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ABSTRACT
Understanding epigenetic processes holds immense promise for medical applications. Advances in
Machine Learning (ML) are critical to realize this promise. Previous studies used epigenetic data sets
associated with the germline transmission of epigenetic transgenerational inheritance of disease and
novel ML approaches to predict genome-wide locations of critical epimutations. A combination of Active
Learning (ACL) and Imbalanced Class Learning (ICL) was used to address past problems with ML to
develop a more efficient feature selection process and address the imbalance problem in all genomic data
sets. The power of this novel ML approach and our ability to predict epigenetic phenomena and
associated disease is suggested. The current approach requires extensive computation of features over
the genome. A promising new approach is to introduce Deep Learning (DL) for the generation and
simultaneous computation of novel genomic features tuned to the classification task. This approach can
be used with any genomic or biological data set applied to medicine. The application of molecular
epigenetic data in advanced machine learning analysis to medicine is the focus of this review.

Abbreviations:ML, Machine Learning; ACL, Active Learning; ICL, Imbalanced Class Learning; DL, Deep Learning;
DMR, Differentially methylated DNA region; AGQC, Active Learner with Generalized Queries; TAN, Tree-Augmented
Na€ıve-Bayes; MIP, Most Informative Positive; CBAL, class Based Active Learning; SSO, Subset Sample Optimization;
SNP, Single Nucleotide Polymorphism; AIS, Artificial Immune Systems; SVM, Support Vector Machines (Standard ML
approach)
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Introduction

Epigenetics is defined as “molecular factors around DNA that
regulate genome activity independent of DNA sequence, and
are mitotically stable”.1 In 1942, Conrad Waddington coined
the term ‘epigenetics’ using studies of how environment influ-
ences development in conjunction with genotype, which leads
to the development of the phenotype.1 Each cell type has a
unique epigenome that allows a specific differentiation for the
cell. Since a single genotype can be associated with many phe-
notypes, it is believed that for a single genome sequence infinite
epigenomes may exist. One of the main epigenetic mechanisms
is DNA methylation, which can influence gene expression with-
out changing the DNA sequence. Additional epigenetic mecha-
nisms include histone modifications, noncoding RNA
(ncRNA), and chromatin structure.1 DNA methylation is one
of the primary studied epigenetic mechanisms that has been
shown to mediate generational inheritance through the male
germ line.2 A number of studies show that epigenetic changes
are essential for developmental processes (e.g., tissue formation,
organ formation, sex determination). Epigenetic changes also
lead to altered patterns of gene expression that can lead to
adverse clinical outcomes, such as obesity, allergies, cancer,
schizophrenia, or Alzheimer disease, to name a few. Recent

epigenetic studies focus on how an environmental compound
or exposure can promote an epigenetic disease state that can be
transmitted through generations.1,3 Predicting regions of sus-
ceptibility to epigenetic changes that are associated with disease
is crucial to understand epigenetics, biology, and disease.

A major goal of research in this area is to identify regions in
the genome that are susceptible to epigenetic modification. This
can include DNA methylation changes (e.g., CpG), histone
modifications, ncRNA expression, or chromatin structural
changes (e.g., nucleosome positioning). We have started to
understand some of the underlying theory of epigenetics and the
computational approaches necessary to identify regions that are
associated for these changes. However, the extraction of biologi-
cal data are time consuming and expensive due to the challenges
of implementing experimental procedures that can produce epi-
genetic phenomena and several computational challenges to
extract and analyze this data. Biological data sets have high
dimensionality, but the cases of interest (e.g., disease states) are
relatively rare. In epigenetic data sets, for example, DNAmethyl-
ation data contain only a few differentially methylated DNA
regions (DMRs) and many non-DMR sites, while both are
described with numerous DNA sequence and genomic features.
To address these challenges, an integrated approach that
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combines feature generation, feature selection, and machine
learning on epigenetic data sets is needed.We envision 3 alterna-
tive approaches to this integration that involve combinations of
Active Learning (ACL) to address the expense of generating epi-
genetic data, Imbalanced Class Learning (ICL) to address the rel-
atively low occurrence of epimutations in the data, and Deep
Learning (DL) to address the difficulty in manually defining rel-
evant genomic features. Fig. 1 depicts these 3 alternative
approaches: (i) ACL and ICL are used to learn efficiently from
manually generated features; (ii) DL is used to automatically
generate features for ACL/ICL and; (iii) a solely DL based
approach incorporates these ML components into one paradigm
that holds promise of applying recent dramatic successes in deep
learning of sequential data to epigenetics. A list of the various
types of Machine Learning (ML) approaches with their advan-
tages and disadvantages are pointed out in Table 1.

