
1 

Integrating Learning and Search for 
Structured Prediction 

Alan Fern 

 Oregon State University 

Liang Huang  

Oregon State University 

Jana Doppa 

Washington State University 

Tutorial at International Joint Conference on Artificial Intelligence (IJCAI), 2016  



2 

Part 1: Introduction 
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Introduction 

Structured Prediction problems are very common 
  Natural language processing 
  Computer vision 
  Computational biology 
  Planning 
  Social networks 
  …. 
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Natural Language Processing 
Examples 
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NLP Examples: POS Tagging and Parsing  

POS Tagging 
 

 

 

Parsing 

 

 
 

𝑥𝑥 = “The cat ran”  𝑦𝑦 = <article> <noun> <verb> 

“Red figures on the screen 
indicated falling stocks”  

𝑥𝑥 𝑦𝑦 
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NLP Examples: Coreference and Translation 

Co-reference Resolution 

 

 

 

 

Machine Translation 

“Barack Obama nominated Hillary 
Clinton as his secretary of state on 
Monday. He chose her because she 
had foreign affair experience as a 
former First Lady.” 

“Barack Obama nominated Hillary 
Clinton as his secretary of state on 
Monday. He chose her because she 
had foreign affair experience as a 
former First Lady.” 

𝑥𝑥 𝑦𝑦 

𝑥𝑥 = “The man bit the dog”  𝑦𝑦 = 该男子咬狗 
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Examples of Bad Prediction 
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Computer Vision Examples 
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Scene Labeling  

Image Labeling 
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Biological Image Analysis 

Nematocyst Image Body parts of the nematocyst 
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The OSU Digital Scout Project  
Objective: compute semantic interpretations of football video 

Raw video  
High-level interpretation of play 

 Help automate tedious video annotation done by pro/college/HS teams 
Working with hudl (hudl.com) 

 Requires advancing state-of-the-art in computer vision, including: 
 registration, multi-object tracking, event/activity recognition 
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Multi-Object Tracking in Videos 

Video 

Player Trajectories 
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Automated Planning 
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Planning 

Initial State Goal State 

A planning problem gives: 
 an initial state 
 a goal condition 
 a list of actions and their semantics (e.g. STRIPS)  

Objective: find action sequence from initial state to goal 

? 

Available actions: 

    Pickup(x) 
    PutDown(x,y) 
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Common Theme 

POS tagging, Parsing, Co-reference resolution, 
detecting parts of biological objects  
 Inputs and outputs are highly structured 
 

Studied under a sub-field of machine learning called 
“Structured Prediction” 
Generalization of standard classification 
Exponential no. of classes (e.g., all POS tag sequences) 
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Classification to Structured Prediction  



Input 

X 

Y 

Output 

Learning a Classifier 

? 



X 

male 

Learning a Classifier 

? 

Example problem: 

 X  -  image of a face 

Y ∈ {male, female}  



X 

Y 

Learning a Classifier 

? 

Training Data 
{(x1,y1),(x2,y2),…,(xn,yn)} 

Example problem: 

 X  -  image of a face 

Y ∈ {male, female}  

Learning 
Algorithm 

(           , male) 



X 

Y 

Learning a Classifier 

Training Data 
{(x1,y1),(x2,y2),…,(xn,yn)} 

Example problem: 

 X  -  image of a face 

Y ∈ {male, female}  

Learning 
Algorithm F(X, 𝜃𝜃) 

𝜃𝜃 



X 

Y 

Learning for Simple Outputs 

Training Data 
{(x1,y1),(x2,y2),…,(xn,yn)} 

Example problem: 

 X  -  image of a face 

Y ∈ {male, female}  

Learning 
Algorithm F(X, 𝜃𝜃) 

𝜃𝜃 
feature vector 

class label 



X 

Y 

Learning for Simple Outputs 

Training Data 
{(x1,y1),(x2,y2),…,(xn,yn)} 

Example problem: 

 X  -  image of a face 

Y ∈ {male, female}  

Learning 
Algorithm F(X, 𝜃𝜃) 

𝜃𝜃 
feature vector 

class label Logistic Regression 
Support Vector Machines 
K Nearest Neighbor 
Decision Trees 
Neural Networks 
 



X 

Y 

Learning for Structured Outputs 

Training Data 
{(x1,y1),(x2,y2),…,(xn,yn)} 

Learning 
Algorithm F(X, 𝜃𝜃) 

𝜃𝜃 

Part-of-Speech Tagging 

“The cat ran”  

<article> <noun> <verb> 

English Sentence: 

Part-of-Speech Sequence: 

𝒀𝒀 = set of all possible POS tag sequences 

Exponential !! 



X 

Y 

Learning for Structured Outputs 

Training Data 
{(x1,y1),(x2,y2),…,(xn,yn)} 

Learning 
Algorithm F(X, 𝜃𝜃) 

𝜃𝜃 

Co-reference Resolution 

“Barack Obama nominated Hillary 
Clinton as his secretary of state on 
Monday. He chose her because she 
had foreign affair experience as a 
former First Lady.” 

Text with input mentions: 

Co-reference Output: 

𝒀𝒀 = set of all possible clusterings 

Exponential !! 

“Barack Obama nominated Hillary 
Clinton as his secretary of state on 
Monday. He chose her because she 
had foreign affair experience as a 
former First Lady.” 



X 

Y 

Learning for Structured Outputs 

Training Data 
{(x1,y1),(x2,y2),…,(xn,yn)} 

Learning 
Algorithm F(X, 𝜃𝜃) 

𝜃𝜃 

Handwriting Recognition 

𝒀𝒀 = set of all possible letter sequences 

Exponential !! 

Letter Sequence: 
S t r u c t u r e d 

Handwritten Word: 



X 

Y 

Learning for Structured Outputs 

Training Data 
{(x1,y1),(x2,y2),…,(xn,yn)} 

Learning 
Algorithm F(X, 𝜃𝜃) 

𝜃𝜃 

𝒀𝒀 = set of all possible labelings 

Exponential !! 

Image Labeling 
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Part 2: Cost Function Learning Framework 
and Argmin Inference Challenge 
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Cost Function Learning Approaches: 
Inspiration 

Generalization of traditional ML approaches to structured 
outputs 

 
  SVMs  ⇒  Structured SVM  [Tsochantaridis et al., 2004] 

 

  Logistic Regression ⇒  Conditional Random Fields [Lafferty et al., 2001] 
 

  Perceptron  ⇒  Structured Perceptron  [Collins 2002] 
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Cost Function Learning: Approaches 

Most algorithms learn parameters of linear models 
𝜙𝜙 𝑥𝑥,𝑦𝑦   is  n-dim feature vector over input-output pairs 
w  is n-dim parameter vector 

                    F(x) = 𝐚𝐚𝐚𝐚𝐚𝐚 𝒎𝒎𝒎𝒎𝒎𝒎
 𝒚𝒚∈𝒀𝒀

 𝒘𝒘 ⋅ 𝝓𝝓(𝒙𝒙,𝒚𝒚)  
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Cost Function Learning: Approaches 

Most algorithms learn parameters of linear models 
𝜙𝜙 𝑥𝑥,𝑦𝑦   is  n-dim feature vector over input-output pairs 
w  is n-dim parameter vector 

                    F(x) = 𝐚𝐚𝐚𝐚𝐚𝐚 𝒎𝒎𝒎𝒎𝒎𝒎
 𝒚𝒚∈𝒀𝒀

 𝒘𝒘 ⋅ 𝝓𝝓(𝒙𝒙,𝒚𝒚)  

 
Example: Part-of-Speech Tagging 

x = “The cat ran”  y = <article> <noun> <verb> 

𝜙𝜙(𝑥𝑥,𝑦𝑦) may have unary and pairwise features 

     unary feature:  e.g. # of times ‘the’ is paired with <article> 

     pairwise feature: e.g. # of times <article> followed by <verb> 
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Key challenge: “Argmin” Inference 

 F(x) = 𝐚𝐚𝐚𝐚𝐚𝐚 𝒎𝒎𝒎𝒎𝒎𝒎
 𝒚𝒚∈𝒀𝒀

 𝒘𝒘 ⋅ 𝝓𝝓(𝒙𝒙,𝒚𝒚)  

Exponential 
size of output 

space !! 
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Key challenge: “Argmin” Inference 

 
 

Time complexity of inference depends on the 
dependency structure of features 𝜙𝜙(𝑥𝑥,𝑦𝑦)  

 

 

 F(x) = 𝐚𝐚𝐚𝐚𝐚𝐚 𝒎𝒎𝒎𝒎𝒎𝒎
 𝒚𝒚∈𝒀𝒀

 𝒘𝒘 ⋅ 𝝓𝝓(𝒙𝒙,𝒚𝒚)   
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Key challenge: “Argmin” Inference 

 
 

Time complexity of inference depends on the 
dependency structure of features 𝜙𝜙(𝑥𝑥,𝑦𝑦)  
  NP-Hard in general  
  Efficient inference algorithms exist only for simple features 

 

 

 F(x) = 𝐚𝐚𝐚𝐚𝐚𝐚 𝒎𝒎𝒎𝒎𝒎𝒎
 𝒚𝒚∈𝒀𝒀

 𝒘𝒘 ⋅ 𝝓𝝓(𝒙𝒙,𝒚𝒚)   
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Cost Function Learning: Key Elements 

 Joint Feature Function 
  How to encode a structured input (x) and structured output 

(y) as a fixed set of features 𝜙𝜙(𝑥𝑥,𝑦𝑦)? 

