices and Services, 2007, pp. 178–181. 

[20] M. Pielo, K. Church, and R. De Oliveira, “An in-situ study of mobile 
phone notifications,” in International Conference on Human-Computer 
Interaction with Mobile Devices and Services, 2014, pp. 233–242. 

[21] E. Horvitz, P. Koch, and J. Apacible, “BusyBody: Creating and Fielding 
Personalized Models of the Cost of Interruption,” in Proceedings of 
CSCW, Conference on Computer Supported Cooperative Work, 2004, 
pp. 507–510. 

[22] T. Okoshi, J. Ramos, H. Nozaki, J. Nakazawa, A. K. Dey, and H. 
Tokuda, “Attelia: Reducing user’s cognitive load due to interruptive 
notifications on smart phones,” in 2015 IEEE International Conference 
on Pervasive Computing and Communications (PerCom), 2015, pp. 96–
104. 

[23] M. Pielot, R. de Oliveira, H. Kwak, and N. Oliver, “Didn’t you see my 
message? Predicting attentiveness to mobile instant messages,” in 
SIGCHI Conference on Human Factors in Computing Systems, 2014, 
pp. 3319–3328. 

[24] J. Smith, A. Lavygina, J. Ma, A. Russo, and N. Dulay, “Learning to 
recognise disruptive smartphone notifications,” in International 
Conference on Human Computer Interaction with Mobile Devices and 
Services, 2014, pp. 121–124. 

[25] A. Doryab and J. E. Bardram, “Designing activity-aware recommender 
systems for operating rooms,” in Workshop on Context-Awareness in 
Retrieval and Recommendation, 2011, pp. 43–46. 

[26] P. Jaramillo and O. Amft, “Improving energy efficiency through 
activity-aware control of office appliances using proximity sensing - a 
real-life study,” in IEEE International Conference on Pervasive 
Computing and Communications, 2013, pp. 664–669. 

[27] D. J. Cook and Narayanan C. Krishnan, Activity Learning: Discovering, 
Recognizing, and Predicting Human Behavior from Sensor Data. Wiley, 
2015. 

[28] L. Chen, J. Hoey, C. D. Nugent, D. J. Cook, and Z. Yu, “Sensor-based 
activity recognition,” IEEE Trans. Syst. Man, Cybern. Part C Appl. 
Rev., vol. 42, no. 6, pp. 790–808, 2012. 

[29] K. D. Feuz and D. J. Cook, “Modeling skewed class distributions by 
reshaping the concept space,” in National Conference on Artificial 
Intelligence, 2017, p. under review. 

[30] K. Bouchard, L. Holder, and D. J. Cook, “Extracting generalizable 
spatial features from smart phone datasets,” in AAAI Conference on 
Artificial Intelligence, 2016. 

[31] C. Elkan, “The foundations of cost-sensitive learning,” in International 
Joint Conference on Artificial Intelligence, 2011, pp. 973–978. 

[32] M. Maloof, “Learning when data sets are imbalanced and when costs 
and unequal and unknown,” in ICML Workshop on Learning from 
Imbalanced Data Sets II, 2003. 

[33] K. McCarthy, B. Zabar, and G. Weiss, “Dost cost-sensitive learning beat 
sampling for classifying rare classes?,” in Workshop on Utility-Based 
Data Mining, 2005, pp. 69–77. 

[34] X. Liu and Z. Zhou, “The influence of class imbalance on cost-sensitive 
learning: An empirical study,” in International Conference on Data 
Mining, 2006, pp. 970–974. 

[35] F. Provost, T. Fawcett, and R. Kohavi, “The case against accuracy 
estimation for comparing induction algorithms,” in International 
Conferenceon Machine Learning, 1998, p. 445. 

[36] A. Bulling, U. Blanke, and B. Schiele, “A tutorial on human activity 
recognition using body-worn inertial sensors,” ACM Comput. Surv., vol. 
46, no. 3, pp. 107–140, 2014. 

[37] O. Lara and M. A. Labrador, “A survey on human activity recognition 
using wearable sensors,” IEEE Commun. Surv. Tutorials, vol. 15, no. 3, 
pp. 1192–1209, 2013. 

[38] N. Yala, B. Fergani, and A. Fleury, “Feature extraction for human 
activity recognition on streaming data,” in International Symposium on 
Innovations in Intelligence Systems and Applications, 2015, pp. 1–6. 

[39] Y. Zheng, W.-K. Wong, X. Guan, and S. Trost, “Physical activity 
recognition from accelerometer data using a multi-scale ensemble 
method,” in Innovative Applications of Artificial Intelligence 
Conference, 2013, pp. 1575–1581. 

[40] J.-H. Hong, J. Ramos, and A. K. Dey, “Toward personalized activity 
recognition systems with a semipopulation approach,” IEEE Trans. 
Human-Machine Syst., vol. 46, no. 1, pp. 101–112, 2016. 

[41] N. C. Krishnan and D. J. Cook, “Activity recognition on streaming 
sensor data,” Pervasive Mob. Comput., vol. 10, pp. 138–154, Feb. 2014. 

[42] T. Barger, D. Brown, and M. Alwan, “Health status monitoring through 
analysis of behavioral patterns,” IEEE Trans. Syst. Man, Cybern. Part A, 
vol. 35, no. 1, pp. 22–27, 2005. 

[43] J. K. Aggarwal and M. S. Ryoo, “Human activity analysis: A review,” 
ACM Comput. Surv., vol. 43, no. 3, pp. 1–47, 2011. 

[44] S.-R. Ke, H. L. U. Thuc, Y.-J. Lee, J.-N. Hwang, J.-H. Yoo, and K.-H. 
Choi, “A review on video-based human activity recognition,” 
Computers, vol. 2, no. 2, pp. 88–131, 2013. 

[45] A. Reiss, D. Stricker, and G. Hendeby, “Towards robust activity 
recognition for everyday life: Methods and evaluation,” in Pervasive 
Computing Technologies for Healthcare, 2013, pp. 25–32. 

[46] S. Vishwakarma and A. Agrawal, “A survey on activity recognition and 
behavior understanding in video surveillance,” Vis. Comput., vol. 29, 
no. 10, pp. 983–1009, 2013. 

[47] R. Fisher and R. Simmons, “Smartphone interruptibility using density-
weighted uncertainty sampling with reinforcement learning,” in 
International Conference on Machine Learning and Applications, 2011, 
pp. 436–441. 

[48] G. A. Miller, “WordNet: A lexical database for English,” Commun. 
ACM, vol. 38, no. 11, pp. 39–41, 1995. 

[49] N. Chawla, K. Bowyer, L. Hall, and W. P. Kegelmery, “SMOTE: 
Synthetic minority over-sampling technique,” J. Artif. Intell. Res., vol. 
16, pp. 321–357, 2002. 

[50] J. R. Quinlan and R. L. Rivest, “Inferring Decision Trees Using the 
Minimum Description Length Principle,” Inf. Comput., vol. 80, pp. 227–
248, 1989. 