The following sections first describe the main ML techni-
ques recommended for prediction over epigenomic data: active
learning, imbalanced class learning, and deep learning. Next,
the application of these techniques to biological data sets, in
general, and epigenetic data sets, in particular, are discussed
along with the commensurate challenges. Recent results using
active learning and imbalanced class learning for epigenetic fea-
ture selection and prediction are presented.4 Lastly, future
applications of these ML techniques to molecular diagnostics
and medicine are discussed.

Machine learning

Active learning

Biological and molecular data generally comes in raw form and
needs to be annotated with class labels. This requires a domain
expert and making the best use of the expert’s knowledge and
time. A new ML approach has arisen called Active Learning
(ACL). ACL is designed to maximize the potential of the Oracle
(the human expert) in labeling data by selecting only relevant
instances and features. Instead of labeling all the instances,
ACL methods can intelligently choose a small number of
instances in a few iterations that quickly trains the learner while
minimizing costs. ACL can produce better classifiers in less
time and iterations.

In traditional ACL methods, it may not always be easy for
the Oracle to label a query with many features, especially those

with high precision values. Many of the queries may contain
irrelevant features that have no effect on the final outcome (the
label). A better approach is to remove some of the irrelevant
features for a certain query such that it results in a shorter and
more readable query, which is easier for the Oracle to label.
Using such generalized queries will help achieve higher accu-
racy with fewer queries than traditional ACL methods. How-
ever, an overly general query may lead to an uncertain label,
which may add noise to the learning process. Therefore, the
goal of an ACL system should be to produce generalized
queries with highly certain answers, from which it can learn a
classifier quickly with fewer examples. Even when labeled data
abounds, selecting a subset of the features on which to train the
learner may result in a better classifier. This capability of ACL
improves our ability to select feature subsets from both manu-
ally and automatically generated feature sets.

The most common and widely used form of ACL is uncer-
tainty sampling,4 which chooses the most uncertain example as
the next one for the Oracle to label. One problem with uncer-
tainty sampling is that it may choose outliers, which are highly
uncertain data points. Therefore, it does not always follow the
underlying distribution of data points. The Active Learner with
Generalized Queries (AGQC)5 is an important ACL method
that automatically generates meaningful new features, unlike
previous approaches6 in which new features are manually
adjusted. AGQC also constructs generalized queries with
numeric attribute ranges that are automatically produced from
raw numeric attribute data.

In recent work, we introduced an ACL method called
GQAL, which is similar to AGQC but performs a local feature
selection per query and achieves superior performance on clas-
sifying epigenetic data sets.7 GQAL uses pool-based uncertainty
sampling for constructing a generalized query with don’t-care
features (irrelevant features in the most uncertain examples).
GQAL uses the Tree-Augmented Na€ıve-Bayes (TAN) learner.8

TAN has been found to be superior to other learners in this set-
ting,9 and it provides a probability of classification that is used
by GQAL to find the instance whose classification probability is
farthest from its distribution in the instance set (i.e., the most
uncertain instance). GQAL generalizes the uncertain instance
by identifying sets of features whose permuted values have no
effect on the prediction for that instance. More detailed results
of GQAL on epigenetic data are discussed later.

Imbalanced class learning

In many data sets, there are unequal numbers of instances in
each class making an unequal distribution of samples. In this
case, the classifier learns most of the target concepts of the
majority class, but learns target concepts from the minority
class poorly or not at all. Often, the interest is more on the
minority class, such that getting rare instances from the minor-
ity class can be time consuming and costly. Such an unequal
distribution between classes of a data set is known as the class
imbalance problem. 10

In recent work, we introduced the TANCAdaBoost ICL
method that uses all the majority and minority class samples
and uses boosting to ensure that each class is learned with equal
priority. TANCAdaBoost uses adaptive boosting (AdaBoost11),