 (Loss Augmented) Argmin Inference Solver 
   
  Viterbi algorithm for sequence labeling 
  CKY algorithm for parsing 
  (Loopy) Belief propagation for Markov Random Fields 
  Sorting for ranking  

Optimization algorithm for learning weights 
  (sub) gradient descent, cutting plane algorithm … 

 

 F(x) = 𝐚𝐚𝐚𝐚𝐚𝐚 𝒎𝒎𝒎𝒎𝒎𝒎
 𝒚𝒚∈𝒀𝒀

 𝒘𝒘 ⋅ 𝝓𝝓(𝒙𝒙,𝒚𝒚)  
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Cost Function Learning: Generic Template 

repeat  
For every training example (𝑥𝑥,𝑦𝑦) 
Inference: 𝑦𝑦� = arg𝑚𝑚𝑖𝑖𝑖𝑖𝑦𝑦∈𝑌𝑌 𝑤𝑤 ∙ 𝜑𝜑 𝑥𝑥, 𝑦𝑦  
If mistake 𝑦𝑦 ≠ 𝑦𝑦�,    
    Learning: online or batch weight update 

until convergence or max. iterations 
 

Training goal: 
Find weights 𝑤𝑤 s.t 
For each input 𝑥𝑥, the cost of the correct structured output 
𝑦𝑦 is lower than all wrong structured outputs  

Exponential 
size of output 

space !! 
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Expensive Training Process 

Main Reason 
  repeated calls to “Argmin inference solver” (computationally 

expensive) on all the training examples 
 

Recent Solutions 
Amortized Inference:  Kai-Wei Chang, Shyam Upadhyay, Gourab 

Kundu, Dan Roth: Structural Learning with Amortized Inference. AAAI 2015 

Decomposed Learning: Rajhans Samdani, Dan Roth: Efficient 
Decomposed Learning for Structured Prediction. ICML 2012 
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Cost Function Learning:  
“Exact” vs. “Approximate” Inference Solver 
Most theory works for “Exact” Inference 

Theory breaks with “Approximate” Inference 
 Alex Kulesza, Fernando Pereira: Structured Learning with Approximate 

Inference. NIPS 2007 
 Thomas Finley, Thorsten Joachims: Training structural SVMs when exact 

inference is intractable. ICML 2008: 304-311 

Active Research Topic: Interplay between (approximate) 
inference and learning 
 Veselin Stoyanov, Alexander Ropson, Jason Eisner: Empirical Risk 

Minimization of Graphical Model Parameters Given Approximate Inference, 
Decoding, and Model Structure. AISTATS 2011  

 Justin Domke: Structured Learning via Logistic Regression. NIPS 2013 
 … 
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Focus of Tutorial 

 Integrating “Learning” and “Search” two fundamental 
branches of AI to solve structured prediction problems 

 

Key Idea: 
  Accept that “exact” Argmin inference is intractable 
  Select a computationally bounded search architecture for 

making predictions 
  Optimize the parameters of that procedure to produce 

accurate outputs using training data 
  Learning “with Inference” vs. Learning “for Inference” 
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Part 3: A Brief Overview of Search Concepts 
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Combinatorial Search: Key Concepts 

Search Space 
Where to start the search? 
How to navigate the space? 

 

Search Procedure / Strategy 
  How to conduct search? 

 

Search Control Knowledge 
  How to guide the search? (Intelligence)  

 



41 

Search Space Definition 

 Initial State Function: 𝑰𝑰 
Where to start the search?  

 

Successor State Function: 𝑺𝑺 
What are the successor (next) states for a given state? 
Generally, specified as a set of actions that modify the given 

state to compute the successor states 
 

Terminal State Function: 𝑻𝑻 
  When to stop the search? 
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(Ordered) Search Space: Example 
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Search Procedure 

Search Tree (or Graph): Instantiation of the search 
space. How to navigate? 

Uninformed (Blind) Search Procedure 
  Breadth-First Search (BFS) 
  Depth-First Search (DFS) 

 Informed (Intelligent) Search Procedure 
  Greedy Search 
  Beam Search 
  Best-First Search 
  … 
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Informed Search Procedures 

Maintain an internal memory of a set of open nodes (𝑀𝑀) 

 Intelligent search guided by the control knowledge 

Algorithmic Framework for Best-First Search style search 
strategies: 
  Selection: score each open node in the memory 𝑀𝑀 and select 

a subset of node(s) to expand 
  Expansion: expand each selected state using the successor 

function to generate the candidate set 
  Pruning: Retains a subset of all open nodes (update 𝑀𝑀) and 

prune away all the remaining nodes 
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Best-First Search Style Algorithms 

Best-first Search (𝑀𝑀 = ∞) 
  selects the best open node 
  no pruning 
 

Greedy Search (𝑀𝑀 = 1) 
  selection is trivial 
  prunes everything except for the best open node in the 

candidate set 
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Best-First Search Style Algorithms 

Best-first Beam Search (𝑀𝑀 = 𝐵𝐵) 
  selects the best open node 
  prunes everything except for the best 𝐵𝐵 open nodes in the 

candidate set 
 

Breadth-First Beam Search (𝑀𝑀 = 𝐵𝐵) 
  selection is trivial – all B nodes 
  prunes everything except for the best 𝐵𝐵 open nodes in the 

candidate set 
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Search Control Knowledge 

Greedy Policies 
  Classifier that selects the best action at each state 

Heuristic Functions 
  computes the score for each search node 
  heuristic scores are used to perform selection and pruning 

Pruning Rules 
  additional control knowledge to prune bad actions / states 

 

Cost Function 
Scoring function to evaluate the terminal states 
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Part 4: Control Knowledge Learning 
Framework: Greedy Methods 
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Greedy Control Knowledge Learning 

Given 
  Search space definition (ordered or unordered) 
  Training examples (input-output pairs)  

Learning Goal 
  Learn a policy or classifier to make good predictions 

 

Key Idea: 
  Training examples can be seen as expert demonstrations 
  Equivalent to “Imitation Learning” or “Learning from 

Demonstration” 
  Reduction to classifier or rank learning 
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Ordered vs. Unordered Search Space 

Ordered Search Space 
  Fixed ordering of decisions (e.g., left-to-right in sequences) 
  Classifier based structured prediction 

 

Unordered Search Space 
  Learner dynamically orders the decisions 
  Easy-First approach 
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Classifier-based Structured Prediction 
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Classifier-based Structured Prediction 

Reduction to classifier learning 
26 classes 

 

 IL Algorithms 
  Exact-Imitation   
  SEARN 
  DAgger 
  AggreVaTe 
  LOLS 
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Aside: Reductions in Machine Learning 

Reduce complex problem to simpler problem(s) 

A better algorithm for simpler problem means a better 
algorithm for complex problem 

Composability, modularity, ease-of-implementation 

Hard Machine 
Learning Problem  

Easy Machine 
Learning Problem  Reduction 

Performance 𝜖𝜖 Performance f(𝜖𝜖) 



54 

Imitation Learning Approach 

Expert demonstrations 
each training example (input-output pair) can be seen as a 

“expert” demonstration for sequential decision-making 

Collect classification examples 
Generate a multi-class classification example for each of the 

decisions 
 Input: f(n), features of the state n 
Output: yn, the correct decision at state n 

