
Nirmalya Roy

School of Electrical Engineering and Computer Science
Washington State University

Cpt S 122 – Data Structures

Custom Templatized
Data Structures in C++

Topics

 Introduction

 Self Referential Classes

 Dynamic Memory Allocation and Data Structures

 Linked List
 insert, delete, isEmpty, printList

 Stacks
 push, pop

 Queues
 enqueue, dequeue

 Trees
 insertNode, inOrder, preOrder, postOrder

 Fixed-size data structures such as one-dimensional arrays and two-
dimensional arrays.

 Dynamic data structures that grow and shrink during execution.

 Linked lists are collections of data items logically “lined up in a row”

 insertions and removals are made anywhere in a linked list.

 Stacks are important in compilers and operating systems:

 Insertions and removals are made only at one end of a stack—its top.

 Queues represent waiting lines;

 insertions are made at the back (also referred to as the tail) of a queue

 removals are made from the front (also referred to as the head) of a
queue.

 Binary trees facilitate high-speed searching and sorting of data, efficient
elimination of duplicate data items,

 representation of file-system directories

 compilation of expressions into machine language.

Introduction

 Classes, class templates, inheritance and composition is
used to create and package these data structures for
reusability and maintainability.

 Standard Template Library (STL)

 The STL is a major portion of the C++ Standard Library.

 The STL provides containers, iterators for traversing those
containers

 algorithms for processing the containers’ elements.

 The STL packages data structures into templatized classes.

 The STL code is carefully written to be portable, efficient
and extensible.

Introduction (cont.)

 A self-referential class contains a pointer member that

points to a class object of the same class type.

Self-Referential Classes

 A self-referential class contains a pointer member that

points to a class object of the same class type.

 Sample Node class definition:
class Node

{
public:

Node(int); // constructor
void setData(int); // set data member
int getData() const; // get data member
void setNextPtr(Node *); // set pointer to next Node
Node *getNextPtr() const; // get pointer to next Node

private:
int data; // data stored in this Node
Node *nextPtr; // pointer to another object of same type

}; // end class Node

Self-Referential Classes

 Member nextPtr points to an object of type Node
 another object of the same type as the one being declared here,

hence the term “self-referential class.”

 Member nextPtr is referred to as a link

 nextPtr can “tie” an object of type Node to another object of
the same type.

 Self-referential class objects can be linked together to
form useful data structures such as lists, queues, stacks
and trees.
 Two self-referential class objects linked together to form a list.

 A null (0) pointer is placed in the link member of the second self-referential
class object to indicate that the link does not point to another object.

 A null pointer normally indicates the end of a data structure just as the null
character ('\0') indicates the end of a string.

Self-Referential Classes (cont.)

 The new operator takes as an argument
 the type of the object being dynamically allocated

 returns a pointer to an object of that type.

 For example, the following statement
 allocates sizeof(Node) bytes,

 runs the Node constructor and assigns the new Node’s address to
newPtr.
 // create Node with data 10

Node *newPtr = new Node(10);

 If no memory is available, new throws a bad_alloc
exception.

 The delete operator runs the Node destructor and
deallocates memory allocated with new
 the memory is returned to the system so that the memory can be

reallocated in the future.

Dynamic Memory Allocation and Data
Structures

 If nodes contain base-class pointers to base-class and

derived-class objects related by inheritance,

 we can have a linked list of such nodes and process them

polymorphically using virtual function calls.

 Stacks and queues are linear data structures

 can be viewed as constrained versions of linked lists.

 Trees are nonlinear data structures.

Linked Lists (cont.)

 A linked list is appropriate when the number of data elements
to be represented at one time is unpredictable.

 Linked lists are dynamic, so the length of a list can increase
or decrease as necessary.

 Linked lists can be maintained in sorted order

 By inserting each new element at the proper point in the list.

 Existing list elements do not need to be moved.

 Pointers merely need to be updated to point to the correct

node.

Linked Lists Performance

 Insertion & deletion in sorted array is time consuming

 All the elements following the inserted and deleted elements

must be shifted appropriately.

 Linked list allows efficient insertion operations

anywhere in the list

 Linked-list nodes are not stored contiguously in

memory, but logically they appear to be contiguous.

Linked Lists Performance (cont.)

 The program uses a List class template

 manipulate a list of integer values and a list of floating-point

values.

 The program uses class templates

 ListNode and List.

 Encapsulated in each List object is a linked list of

ListNode objects.

Linked Lists (cont.)

 Class template ListNode contains

 private members data and nextPtr

 a constructor to initialize these members and

 function getData to return the data in a node.

 Member data stores a value of type NODETYPE

 the type parameter passed to the class template.

 Member nextPtr stores a pointer to the next ListNode
object in the linked list.

ListNode Class Template

 ListNode class template definition declares class
List< NODETYPE > as a friend.

 This makes all member functions of a given specialization of class
template List friends of the corresponding specialization of class
template ListNode,

 so they can access the private members of ListNode
objects of that type.

 ListNode template parameter NODETYPE is used as the
template argument for List in the friend declaration,

 ListNode specialized with a particular type can be
processed only by a List specialized with the same type

 a List of int values manages ListNode objects that
store int values.

Linked Lists (cont.)

ListNode Template Class

ListNode Member Function

List Class Template

List Class Template

 List class template declare private data members

 firstPtr (a pointer to the first ListNode in a List)

 lastPtr (a pointer to the last ListNode in a List).

 The default constructor initializes both pointers to 0
(null).

 The destructor ensures that all ListNode objects in a

List object are destroyed when that List object is

destroyed.

List (cont.)

 The primary List functions are
 insertAtFront,

 insertAtBack,

 removeFromFront and

 removeFromBack .

 Function isEmpty is called a predicate function

 Function print displays the List’s contents.

 Utility function getNewNode returns a dynamically allocated
ListNode object.

 Called from functions insertAtFront and insertAtBack.

List (cont.)

List Class Constructor

List Class Destructor

insertAtFront()

insertAtBack()

removeFromFront()

removeFromBack()

isEmpty()

print()

 Create List objects for types int and double,

respectively.

 Invoke the testList function template to manipulate

objects.

List (cont.)

List

 Singly linked list

 begins with a pointer to the first node

 each node contains a pointer to the next node “in sequence.”

 This list terminates with a node whose pointer member
has the value 0.

 A singly linked list may be traversed in only one
direction.

 A circular singly linked list begins with a pointer to the first node

 each node contains a pointer to the next node.

 The “last node” does not contain a 0 pointer

 the pointer in the last node points back to the first node, thus
closing the “circle.”

Linked Lists (cont.)

Circular Singly Linked List

 A doubly linked list allows traversals both forward and backward.

 Implemented with two “start pointers”

 one that points to the first element of the list to allow front-to-back
traversal of the list

 one that points to the last element to allow back-to-front traversal.

 Each node has both

 forward pointer to the next node in the list in the forward direction

 backward pointer to the next node in the list in the backward direction

 List contains an alphabetized telephone directory

 a search for someone whose name begins with a letter near the front
of the alphabet might begin from the front of the list.

 Searching for someone whose name begins with a letter near the end
of the alphabet might begin from the back of the list.

Doubly Linked List

Doubly Linked List

 Circular doubly linked list

 forward pointer of the last node points to the first node

 backward pointer of the first node points to the last node,

thus closing the “circle.”

Circular Doubly Linked List

Circular Doubly Linked List