Figure 1. Machine Learning approaches to epigenetic data analysis: #1 ACL¡ICL on
manually generated features; #2 ACL-ICL on DL-generated features; #3 solely DL-
based classification. Modified from.4
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which learns a set, or ensemble, of classifiers using a base classi-
fier (in this case TAN) repeatedly applied to the data set, but
with incorrectly-classified examples receiving more weight to
bias later classifiers toward correct classifications. While initial
classifiers focus on the majority class, later classifiers focus on
the minority class. The final classifier consists of the weighted
majority vote of the individual classifiers. When applied to the
2 epigenetic data sets (sperm and somatic, described in Fig. 1),
TANCAdaBoost achieved the best overall performance com-
pared with other imbalanced class learners using the combined
average for AUC, F-measure, and G-mean, which are popular
performance measures for ICL problems. 12

Deep learning

Deep Learning (DL) has recently demonstrated superior per-
formance in several domains, most notably in image, speech,
and natural language processing.4 Much of DL power resides in
its ability to generate complex features while either learning to
encode the input data in an unsupervised setting or learning to
classify the input data in a supervised setting. The complex fea-
ture generation is accomplished using a multi-layer (deep) neu-
ral network with specialized nodes, e.g., convolutional input
nodes to include neighboring information from around an
input data point (e.g., motifs), and logistic or rectified linear
units at the intermediate (hidden) and output layers, which
reproduce (decode) or classify the input data. The weights on
the interconnections between layers are trained using the stan-
dard backpropagation method. With typically 10 or more inter-
mediate layers, where each layer’s nodes compute a complex
feature based on features from previous layers, the network
generates complex features for representing the input data. It is
this feature generation capability that is critical to an advanced
DL-based approach to classification of genomic regions. As
depicted by method #2 in Fig. 1, DL can be used to generate
complex features from windows over the training DNA sequen-
ces. The sequence is then annotated with these features, and
this newly annotated training data can be input to an ACL-ICL
method to select the best features and data for learning. In
addition to DL being used to generate new features, DL can
also be used to minimize the number of relevant features; this

would assist active learning. The generalized query based ACL
technique becomes extremely computationally expensive when
the number of features increases. As depicted by method #3 in
Fig. 1, the DL network itself can be trained to identify genomic
regions of interest, and then the learned network can be applied
to the whole genome.

Machine learning in biological datasets

Machine Learning applied to biological data sets has a long his-
tory of success dating back to before 1990. A complete survey is
beyond the scope of this article, but Table 1 summarizes the
major ML techniques and specific approaches applied to bio-
logical data sets that are also applied to epigenetic data in par-
ticular, as described in the next section. Table 1 also describes
the main advantages and disadvantages of each approach, as
well as cites some recent examples from the literature. Super-
vised algorithms are used when there are labeled examples of 2
or more classes of interest (e.g., disease vs. healthy). Support
vector machines and random forests of decision trees are
among the most popular methods. Supervised algorithms have
been used for the prediction of gene ontology and gene expres-
sion profiles across different environmental and experimental
conditions. Unsupervised algorithms are used when the sam-
ples are not labeled. K-mean clustering and hierarchical cluster-
ing have been widely used in biological data sets. Chromatic
data has been used with unsupervised learning algorithms for
annotating the genomes to identify novel groups of functional
elements. Semi-supervised algorithms fall between supervised
and unsupervised, especially for cases when only a small por-
tion of the samples is labeled. Semi-supervised algorithms have
been used to identify functional relationships between genes
and transcription factor binding sites. They are widely used for
gene-finding approaches where the entire genome is the unla-
beled set and only a collection of genes is annotated. Tentative
labels are given after a first pass and the algorithm iterates to
improve the learning model.13 Feature selection methods, such
as principal component analysis, linear discriminant analysis,
and wrapper methods, seek to reduce the dimensionality of
data sets, identify informative features, and remove irrelevant
features, to avoid overfitting the learned model.

Table 1. Machine learning approaches for biological data sets, along with their function, advantages, disadvantages, and recent examples.

Machine Learning Approach Function Advantages Disadvantages

Supervised Learning (e.g., support
vector machine,84 random forest85)

Learn a model discriminating one
class of biological phenomena from
one or more other classes.

Precise model with predictive and
interpretative properties.

Requires equally large number of
examples from each class.