Classifier Learning 
Learn a classifier from all the classification examples 
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Exact Imitation: Classification examples 

, - - - - - - 𝑓𝑓                                             𝑠𝑠                            

𝑓𝑓                                              𝑡𝑡                            

𝑓𝑓                                              𝑟𝑟                            

𝑓𝑓                                              𝑢𝑢                            

𝑓𝑓                                              𝑐𝑐                            

𝑓𝑓                                              𝑡𝑡                            

, s - - - - - 

, s t - - - - 

, s t r - - - 

, s t r u - - 

, s t r u c - 

Input Output 
For each training example  
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Exact Imitation: Classifier Learning 

, - - - - - - 𝑓𝑓                                            𝑠𝑠                            

𝑓𝑓                                            𝑡𝑡                            

𝑓𝑓                                            𝑟𝑟                            

𝑓𝑓                                           𝑢𝑢                            

𝑓𝑓                                           𝑐𝑐                            

𝑓𝑓                                           𝑡𝑡                            

, s - - - - - 

, s t - - - - 

, s t r - - - 

, s t r u - - 

, s t r u c - 

Input Output 

… 

𝒉𝒉 

Recurrent classifier  

or 

Learned policy 

Classification 
Learner 
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Learned Recurrent Classifier: Illustration 

Error propagation: 
errors in early decisions propagate to down-stream decisions  
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Recurrent Error 

Can lead to poor global performance 

Early mistakes propagate to downstream decisions: 
f 𝜖𝜖 = 𝑂𝑂 𝜖𝜖𝑇𝑇2 , where 𝜖𝜖 is the probability of error at 
each decision and T is the number of decision steps 
[Kaariainen 2006] [Ross & Bagnell 2010] 

Mismatch between training (IID) and testing (non-IID) 
distribution 

 Is there a way to address error propagation? 
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Addressing Error Propagation 

• Rough Idea: Iteratively observe current policy and augment 
training data to better represent important states 

• Several variations on this idea [Fern et al., 2006], [Daume et al., 2009], 
 [Xu & Fern 2010], [Ross & Bagnell 2010], [Ross et al. 2011, 2014], [Chang et al., 2015] 

 

• Generate trajectories using 
current policy (or some variant) 

• Collect additional classification 
examples using optimal policy 
(via ground-truth output)  
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DAgger Algorithm [Ross et al., 2011] 

Collect initial training set 𝐷𝐷 of 𝑁𝑁 trajectories from 
reference policy 𝜋𝜋∗ 

Repeat until done 
𝜋𝜋 ← LearnClassifier(𝐷𝐷) 
Collect set of states S that occur along 𝑁𝑁 trajectories of 𝜋𝜋 
For each state 𝑠𝑠 ∈ 𝑆𝑆 

 𝐷𝐷 ← 𝐷𝐷 ∪ { 𝑠𝑠,𝜋𝜋∗ 𝑠𝑠 }    // add state labeled by expert or reference policy 

Return 𝜋𝜋  

Each iteration increases the amount of training data (data aggregation) 
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DAgger for Handwriting Recognition 

Source: [Ross et al., 2011]  
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Ordered vs. Unordered Search Space 

Ordered Search Space 
  Fixed ordering of decisions (e.g., left-to-right in sequences) 
  Classifier based structured prediction 

 

Unordered Search Space 
  Learner dynamically orders the decisions 
  Easy-First approach 
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Easy-First Approach for Structured 
Prediction 
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Easy-First Approach: Motivation 

Drawbacks of classifier-based structured prediction 
Need to define an ordering over the output variables (e.g., left-

to-right in sequence labeling) 
Which order is good? How do you find one? 
Some decisions are hard to make if you pre-define a fixed order 

over the output variables 

Easy-First Approach: Key Idea 
  Make easy decisions first to constrain the harder decisions 
  Learns to dynamically order the decisions 
  Analogous to constraint satisfaction algorithms 
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Example: Cross-Document Coreference 

One of the key suspected mafia bosses arrested yesterday had hanged himself. 

Police said Lo Presti has hanged himself. 

had hanged  

has hanged  

Easy 

One of the key suspected mafia bosses  

Lo Presti  

Hard 

Doc 1 

Doc 2 
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Example: Cross-Document Coreference 

One of the key suspected mafia bosses arrested yesterday had hanged himself. 

Police said Lo Presti has hanged himself. 

had hanged  

has hanged  

One of the key suspected mafia bosses  

Lo Presti  

• Once we decide that the two verbs are coreferent, the two noun 
mentions serve the same semantic role to the verb cluster 

• Strong evidence for coreference 

Doc 1 

Doc 2 
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Easy-First Approach: Overview 

Consider a set of inter-dependent decisions in a 
sequential manner 

 

At each step, make the easiest decision first  

 

This allows us to accumulate more information 
to help resolve more challenging decisions later  

 



68 

Applications of Easy-First 

Cross-document joint entity and event co-
reference 
Lee et. al. EMNLP-CoNLL ’12 

 

Within-document co-reference Resolution 
Stoyanov and Eisner, COLING’12 

 

Dependency parsing 
Goldberg and Elhadad, HLT-NAACL’ 10 
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Easy-First Approach: Key Elements 

• Search space 
– A state corresponds to a partial solution 

had hanged  

has hanged  

One of the key suspected mafia bosses  

Lo Presti  

Initial state: all mentions and verbs are in separate clusters 

The Police  
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Easy-First Approach: Key Elements 

• Search space 
– A state corresponds to a partial solution 
– In each state, we consider a set of fixed possible actions 

had hanged  

has hanged  

One of the key suspected mafia bosses  

Lo Presti  

Four possible merge actions 

The Police  
? ? ? 

? 



Easy-First Approach: Key Elements 

• Search space 
– A state corresponds to a partial solution 
– In each state, we consider a set of fixed possible actions 
– Each action is described by a feature vector 𝑥𝑥 ∈ 𝑅𝑅𝑑𝑑  

had hanged  

has hanged  

One of the key suspected mafia bosses  

Lo Presti  

Four possible merge actions 

The Police  

𝑥𝑥1 𝑥𝑥2 
𝑥𝑥3 

𝑥𝑥4 



Easy-First Approach: Key Elements 

• Search space 
– A state corresponds to a partial solution 
– In each state, we consider a set of fixed possible actions 
– Each action is described by a feature vector 𝑥𝑥 ∈ 𝑅𝑅𝑑𝑑  
– An action is defined to be good if it leads to an improved 

state 

had hanged  

has hanged  

One of the key suspected mafia bosses  

Lo Presti  The Police  

𝑥𝑥1 𝑥𝑥2 
𝑥𝑥3 

𝑥𝑥4 

𝑥𝑥2, 𝑥𝑥4 ∈ 𝐺𝐺 (good actions); 𝑥𝑥1, 𝑥𝑥3 ∈ 𝐵𝐵(bad actions) 



Easy-First Approach: Key Elements 

• Search space 
• Scoring function 𝑓𝑓:𝑅𝑅𝑑𝑑 → 𝑅𝑅  

– e.g., 𝑓𝑓 𝑥𝑥 = 𝑤𝑤 ⋅ 𝑥𝑥 
– In each state, evaluate all possible actions 

had hanged  

has hanged  

One of the key suspected mafia bosses  

Lo Presti  The Police  

𝑥𝑥1 𝑥𝑥2 
𝑥𝑥3 

𝑥𝑥4 

𝑓𝑓 𝑥𝑥1 = 0.05 𝑓𝑓 𝑥𝑥2 = 0.08 𝑓𝑓 𝑥𝑥3 = 0.057 𝑓𝑓 𝑥𝑥4 = 0.75 

73 



Easy-First Approach: Key Elements 

• Search space 
• Scoring function 𝑓𝑓:𝑅𝑅𝑑𝑑 → 𝑅𝑅  

– e.g., 𝑓𝑓 𝑥𝑥 = 𝑤𝑤 ⋅ 𝑥𝑥 
– In each state, evaluate all possible actions 
– Take the highest scoring action (easiest) 

had hanged  

has hanged  

One of the key suspected mafia bosses  

Lo Presti  The Police  

𝑥𝑥1 𝑥𝑥2 
𝑥𝑥3 

𝑥𝑥4 

𝑓𝑓 𝑥𝑥1 = 0.05 𝑓𝑓 𝑥𝑥2 = 0.08 𝑓𝑓 𝑥𝑥3 = 0.057 𝑓𝑓 𝑥𝑥4 = 0.75 

74 



75 

Scoring Function Learning 

Possible goal: learn a scoring function such that:  
in every state all good actions are ranked higher than 
all bad actions 

 

 A better goal:  learn a scoring function such that 
in every state a good action is ranked higher 
than all bad actions  
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Alternate Methods 

• In a training step, if the highest scoring action 
is bad, perform weight update 
 

• Different update approaches  
– Best (highest scoring) good vs. best (highest 

scoring) bad  
– Average good vs. average bad 

Issue: they do not directly optimize toward our goal! 
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Optimization Objective for Update 

+
∈ ∈
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for all 𝑏𝑏 ∈ 𝐵𝐵 
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• Goal: find a linear function such that it ranks 
one good action higher than all bad actions 
– This can be achieved by a set of constraints 

• Optimization Objective: 
• Use hinge loss to capture the constraints 
• Regularization to avoid overly aggressive update 

2
cww−+ λ
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Optimization: Majorization-Minimization 
[Xie et al., 2015] 

 :    It is non-convex 

       Can be solved using a Majorization-Minimization (MM) 
algorithm to get local optima solution 

 In each MM iteration: 
Let 𝑥𝑥𝑔𝑔∗  be the current highest scoring good action 
Solve following convex objective (via subgradient descent): 
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Contrast with Alternate Methods 
Good Bad 

 

Average-Good Average-Bad 

• Average-good vs. average-bad (AGAB) 

• Best-good vs. best-bad (BGBB) 

• Current method: Best-good vs. violated-bad (BGVB) 

Best-good Violated-bad 

Best-good Best-bad 

[Daume et al., 2005], [Xu et al., 2009] 

[Goldberg et al., 2010], [Stoyanov et al., 2012] 

[Xie et al., 2015] 
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Experiment I: Cross-document entity 
and event Coreference 
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Results on EECB corpus (Lee et al., 2012) 
BGBB R-BGBB BGVB R-BGVB Lee et al.

[Xie et al., 2015] 
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Experiment I: Within document 
Coreference 
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Results on OntoNotes 
BGBB R-BGBB BGVB R-BGVB

[Xie et al., 2015] 
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Easy-First Learning as Imitation Learning 

 Imitation learning with a non-deterministic oracle policy 
multiple good decisions (actions) at a state 

Ties are broken with the learned policy (scoring function) 

NLP researchers employ imitation learning ideas and call 
them “training with exploration” 
 Miguel Ballesteros, Yoav Goldberg, Chris Dyer, Noah A. Smith: Training with 

Exploration Improves a Greedy Stack-LSTM Parser. CoRR abs/1603.03793 
(2016) 

 Imitation learning ideas are also employed in training 
recurrent neural networks (RNNs) under the name 
“scheduled sampling” 
 Samy Bengio, Oriol Vinyals, Navdeep Jaitly, Noam Shazeer: Scheduled Sampling 

for Sequence Prediction with Recurrent Neural Networks. NIPS 2015 
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Part 5: Control Knowledge Learning: 
Beam Search Methods 
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Beam Search Framework 

Given 
  Search space definition (ordered or unordered) 
  Training examples (input-output pairs) 
  Beam width B (>1)  

Learning Goal 
  Learn a heuristic function to quickly guide the search to the 

correct “complete’’ output  

Key Idea: 
Structured prediction as a search problem in the space of 

partial outputs 
  Training examples define target paths from initial state to 

the goal state (correct structured output) 
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Beam Search Framework: Key Elements 
1) Search space; 2) Search procedure; 3) Heuristic function 

Represent heuristic function as a linear function 
 𝐻𝐻 𝑖𝑖 = 𝑤𝑤 ∙  𝜓𝜓(𝑖𝑖) , where 𝜓𝜓(𝑖𝑖) stands for features of node 𝑖𝑖 

Target node 

Non-Target node 
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Beam Search: Illustration 
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Beam Search: Illustration 
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Beam Search: Illustration 
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Beam Search: Illustration 

… 



90 

Beam Search: Illustration 

… 
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Beam Search Framework: Inference 

Input: learned weights 𝑤𝑤; beam width B; 
structured input 𝑥𝑥   

repeat  
 Perform search with heuristic 𝐻𝐻 𝑖𝑖 = 𝑤𝑤 ∙  𝜓𝜓(𝑖𝑖)  

until reaching a terminal state 

Output: the complete output y corresponding 
to the terminal state  
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Beam Search Framework: 
Generic Learning Template 

Three design choices 

 
 How to define the notion of “search error”?  

 
 How to “update the weights” of heuristic function 

when a search error is encountered? 
 
 How to “update the beam” after weight update? 
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Beam Search Framework: 
Learning Instantiations 

 Early update 

 

 Max-violation update 

 

Learning as Search Optimization (LaSO)  

 

[Collins and Roark, 2004] 

[Huang et al., 2012] 

[Daume et al., 2005], [Xu et al., 2009] 
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Beam Search Framework: 
Learning Instantiations 

 Early update 

 

 Max-violation update 

 

Learning as Search Optimization (LaSO)  
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Beam Search Framework: Early Update 

Search error: NO target node in the beam  
We cannot reach the goal node (correct structured output) 

 

Weight update: standard structured perceptron  
Score of correct output > score of bad output 

 

Beam update: reset beam with initial state OR 
discontinue search 
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Beam Search Framework: Early Update 

repeat  
For every training example (𝑥𝑥,𝑦𝑦) 

Perform search with current heuristic (weights)  
 If search error ,  update weights 
Reset beam with initial state  
 (Dis)continue search      

until convergence or max. iterations 
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Beam Search Framework: 
Learning Instantiations 

 Early update 

 

 Max-violation update 

 

Learning as Search Optimization (LaSO)  
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Beam Search Framework: 
Max-Violation Update 

Improves on the drawback of Early update 
Slow learning: learns from only earliest mistake  

Max-Violation fix 
Consider worst-mistake (maximum violation) instead 

of earliest-mistake for the weight update 
More useful training data 
Converges faster than early update 
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POS Tagging: Max-violation vs. Early 
vs. Standard 

Early and Max-violation >> Standard at small beams 
Advantage shrinks as beam size increases 
Max-violation converges faster than Early (and slightly 

better) 
 Beam =2 Best accuracy vs. beam size 

Source: Huang et al., 2012 
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Beam Search Framework: LaSO 

Search error: NO target node in the beam  
We cannot reach the goal node (correct structured output) 

Weight update: perceptron update  
𝑤𝑤𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑤𝑤𝑜𝑜𝑜𝑜𝑑𝑑 +  𝛼𝛼 ∙ (𝜓𝜓𝑎𝑎𝑎𝑎𝑔𝑔 𝑡𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡 − 𝜓𝜓𝑎𝑎𝑎𝑎𝑔𝑔(𝑖𝑖𝑛𝑛𝑖𝑖 − 𝑡𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡)) 
𝜓𝜓𝑎𝑎𝑎𝑎𝑔𝑔 𝑡𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡  = Average features of all target nodes in the 

candidate set 
𝜓𝜓𝑎𝑎𝑎𝑎𝑔𝑔 𝑖𝑖𝑛𝑛𝑖𝑖 − 𝑡𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡 = Average features of all non-target nodes 

in the candidate set 
 Intuition: increase the score of target nodes and decrease the 

score of the non-target nodes 

Beam update: reset beam with target nodes in 
the candidate set 
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LaSO Training: Illustration 














−

∩
×+= ∑∑

∈∩∈

B
vF

CP

vF
ww

ji

CP ji Bv

,

v
*

)()(
,

*

α














−

∩
×+= ∑∑

∈∩∈

B
vF

CP

vF
ww

ji

CP ji Bv

,

v
*

)()(
,

*

α

… 

… 

An error occurs 

An error occurs 

Basic Idea: repeatedly conduct search on training examples 
update weights when error occurs   

solution node 
non-solution node 
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Beam Search Framework: LaSO 

repeat  
For every training example (𝑥𝑥,𝑦𝑦) 

Perform search with current heuristic (weights)  
 If search error ,  update weights 
Reset beam with target nodes in the candidate set 
Continue search      

until convergence or max. iterations 
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LaSO Convergence Results 