Unsupervised Learning (e.g., K-means,86

hierarchical clustering87)
Learn a model descriptive of the

biological phenomena in the data.
Does not require class labels on data. Sensitive to similarity measure; results

difficult to interpret.
Semi-supervised Learning (e.g.,

transduction88)
Learn model from mixture of labeled

and unlabeled data.
Utilize all available data; typically

outperforms use just labeled data.
Sensitive to errors in propagating class

labels from labeled to unlabeled data.
Feature Selection (e.g., PCA,89 LDA,90

wrapper91)
Reduce large number of features to

fewer, more informative features.
Improves efficiency and accuracy

of learning.
Sensitive to feature evaluation metric;

may discard informative features.
Active Learning (e.g., uncertainty

sampling,92 most informative
instance93)

Identify most informative instances to
label for accurate model learning.

Reduces number of examples needed
to learn model; reduces burden on
human expert and experiment cost.

May focus learner on outliers rather than
prominent classes.

Imbalanced class Learning (e.g.,
minority over-sampling,94

boosting95)

Learn in the presence of large skew
in the number of examples of each
class.

Learn with relatively few examples of
biological phenomenon of interest.

May underfit or overfit data depending
on bias toward minority class.

Deep Learning (DeepBind,14

DeepMotif15)
Learns complex representations of

concepts in the data.
General purpose and high accuracy. Sensitive to parameter choices; long

training times.

EPIGENETICS 507



Both ACL and ICL methods have applications in biological
data sets. Retrieving good biological data can take months to
years. Often, when experiments are done, researchers seek spe-
cific cases having a low incidence rate. So most biological data
are naturally imbalanced. For example, among the 27,000
mouse genes, an experiment may observe only about 100 whose
DNA methylation was changed within the experimental set-
tings.14 Therefore, collecting data on such changes is a time
consuming, multi-step process, and, naturally, results in a class
imbalance problem.

Building a classifier based on such few instances requires the
learner to choose instances and features that are most informa-
tive. By choosing few instances and features, if the learner can
learn the target concept quickly, then a good classifier can be
found without running more extensive experiments to obtain
more rare instances. To address this issue, popular ML techni-
ques, such as oversampling or undersampling, are used.
However, these approaches have their own drawbacks. Over-
sampling the minority class leads to overfitting, whereas under-
sampling the majority class leads to underfitting. Instead, ML
techniques like ACL certainly can help here. Therefore, both
ACL and ICL methods have applications in biological data sets.
Both types of methods have been widely used in other domains
but, in biological data sets, only a few studies show the use of
ACL, and even fewer studies show the use of the ICL methods
in practice.

One ACL study15 used the Most Informative Positive (MIP)
ACL method to find p53 mutants (mutated p53 is responsible
for half of human cancers). In their ACL method, they train
their classifier by only using positive instances that pass a cer-
tain score (which ranks all unlabeled instances) and include
negative instances in the training set only if there are too few
positive instances. Their approach looked for functionally
active examples and, in their first in vivo experiment, the
authors show that their MIP approach significantly increased
discovery of novel positive mutants. A different study uses ACL
techniques to annotate digital histopathology data. Their
method, class Based Active Learning (CBAL), uses a mathemat-
ical model that calculates the cost of building a training set with
a certain size and class ratio.16

Among the few studies addressing the imbalance class prob-
lem in biological data sets, subset sample optimization (SSO)
uses an ensemble-based approach and different sets of classi-
fiers in its optimal training set selection procedure and another
set of classifiers for classification on the test set.16 They have
used several medical data sets from the UCI ML Repository17

and used a genome-wide association study (GWAS, http://
gwas.nih.gov/) data set that is based on single nucleotide poly-
morphism (SNP) of age-related macular degeneration. The
Artificial Immune Systems (AIS)-based classification algorithm
has performed well on highly skewed data sets as compared
with other methods that use Support Vector Machine
(SVM).18,19

Applications of DL to biological data sets have increased
substantially in recent years.20 Much of this work has focused
on biomedical imaging,21 but a significant number of studies
have focused on genomic data.22 These ML tasks include pro-
tein structure prediction, protein classification, and gene
expression regulation. Such applications are characterized by

the computation of hundreds to thousands of predetermined
features, such as motifs, which are input to a DL network. But
this approach is essentially just replacing the ACL-ICL method
#1 in Fig. 1 with a deep neural network. Interestingly, methods
#2 and #3 avoid the predetermination of specific features, but
instead allow the DL network to generate relevant features
from lower-level sequence data. Some recent approaches have
used DL networks to generate relevant motifs using convolu-
tion layers on windowed sequence data, such as in the Deep-
Bind method.23 Other approaches have used a one-hot
encoding input to a convolution layer, where each sequence
window of size W is represented by a Wx4 array indicating
which bases (A, G, C, T) are present in the sequence window,
such as in the DeepMotif method.24 These methods have
achieved classification performance competitive with top non-
DL methods.