Under certain assumptions, LaSO-BR converges to a 
weight vector that solves all training examples in a finite 
number of iterations 

 

 Interesting convergence result  
Mistake bound depends on the beam width 
Formalizes the intuition that learning becomes easier as we 

increase the beam width (increase the amount of search) 
First formal result of this kind 



104 

LaSO: Example Planning Results 
 Blocksworld 
 30 testing problems 
 Trained with beam width 10  
 Features: RPL heuristic and features induced in prior work 
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Source: Xu et al., 2009 
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Part 6: HC-Search: A Unifying 
Framework for Cost Function and 

Control Knowledge Learning 
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   Outline of HC-Search Framework 
Introduction 
Unifying view and high-level overview  

Learning Algorithms 
 Heuristic learning 
 Cost function learning 

Search Space Design  

Experiments and Results 

Engineering Methodology for applying HC-Search 

Relation to Alternate Methods 

 



107 

   Outline of HC-Search Framework 
Introduction 
Unifying view and high-level overview  

Learning Algorithms 
 Heuristic learning 
 Cost function learning 

Search Space Design  

Experiments and Results 

Engineering Methodology for applying HC-Search 

Relation to Alternate Methods 
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HC-Search: A Unifying View 

Cost Function Learning Approaches 
  Don’t learn search control knowledge 

Control Knowledge Learning Approaches 
Don’t learn cost functions  

HC-Search Learning Framework 
  Unifies the above two frameworks and has many advantages 
  Without H, degenerates to cost function learning 
  Without C, degenerates to control knowledge learning 
  Supports learning to improve both speed and accuracy of 

structured prediction 
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HC-Search framework: Inspiration 

HC-Search Framework 

Traditional AI Search for combinatorial optimization 
+ 

Learning 
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HC-Search Framework: Overview 

Key Idea: 
Generate high-quality candidate outputs by conducting a 

time-bounded search guided by a learned heuristic H 
Score the candidate outputs using a learned cost function C 

to select the least cost output as prediction 
 

Heuristic Learning 
  can be done in primitive space (e.g., IJCAI’16 paper on 

incremental parsing) 
  OR complete output space 
 

 
 

IJCAI’16 paper on computing M-Best Modes via Heuristic Search   
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HC-Search framework: Overview 

 

 Key Ingredients:  
Define a search space over structured outputs 

 
Learn a cost function 𝑪𝑪 to score potential outputs 

 
Use a search algorithm to find low cost outputs 

 
Learn a heuristic function 𝑯𝑯 to make search efficient 

Our approach: 

o Structured Prediction as a search process in the 
combinatorial space of outputs 
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HC-Search Illustration: Search Space  
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HC-Search Illustration: Cost Function 
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HC-Search Illustration: Making Predictions  

Assume we have a  
good cost function. 

How to make predictions? 
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HC-Search Illustration: Greedy Search 

, praual root node 
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HC-Search Illustration: Greedy Search 
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HC-Search Illustration: Greedy Search 
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HC-Search Illustration: Greedy Search 
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HC-Search Illustration: Greedy Search 
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HC-Search Illustration: Greedy Search 
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HC-Search Illustration: Greedy Search 
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HC-Search Illustration: Greedy Search 
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HC-Search Illustration: Greedy Search 
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HC-Search Illustration: Greedy Search 
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HC-Search Illustration: Greedy Search 
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HC-Search Illustration: Greedy Search 
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HC-Search Illustration: Greedy Search 
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HC-Search Illustration: Greedy Search 
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HC-Search Illustration: Greedy Search 
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HC-Search: Properties 

Anytime predictions 
Stop the search at any point and return the best cost output 

Minimal restrictions on the complexity of heuristic and 
cost functions 
Only needs to be evaluated on complete input-output pairs 
Can use higher-order features with negligible overhead 

Can optimize non-decomposable loss functions 
  e.g., F1 score 

Error Analysis: Heuristic error + Cost function error 
  engineering methodology guided by the error decomposition 
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HC-Search: Key Learning Challenges 
 

Search Space Design:  
How can we automatically define high-quality search 

spaces ?  

Heuristic Learning: 
How can we learn a heuristic function to guide the 

search to generate high-quality outputs ? 

Cost Function Learning: 
How can we learn a cost function to score the 

outputs generated by the heuristic function ? 
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HC-Search: Loss Decomposition 
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HC-Search: Loss Decomposition 
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HC-Search: Loss Decomposition 
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HC-Search: Loss Decomposition 

Overall loss 𝝐𝝐 = 0.22 

Generation loss 𝝐𝝐𝑯𝑯 = 0.09 

(Heuristic function) 

Selection loss 𝝐𝝐𝑪𝑪 = 0.22 – 0.09 

(Cost function) 
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HC-Search: Loss Decomposition  

𝝐𝝐 =  𝝐𝝐𝑯𝑯 +  𝝐𝝐𝑪𝑪|𝑯𝑯 
 
  

 Overall 
expected loss 

 
  

 

Generation loss 
(Heuristic function) 

 

 
  

 

Selection loss 
(Cost function) 

 

 
  

 

𝑪𝑪 𝒙𝒙,𝒚𝒚 = 𝒘𝒘𝒄𝒄 ⋅ 𝝓𝝓𝑯𝑯 𝒙𝒙,𝒚𝒚            
𝑯𝑯 𝒙𝒙,𝒚𝒚 = 𝒘𝒘𝑯𝑯 ⋅ 𝝓𝝓𝑪𝑪 𝒙𝒙,𝒚𝒚  
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HC-Search: Learning 

𝝐𝝐 =  𝝐𝝐𝑯𝑯 +  𝝐𝝐𝑪𝑪|𝑯𝑯 
 
  

 Overall loss 

 
  

 

Generation loss 
(Heuristic function) 

 
  

 

Selection loss 
(Cost function) 

 
  

 

Key idea: Greedy stage-wise minimization guided by 
the loss decomposition 
 

 
  

 

Doppa, J.R., Fern, A., Tadepalli, P. HC-Search: A Learning Framework for Search-based Structured Prediction. 
Journal of Artificial Intelligence Research (JAIR) 2014.  
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HC-Search: Learning 

𝝐𝝐 =  𝝐𝝐𝑯𝑯 +  𝝐𝝐𝑪𝑪|𝑯𝑯 
 
  

 Overall loss 

 
  

 

Generation loss 
(Heuristic function) 

 
  

 

Selection loss 
(Cost function) 

 
  

 

Key idea: Greedy stage-wise minimization guided by 
the loss decomposition 
Step 1:    𝐻𝐻� = arg𝑚𝑚𝑖𝑖𝑖𝑖𝐻𝐻∈𝑯𝑯  𝜖𝜖𝐻𝐻  (heuristic training) 
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HC-Search: Learning 

𝝐𝝐 =  𝝐𝝐𝑯𝑯 +  𝝐𝝐𝑪𝑪|𝑯𝑯 
 
  

 Overall loss 

 
  

 

Generation loss 
(Heuristic function) 

 
  

 

Selection loss 
(Cost function) 

 
  

 

Key idea: Greedy stage-wise minimization guided by 
the loss decomposition 
Step 1:    𝐻𝐻� = arg𝑚𝑚𝑖𝑖𝑖𝑖𝐻𝐻∈𝑯𝑯  𝜖𝜖𝐻𝐻  (heuristic training) 
Step 2:    �̂�𝐶 = arg𝑚𝑚𝑖𝑖𝑖𝑖𝐶𝐶∈𝑪𝑪  𝜖𝜖𝐶𝐶|𝐻𝐻�    (cost function training) 
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   HC-Search: Heuristic learning 

Learning Objective: 
Guide the search quickly towards high-quality (low loss) 

outputs 
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HC-Search: Heuristic Learning 

Key idea: Imitation of true loss function   
Conduct searches on training example using the true loss 

function as a heuristic 
   (generally is a good way to produce good outputs) 
 
Learn a heuristic function that tries to imitate the observed 

search behavior 
 

 

 

• Given a search procedure (e.g., greedy search)  
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Greedy Search: Imitation with true loss 
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Greedy Search: Imitation with true loss 
, praual 

, araual , strual , ptrual , practi 

… … … 

, struct , struat 

… 

root node 

5 

5 2 3 6 

1 0 

True loss 

  Generation loss 𝜖𝜖𝐻𝐻∗= 0 
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Greedy Search: Ranking examples 
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Greedy Search: Ranking examples 
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Greedy Search: Ranking examples 
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HC-Search: Heuristic Function Learning 

Rank Learner 

Heuristic function 𝑯𝑯�  

Ranking examples 

Can prove generalization bounds on learned heuristic  
                                                              [Doppa et al., 2012] 
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HC-Search: Learning 

𝝐𝝐 =  𝝐𝝐𝑯𝑯 +  𝝐𝝐𝑪𝑪|𝑯𝑯 
 
  

 Overall loss 

 
  

 

Generation loss 
(Heuristic function) 

 
  

 

Selection loss 
(Cost function) 

 
  

 

Key idea: Greedy stage-wise minimization guided by 
the loss decomposition 
Step 1:    𝐻𝐻� = arg𝑚𝑚𝑖𝑖𝑖𝑖𝐻𝐻∈𝑯𝑯  𝜖𝜖𝐻𝐻  (heuristic training) 
Step 2:    �̂�𝐶 = arg𝑚𝑚𝑖𝑖𝑖𝑖𝐶𝐶∈𝑪𝑪  𝜖𝜖𝐶𝐶|𝐻𝐻�    (cost function training) 
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HC-Search: Cost Function Learning 

Learning Objective: 
Correctly score the outputs generated by the heuristic as per 

their losses 
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HC-Search: Cost function Learning 

Set of all outputs generated by the heuristic 𝑯𝑯�  
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HC-Search: Cost function Learning 

Key Idea: Learn to rank the outputs generated by the 
learned heuristic function 𝐻𝐻� as per their losses 
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0.5 

Best loss output 
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HC-Search: Cost function Learning 

Create a ranking example between every pair of 
outputs  (𝑦𝑦𝑏𝑏𝑛𝑛𝑏𝑏𝑏𝑏 , 𝑦𝑦) such that: 𝐶𝐶 𝑥𝑥, 𝑦𝑦𝑏𝑏𝑛𝑛𝑏𝑏𝑏𝑏 < 𝐶𝐶(𝑥𝑥, 𝑦𝑦)  

 
  

 

Learning to Rank: 

 
  

 < 
… 

… 

… 

… 

Best loss outputs 

Non-best loss outputs 
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HC-Search: Cost function Learning 

Rank Learner 

Cost function 𝑪𝑪� 

Ranking examples 

< 

< 
… 

… 

< 

< 

Can borrow generalization bounds from rank-learning literature 
[Agarwal and Roth, 2005 & Agarwal and Niyogi, 2009] 
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   HC-Search: Search Space Design 
Objective: 
High-quality outputs can be located at small depth 

 
 

 
 

Target depth = 5 
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   HC-Search: Search Space Design 

Objective: 
High-quality outputs can be located at small depth 

 

Solution #1:  
Flipbit Search Space [JMLR, 2014] 

Solution #2:  
Limited Discrepancy Search (LDS) Space [JMLR, 2014] 

Defined in terms of a greedy predictor or policy 

Solution #3:  
Segmentation Search Space for computer vision tasks [CVPR, 2015] 
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Flip-bit Search Space 

, praual 

… … … 

, araual , sraual , prauat , prauaz 

, sraucl , staual 

, strucl , stauce 

… … 

… 

, stauaz , staucl 

… 

… … 

… 

, pragat 

… 

, praglt 

… 

… 

… 

root node Output of recurrent 
classifier 
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Limited Discrepancy Search: Idea 
Limited Discrepancy Search [Harvey and Ginsberg, 1995] 

  Key idea: correct the response of recurrent classifier at a small no. 
of critical errors to produce high-quality outputs 
 

 

 

• See IJCAI’16 paper on LDS for AND/OR 
search w/ applications to optimization tasks 
in graphical models   
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Limited Discrepancy Search: Illustration 
Limited Discrepancy Search [Harvey and Ginsberg, 1995] 

  Key idea: correct the response of recurrent classifier at a small no. 
of critical errors to produce high-quality outputs 
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Limited Discrepancy Search: Illustration 
Limited Discrepancy Search [Harvey and Ginsberg, 1995] 

  Key idea: correct the response of recurrent classifier at a small no. 
of critical errors to produce high-quality outputs 
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LDS Space: Illustration 

{ } 
, praual 

{(1,a)} 
, araual 

{(1,s)} 
, strual 

{(2,t)} 
, ptrual 

{(4,c)} 
, practi 

… … … 

{(1,s),(5,c)} 
, struct 

{(1,s),(6,t)} 
, struat 

{(2,t),(1,s)} 
, strual 

… … … … 

{(1,s),(6,t),(5,c)} 
, struct 

… … 

{(2,t),(1,s),(3,i)} 
, sticky 

root node 
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Quality of LDS Space 

Expected target depth  

𝑦𝑦∗ 

𝜖𝜖 𝑇𝑇 

I.I.D error 
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Quality of LDS Space 

Expected target depth  

𝑦𝑦∗ 

𝜖𝜖 𝑇𝑇 

I.I.D error 

o We can learn a classifier to optimize the I.I.D error 𝜖𝜖 

 
Doppa, J.R., Fern, A., Tadepalli, P. Structured Prediction via Output Space Search. 
Journal of Machine Learning Research (JMLR), vol 15, 2014.  
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Quality of LDS Space 

Expected target depth  

𝑦𝑦∗ 

𝜖𝜖 𝑇𝑇 

I.I.D error 

o We can learn a classifier to optimize the I.I.D error 𝜖𝜖 

o  Important contribution that helped HC-Search achieve 
state-of-the-art results 
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Quality of Search Space: LDS vs. Flip-bit 

Expected target depth of a search space 

𝑦𝑦∗ 

𝜖𝜖 𝑇𝑇 

𝑦𝑦∗ 

𝜖𝜖𝑟𝑟𝑇𝑇 

LDS space 

Flip-bit space 
I.I.D error 

recurrent error 
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Sparse LDS Space (k) 

Complete LDS space is expensive 
  each successor state generation requires running greedy 

policy with the given discrepancy set 
  # successors = 𝐿𝐿.𝑇𝑇, where 𝑇𝑇 is the size of the structured 

output and 𝐿𝐿 is the number of labels 

Sparse Search Space: Key Idea 
Sort discrepancies using recurrent classifier scores and pick 

top-𝑘𝑘 choices 
  # successors = 𝑘𝑘.𝑇𝑇 
Parameter 𝑘𝑘 = # discrepancies for each variable controls the 

trade-off between speed and accuracy 
 In practice, very small 𝑘𝑘 suffice 
How can we deal with dependence on 𝑇𝑇?  
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Aside: Very simple HC-Search Instantiation 

Heuristic function 
Greedy recurrent classifier (or policy) 

 

Search procedure 
Depth-first or Breadth-first Limited Discrepancy Search w/ 

bounded depth 
 

Cost function 
Score the outputs generated by search procedure 
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Computer Vision Tasks:  
Randomized Segmentation Space [Lam et al., 2015] 

Key Idea:  probabilistically sample likely object 
configurations in the image from a hierarchical 
segmentation tree 

 

Segmentation selection 

 

 

 

Candidate generation 
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Pre-requisite: Hierarchical Segmentation Tree 
Berkeley segmentation tree 
Regions are very robust 
Regions are closed  
UCM level 0 corresponds to all super-pixels  

UCM 
0.0 

UCM 
1.0 

UCM 
0.5 

(not to scale) 
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Randomized Segmentation Space: 
Segmentation Selection 

UCM 0.0 

UCM 1.0 

UCM 0.5 

(not to scale) 

Randomly pick threshold 

𝜃𝜃~𝑈𝑈(0,1) 
to select a segmentation 

from Berkeley 
Segmentation Algorithm 
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Randomized Segmentation Space: 
Candidate Generation 

For each segment, give it a label (based on 
segment’s current labels and neighboring 
segment labels) and add it to the candidate set 
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Randomized Segmentation Space: 
Candidate Generation 

For each segment, give it a label (based on 
segment’s current labels and neighboring 
segment labels) and add it to the candidate set 
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Randomized Segmentation Space: 
Candidate Generation 

For each segment, give it a label (based on 
segment’s current labels and neighboring 
segment labels) and add it to the candidate set 

…etc… 
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Benchmark Domains 

Handwriting recognition [Taskar et al., 2003] 
 HW-Small and HW-Large  

 