Epigenetics

Machine learning and epigenetics

The ability to identify regions of the genome susceptible to epi-
mutations will greatly improve our ability to diagnose disease,
and the recommended ML techniques have demonstrated this
ability. Currently, diagnosis of disease is done through sign and
symptoms followed by genomic testing and screening. This
genomic testing can identify molecular biomarkers and can
identify the risk of disease for the patients. However, personal-
ized medicine is more about studying the genomic profile to
predict and prevent the diseases a patient is predisposed to and
recommend better care such patient through pharmaceuticals,
lifestyle changes, and screening.

Advanced experimental and computational techniques have
brought us closer to realizing this goal of personalized medi-
cine. Recent advances in epigenomic technology have allowed
research involving high-throughput data and ML-based bioin-
formatics to make significant contributions. To identify epige-
netic changes and disease prediction, several approaches are
useful. These approaches combine collection of genomic fea-
tures, such as epigenetic marks and genetic alterations (SNPs,
copy number variations, repeat elements, transcriptomes, and
motifs]. Given its increased ability to collect data and identifica-
tion of epigenetic-relevant features, ML continues to improve
its accuracy at investigating the epigenome and identifying epi-
mutation sites, as well as expanding the medical applications of
epigenetic-based disease diagnosis.

There have been several studies using ML in epigenetics
research4,25,26 (Table 2). Applications have included epigenome
mapping,27-32 bioinformatics on complex data,33-35 biological
investigations,25,36-40 disease detection,11,41-45 environmental
exposure detection,4,26 and technology development.46-51 One
of the initial studies looked into finding imprinted genes in
human and mouse genomes. Imprinted genes are epigenetically
modified genes52 that are also associated with various diseases.
The genome-wide prediction of imprinted murine genes
focused on comprehensive profiling of the mouse genes. The
research group found thousands of relevant features for better
prediction of the imprinted gene by mining the DNA sequence
characteristics around 100 kb upstream and downstream of the
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imprinted genes.53 They used the Equbits Foresight (www.equ
bits.com) classifier and predicted 722 new sites. Their study
looked into 23,788 annotated autosomal mouse genes and iden-
tified 600 mouse imprinted genes. The same group later mined
the human genome for new imprinted sites.54 They again used
the Equbits Foresight with SVM and 622 features and used
their own sparse multinomial logistic regression (SMLR)55 clas-
sifier with 820 features to predict novel human imprinted
genes. Another study looks into the correlation of different fea-
tures to DNA methylation of CpG islands. They mined features
from 190 CpG islands from human chromosome 21 and tested
it on the rest of the CpG islands in the genome to find methyl-
ated CpG islands. They looked for correlation among features
and found that different methylation profiles exist not only for
different tissue types but also for different diseases.56 Wang et
al.57 compared a standard ML approach (SVM) to a DL autoen-
coder approach called DeepMethyl using several tumor cell
lines to assess CpG methylation and associated genomic topo-
logical features. Results show that the DL approach can
improve over SVM in some cases. Although using lower

resolution (50 kb windows), these observations show the value
of using ML and DL to provide insight into epigenetics.

A previous study by the authors used a combined ACL¡ICL
method (Fig. 1, method #1) with previous epigenetic data sets
of sperm promoter differential DMRs, termed epimutations
from promoters.58 This involved a sequential approach of ACL
followed by ICL on a gene promoter specific DMR set.1,59 The
prediction for the genome-wide locations for potential DMRs
identified 3,353 sites and the chromosomal locations (Fig. 2).
One of the main advantages of using ACL- and ICL-based
methods is that these approaches are classifier-independent;
therefore, another classifier can be used for prediction pur-
poses. Future studies will explore more advanced ML
approaches and more complete genome-wide epigenetic data.4

Prediction of epigenetic states from relevant genomic
features

Just as with any machine learning approach used for classifica-
tion, the ML approach in epigenetics proceeds by training a
classifier with relevant features, generating models, and then
performing prediction on a set-aside test set. For the first phase
of training, classifier-appropriate genomic features are needed,
which are correlated with the label of the epigenetic data. Once
the samples are properly labeled and features computed, the
ML technique would build a predictive model.