NET-Talk [Sejnowski and Rosenberg, 1987] 
 Stress and Phoneme prediction 

 

Scene labeling [Vogel et al., 2007] 

𝑥𝑥 = 𝑦𝑦 = 

s t r u c t u r e d 𝑥𝑥 = 𝑦𝑦 = 

“photograph” /f-Ot@graf-/ 𝑥𝑥 = 𝑦𝑦 = 

 



179 

Experimental Setup 

 Search space: LDS space 

 Search procedure: Greedy search 

 Time bound: 15 steps for sequences and 150 for scene labeling 

 Loss function: Hamming loss 

 Baselines 
 Recurrent 
 CRFs  
 SVM-Struct 
 SEARN 
 CASCADES 
 C-Search 
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Results: comparison to state-of-the-art 

Error-rates of different structured prediction algorithms 

 
  

 

HW-Small HW-Large Phoneme Scene labeling 

HC-Search 12.81 03.23 16.05 19.71 

C-Search 17.41 07.41 20.91 27.05 
CRF 19.97 13.11 21.09 - 

SVM-Struct 19.64 12.49 21.70 - 
Recurrent 34.33 25.13 26.42 43.36 

SEARN 17.88 09.42 22.74 37.69 
CASCADES 13.02 03.22 17.41 - 
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Results: comparison to state-of-the-art 

Error-rates of different structured prediction algorithms 

 
  

 

HW-Small HW-Large Phoneme Scene labeling 

HC-Search 12.81 03.23 16.05 19.71 

C-Search 17.41 07.41 20.91 27.05 
CRF 19.97 13.11 21.09 - 

SVM-Struct 19.64 12.49 21.70 - 
Recurrent 34.33 25.13 26.42 43.36 

SEARN 17.88 09.42 22.74 37.69 
CASCADES 13.02 03.22 17.41 - 
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Results: comparison to state-of-the-art 

Error-rates of different structured prediction algorithms 

 
  

 

HW-Small HW-Large Phoneme Scene labeling 

HC-Search 12.81 03.23 16.05 19.71 

C-Search 17.41 07.41 20.91 27.05 
CRF 19.97 13.11 21.09 - 

SVM-Struct 19.64 12.49 21.70 - 
Recurrent 34.33 25.13 26.42 43.36 

SEARN 17.88 09.42 22.74 37.69 
CASCADES 13.02 03.22 17.41 - 

 HC-Search outperforms all the other algorithms including C-
Search (our prior approach that uses a single function C to serve 
the dual roles of heuristic and cost function) 
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Results: Loss Decomposition Analysis 

𝝐𝝐 =  𝝐𝝐𝑯𝑯 +  𝝐𝝐𝑪𝑪|𝑯𝑯 
 
  

 Overall 
expected loss 

 
  

 

Generation loss 
(Heuristic function) 

 

 
  

 

Selection loss 
(Cost function) 
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Results: Loss decomposition analysis 

Phoneme Scene labeling 

ERROR 𝜖𝜖 𝜖𝜖𝐻𝐻  𝜖𝜖𝐶𝐶|𝐻𝐻 𝜖𝜖 𝜖𝜖𝐻𝐻  𝜖𝜖𝐶𝐶|𝐻𝐻 

HC-Search 16.05 03.98 12.07 19.71 5.82 13.89 
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Results: Loss decomposition analysis 

Phoneme Scene labeling 

ERROR 𝜖𝜖 𝜖𝜖𝐻𝐻  𝜖𝜖𝐶𝐶|𝐻𝐻 𝜖𝜖 𝜖𝜖𝐻𝐻  𝜖𝜖𝐶𝐶|𝐻𝐻 

HC-Search 16.05 03.98 12.07 19.71 5.82 13.89 

 Selection loss 𝝐𝝐𝑪𝑪|𝑯𝑯 contributes more to the overall loss 
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Results: Loss decomposition analysis 

Phoneme Scene labeling 

ERROR 𝜖𝜖 𝜖𝜖𝐻𝐻  𝜖𝜖𝐶𝐶|𝐻𝐻 𝜖𝜖 𝜖𝜖𝐻𝐻  𝜖𝜖𝐶𝐶|𝐻𝐻 

HC-Search 16.05 03.98 12.07 19.71 05.82 13.89 

C-Search 20.91 04.38 16.53 27.05 07.83 19.22 
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Results: Loss decomposition analysis 

Phoneme Scene labeling 

ERROR 𝜖𝜖 𝜖𝜖𝐻𝐻  𝜖𝜖𝐶𝐶|𝐻𝐻 𝜖𝜖 𝜖𝜖𝐻𝐻  𝜖𝜖𝐶𝐶|𝐻𝐻 

HC-Search 16.05 03.98 12.07 19.71 05.82 13.89 

C-Search 20.91 04.38 16.53 27.05 07.83 19.22 

 Improvement of HC-Search over C-Search is due to the 
improvement in the selection loss  
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Results: Loss decomposition analysis 

Phoneme Scene labeling 

ERROR 𝜖𝜖 𝜖𝜖𝐻𝐻  𝜖𝜖𝐶𝐶|𝐻𝐻 𝜖𝜖 𝜖𝜖𝐻𝐻  𝜖𝜖𝐶𝐶|𝐻𝐻 

HC-Search 16.05 03.98 12.07 19.71 05.82 13.89 

C-Search 20.91 04.38 16.53 27.05 07.83 19.22 

 Improvement of HC-Search over C-Search is due to the 
improvement in the selection loss  

 Clearly shows the advantage of separating the roles of 
heuristic and cost function 
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Multi-Label Prediction: Problem 

Input  Output  

1 

1 

1 

0 
0 

0 

… 

… 

sky 

water 

sand 

computer 
chair 

mountains 
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Multi-Label Prediction: Problem 

Commonly arises in various domains 
 

  Biology – predict functional classes of a protein/gene 
 

  Text – predict email tags or document classes 
 

  … 
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Multi-Label Prediction: Challenges 

Input  Output  

1 

1 

1 

0 
0 

0 

… 

… 

sky 

water 

sand 

computer 
chair 

mountains 

o Joint prediction of labels to exploit the relationships between labels 

o Automatically optimize the evaluation measure of the real-world task 
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Multi-Label Prediction 

Benchmark data  
 
 

Dataset Domain #TR #TS #F #L 𝑬𝑬[𝒅𝒅] 

Scene image 1211 1196 294 6 1.07 

Emotions music 391 202 72 6 1.86 

Medical text 333 645 1449 45 1.24 

Genbase biology 463 199 1185 27 1.25 

Yeast biology 1500 917 103 14 4.23 

Enron text 1123 579 1001 53 3.37 

LLog text 876 584 1004 75 1.18 

Slashdot text 2269 1513 1079 22 2.15 
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Multi-Label Prediction 

Benchmark data  
 
 

Dataset Domain #TR #TS #F #L 𝑬𝑬[𝒅𝒅] 

Scene image 1211 1196 294 6 1.07 

Emotions music 391 202 72 6 1.86 

Medical text 333 645 1449 45 1.24 

Genbase biology 463 199 1185 27 1.25 

Yeast biology 1500 917 103 14 4.23 

Enron text 1123 579 1001 53 3.37 

LLog text 876 584 1004 75 1.18 

Slashdot text 2269 1513 1079 22 2.15 

Label vectors are highly sparse 
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Multi-Label Prediction via HC-Search 

HC-Search 
  Exploit the sparsity property (Null vector + flip bits) 
  
 

 

𝑥𝑥 , y = 000000  root node 

𝑥𝑥 , y = 100000  𝑥𝑥 , y = 001000  𝑥𝑥 , y = 000001  

… … 

𝑥𝑥 , y = 101000  𝑥𝑥 , y = 001001  

… 

𝑥𝑥 , y = 111000  𝑥𝑥 , y = 101100  𝑥𝑥 , y = 001011  

… … 
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Multi-Label Prediction: Results 
 F1 Accuracy Results 

 

  
 
 