Genomic features can include both DNA sequence and epige-
netic components. Genetic features, such as repeat elements,
CpG density, response elements, or specific sequences, are all
DNA sequence-based features that impact the epigenome. In
contrast, epigenetic features, such as DNA methylation or his-
tone-mediated nucleosome positioning, and transitions between
euchromatin and heterochromatin can impact gene expression

Table 2. Machine Learning Applications in Epigenetics.

Application Observations Literature

Epigenome mapping Epigenetic site prediction 27-32

Bioinformatics of
complex data

Mixed cell type analysis 33-35,38

Biological
investigations

Predictions biological parameters (age,
metabolism, neuroscience, evolution)

25,36,37,39,40,52

Disease detection Disease diagnostics and prognosis 9,11,41-45

Exposure detection Environmental exposure detection and
impacts

4,26

Technology
development

Improvement and advances in epigenetic
analysis

46-51

Figure 2. Genome-wide prediction of potential epimutation sites based on promoter only DMR training sets. Chromosomal plot of germ cell data set sperm shows the
predicted 3C sites and the clusters of DMR regions. Red lines below each chromosome line indicate predicted potential DMR sites (3,233) when sperm is used as the
training set; blue boxes above each line indicate clusters.80 Y-axis shows each of the 21 chromosomes while X-axis shows the length of the chromosome with predicted
potential DMR locations and the clusters. Clusters are regions that indicate over-representations of sites within a small sub-section of the genome.55 Modified from.4
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and genetic features. More recently, epigenetic alterations have
also been shown to influence genome stability and promote
genetic sequence mutations.60,61 Therefore, the high degree of
integration between genetics and epigenetics suggests that both
features need to be considered in machine learning.

One of the main challenges of successful model building is
how to use the high amount of available sample domain knowl-
edge to guide the ML process. Having a good understanding
and proper selection of genomic features is important for these
kinds of tasks. Feature engineering or combining different fea-
tures also needs to be considered. Appropriate pre-processing,
data-cleaning, and careful selection of labeled data are impor-
tant for building models with high accuracy. In the case of col-
lecting genomic features, selection of a proper window size
from which the features are collected is also important and ben-
efits from the consideration of prior knowledge.

Since epigenetic data are expensive to acquire, alternative
methods, such as prediction of potential epigenetic sites from
DNA sequence, can act as a guide for future experimental epi-
genetic research or as a substitute for the data. The same is true
for any genomic research. Mining of epigenetic profiles starts
with extraction of interesting properties from DNA sequence
data near base regions (location of epigenetic changes in the
genome). After retrieving the training set, these locations are
often annotated to find the name and orientation of the gene.
FASTA files are created from up to 100 kb upstream and down-
stream of the target genes. After construction of FASTA files
for extraction of genomic features, tools such as RepeatMasker4

are used to find SINE, LINE, ERVL, ERV, and other repeat ele-
ments to the upstream and downstream of the base locations.
One of the common ways of extracting genomic features from
sequences is through identification of repeat elements. Identify-
ing repeat elements and consensus sites helps us detect interest-
ing patterns from these sites. Other genomic features are GC
content and CpG sites. Tools such as CpGislandSearcher4 can
be used to find CpG islands in these regions. CpG islands work
as catalysts as they overlap with promoter, enhancer, and other
regulatory regions. Since over-representation of CpG islands
can be due evolutionarily to reduced amount of DNA methyla-
tion, which then leads to less CpG to TpG mutation, lack of
CpG islands can be a predictor of DNA methylation. In the
previous study (shown in Fig. 2), one of the primary features
was a low CpG density at epigenetic sites (Fig. 3). These are
termed CpG deserts62 and will be a critical feature to consider.