Algorithm Scene Emotions Medical Genbase Yeast Enron LLog Slashdot 

BR 52.60 60.20 63.90 98.70 63.20 53.90 36.00 46.20 

CC 59.10 57.50 64.00 99.40 63.20 53.30 26.50 44.90 

ECC 68.00 62.60 65.30 99.40 64.60 59.10 32.20 50.20 

M2CC 68.20 63.20 65.40 99.40 64.90 59.10 32.30 50.30 

CLR 62.20 66.30 66.20 70.70 63.80 56.50 22.70 46.60 

CDN 63.20 61.40 68.90 97.80 64.00 58.50 36.60 53.10 

CCA 66.43 63.27 49.60 98.60 61.64 53.83 25.80 48.00 

PIR 74.45 60.92 80.17 99.41 65.47 61.14 38.95 57.55 

SML 68.50 64.32 68.34 99.62 64.32 57.46 34.95 55.73 

RML 74.17 64.83 80.73 98.80 63.18 57.79 35.97 51.30 

DecL 73.76 65.29 78.02 97.89 63.46 61.19 37.52 54.67 

HC-Search 75.89 66.17 78.19 98.12 63.78 62.34 39.76 57.98 

Doppa, J.R., Yu, J., Ma C., Fern, A., Tadepalli, P. HC-Search for Multi-Label Prediction: An 
Empirical Study. American Association of Artificial Intelligence (AAAI) Conference 2014.   
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Detecting Basal Tubules of Nematocysts 
 

o Imaged against significant background clutter (unavoidable) 

o Biological objects have highly-deformable parts 

Challenges: 
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Detecting Basal Tubules of Nematocysts 

Experimental Setup 
80 images (training); 20 images (validation); 30 images (testing) 
 

 

864 

1024 

32 

32 

o Patch labels 

Patch 

“0” Background 

“1” Basal tubule 
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Detecting Basal Tubules of Nematocysts 

Baselines 
  IID Classifier 
  Pairwise CRFs (w/ ICM, LBP, Graph-cuts) 

 
 

HC-Search 
  Flipbit space (IID classifier + flip patch labels) 
  Randomized Segmentation space 
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Basal Tubule Detection Results 

Algorithm Precision Recall F1 

SVM 0.675 0.147 0.241 
Logistic Regression 0.605 0.129 0.213 
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Basal Tubule Detection Results 

Algorithm Precision Recall F1 

SVM 0.675 0.147 0.241 
Logistic Regression 0.605 0.129 0.213 

Pairwise CRF (w/ ICM) 0.432 0.360 0.393 
Pairwise CRF (w/ LBP) 0.545 0.091 0.156 
Pairwise CRF (w/ GC) 0.537 0.070 0.124 
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Basal Tubule Detection Results 

Algorithm Precision Recall F1 

SVM 0.675 0.147 0.241 
Logistic Regression 0.605 0.129 0.213 

Pairwise CRF (w/ ICM) 0.432 0.360 0.393 
Pairwise CRF (w/ LBP) 0.545 0.091 0.156 
Pairwise CRF (w/ GC) 0.537 0.070 0.124 

HC-Search (w/ Flipbit) 0.472 0.545 0.506 

Lam, M., Doppa, J.R., Xu, S.H., Todorovic, S., Dietterich, T.G., Reft, A., Daly, M. Learning to Detect Basal Tubules 
of Nematocysts in SEM Images. IEEE Workshop on Computer Vision for Accelerated Biosciences (CVAB) 2013.  
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Basal Tubule Detection Results 

Algorithm Precision Recall F1 

SVM 0.675 0.147 0.241 
Logistic Regression 0.605 0.129 0.213 

Pairwise CRF (w/ ICM) 0.432 0.360 0.393 
Pairwise CRF (w/ LBP) 0.545 0.091 0.156 
Pairwise CRF (w/ GC) 0.537 0.070 0.124 

HC-Search (w/ Flipbit) 0.379 0.603 0.465 
HC-Search (w/ Randomized) 0.831 0.651 0.729 

Lam, M., Doppa, J.R., Todorovic, S., Dietterich, T.G. HC-Search for Structured Prediction in Computer 
Vision. IEEE International Conference on Computer Vision (CVPR) 2015.  
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Basal Tubule Detection Results 

o HC-Search significantly outperforms all the other algorithms 

o Performance critically depends on the quality of the search space 

Algorithm Precision Recall F1 

SVM 0.675 0.147 0.241 
Logistic Regression 0.605 0.129 0.213 

Pairwise CRF (w/ ICM) 0.432 0.360 0.393 
Pairwise CRF (w/ LBP) 0.545 0.091 0.156 
Pairwise CRF (w/ GC) 0.537 0.070 0.124 

HC-Search (w/ Flipbit) 0.379 0.603 0.465 
HC-Search (w/ Randomized) 0.831 0.651 0.729 
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Basal Tubule Detection Results 
 Visual results: 

 

HC-Search  Ground-truth output 

CRF w/ Graph cuts CRF w/ LBP 
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Results: Stanford Background Dataset 

 HC-Search without using features from deep learning 

Method Accuracy (%) 
Region Energy 76.4 
SHL 76.9 
RNN 78.1 
ConvNet 78.8 
ConvNet + NN 80.4 
ConvNet + CRF 81.4 
Pylon (No Bnd) 81.3 
Pylon 81.9 
HC-Search (w/ Randomized) 81.4 

Benchmark for scene labeling in vision community 
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Engineering Methodology 

Select a time-bounded search architecture 
  High-quality search space (e.g., LDS space or its variant) 
  Search procedure 
  Time bound 
  Effectiveness can be measured by performing LL-Search (loss 

function as both heuristic and cost function) 

Training and Debugging 
  Overall error = generation error (heuristic) + selection error 

(cost function) 
  Take necessary steps to improve the appropriate error guided 

by the decomposition 
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HC-Search vs. CRF/SSVM 

 Inference in CRF/SSVM 
   Cost function needs to score exponential no. of outputs 

 

 

 Inference in HC-Search 
 Cost function needs to score only the outputs generated 

by the search procedure guided by heuristic 𝐻𝐻 
 

 
 

 
  
 
 
   

 F(x) = 𝐚𝐚𝐚𝐚𝐚𝐚 𝐦𝐦𝒎𝒎𝒎𝒎
 𝒚𝒚 ∈ 𝒀𝒀(𝒙𝒙)

 𝑪𝑪(𝒙𝒙,𝒚𝒚)  

 F(x) = 𝐚𝐚𝐚𝐚𝐚𝐚 𝐦𝐦𝒎𝒎𝒎𝒎
 𝒚𝒚 ∈ 𝒀𝒀𝑯𝑯(𝒙𝒙)

 𝑪𝑪(𝒙𝒙,𝒚𝒚)  
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HC-Search vs. Re-Ranking Algorithms 

Re-Ranking Approaches 
  k-best list from a generative model 
Michael Collins: Ranking Algorithms for Named Entity Extraction: Boosting and the Voted 
Perceptron. ACL 2002: 489-496 

  Diverse M-best modes of a probabilistic model 
Payman Yadollahpour, Dhruv Batra, Gregory Shakhnarovich: Discriminative Re-ranking of 
Diverse Segmentations. CVPR 2013: 1923-1930 

No guarantees on the quality of generated candidate set 

HC-Search 
  Candidate set is generated via generic search in high-quality 

search spaces guided by the learned heuristic 
  Minimal restrictions on the representation of heuristic 
  PAC guarantees on the quality of candidate set 
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HC-Search: A “Divide-and-Conquer” Solution 

HC-Search is  a “Divide-and-Conquer’’ solution 
with procedural knowledge injected into it 
 
 All components have clearly pre-defined roles 
 
 Every component is contributing towards the 

overall goal by making the role of other components 
easier 

 

 



212 

HC-Search: A “Divide-and-Conquer” Solution 

Every component is contributing towards the overall 
goal by making the role of other components easier 
 
 LDS space leverages greedy classifiers to reduce the target 

depth to make the heuristic learning easier 
 

  Heuristic tries to make the cost function learning easier by 
generating high-quality outputs with as little search as possible 
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Part 7: Future Directions 
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Future Directions 

Design and optimization of search spaces for complex 
structured prediction problems 
very under-studied problem 

Leveraging deep learning advances to improve the 
performance of structured prediction approaches 
Loose vs. tight integration 

Learning to trade-off speed and accuracy of structured 
prediction 
Active research topic, but relatively less work 

What architectures are more suitable for “Anytime” 
predictions? How to learn for anytime prediction? 
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Future Directions 

Theoretical analysis: sample complexity and 
generalization bounds 
Lot of room for this line of work in the context of “learning” + 

“search” approaches 

Understanding and analyzing structured predictors in the 
context of integrated applications 
  Pipelines in NLP and Vision among others 
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