Another important class of genomic feature is the DNA
sequence motif.63,64 Common patterns among biologically rele-
vant sites can be identified using motif finding tools. Motifs are
short sequences that have biologically significant predicted
roles. Motifs are identified with a probability matrix for each
base position such that a certain combination of those sequen-
ces matches with every sub-sequence. Some motifs are also
found to be unique to DNA methylation sites. Discovery tools
like Oligo,65 LocalMotif,66,67 Prospector,68 and glam2,69 among
other pattern discovery algorithms, have been used to find
novel motifs, which are the best predictors of new DMR sites.
These motifs are usually constructed by running these epige-
netic sites from related experiments through some of the popu-
lar motif finding tools. For the murine imprinted gene project,
the authors initially looked at 4 million genomic features,

searching within a certain genomic distance. Most of these fea-
tures were constructed by combining all combinations of fea-
tures, ranking them based on which are more relevant, and
then picking only the most relevant ones for final analysis.70,71

The above-mentioned DNA sequence characteristics (e.g.,
motifs, CpG islands), and many other features and techniques
need to be used in the prediction of novel epigenetic sites. The
amount of genomic features can be enormous, and finding rele-
vant genomic features that help identify epigenetic sites is still a
big challenge. Future research will need to develop more effi-
cient and novel ML tools that combine computational
approaches, including DL (for feature generation), ACL (to
select the optimal feature set), and ICL (to improve accuracy
when classes are imbalanced). Novel DL approaches tailored to
predicting epigenetics alterations (or epimutations) are also
promising, such as multi-dimensional convolution layers that
are able to capture complex properties of the genome (e.g.,
CpG density) from the original sequence without formally
defining such features. Although the current development and
validation will involve epigenetics and genome-wide prediction
of epimutations, these novel ML tools can be applied to other
biological and non-biological data sets.

A previous study applied promoter DMR training sets in a
preliminary ML approach on the rat genome and predicted
40,000 potential DMR sites genome-wide.4 Future research will
need to advance the ML tool by using unbiased genome-wide
data and advanced feature generation and selection. The pre-
liminary rat ML tool was also applied to the human genome in
a preliminary study and identified 20,000 potential human
DMR sites susceptible to environmental reprogramming.

Figure 3. CpG density plot showing number of predicted DMR sites correlated
with CpG density. (a) CpG density from the potential predicted germ cell DMR sites
(3,234) when sperm is used as the training set to predict genome-wide. (b) CpG
density from potential predicted somatic cell DMR sites (1,502) when somatic cell
is used as training set to predict genome-wide CpGs. X-axis shows the number of
CpGs per 100 bases on average, while Y-axis shows the number of sites. Modified
from.4
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Therefore, the previous studies support the need to develop
more advanced ML tools for genomic and biological data.

Medical applications

Applications of machine learning and epigenetics to
medicine

Machine learning was first applied to medicine with the use of
electronic health records. An example is a comparison of
approaches for heart failure cases.72 Recently, ML has been
applied to pharmacology for improved therapy and pharma-
ceutical treatment design.73,74 Applications of ML in cardiovas-
cular risk prediction,75 radiation oncology,76 and metabolic
disease37 have been reported. ML has also been applied to clini-
cal vision science77 and psychiatry.78 The application of ML to
large molecular and clinical data sets will be critical in the
future and have significant applications in medicine.79 The
applications of machine learning and molecular epigenetics to
medicine are outlined in Table 3.

One of the first applications of epigenomics in medicine will
be the development of molecular diagnostics for specific dis-
eases or physiologic abnormalities. A number of disease condi-
tions have been shown to be associated with epigenome
modifications.1 Specific epimutations have been identified and
correlated with specific physiologic abnormalities, such as in
cancer, neurodegenerative disorders, fertility,80 obesity,81 ovar-
ian disease,82 and gonadal function.83 Epigenetic programming
and heterogeneity may play a role in standard therapies not
being useful for many of these diseases. A combination of
genetic and epigenetic approaches and diagnostic development
is required for proper personalized medicine treatments. With
the availability of massive amounts and novel types of data,
there is more need to apply ML-based computational
approaches to mine this data to extract meaningful insights.
Using a trial-and-error approach to compare different classi-
fiers and ML approaches is not very useful. To improve perfor-
mance, there is a significant need for additional theoretical,
experimental, and practical knowledge about ML techniques
and specific research domain.

To realize the goal of personalized medicine, epigenetic
modifications need to be identified. The prediction of genomic
sites that are susceptible to epigenetic alterations will dramati-
cally increase the potential to develop efficient molecular diag-
nostics for specific medical conditions. The application of ML
to identify susceptible epimutation sites in the genome has
been reported.4 Therefore, ML will not simply be used in medi-
cal records or population based epidemiology, but in the actual
identification of molecular information to assist in the diagnos-
tics and treatment of disease. We propose that the combination
of Active Learning, Imbalanced Class Learning, and Deep

Learning represents a promising and demonstrably successful
direction toward realizing this goal.
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