
Nirmalya Roy

School of Electrical Engineering and Computer Science
Washington State University

Cpt S 122 – Data Structures

Custom Templatized
Data Structures in C++

Topics

 Introduction

 Self Referential Classes

 Dynamic Memory Allocation and Data Structures

 Linked List
 insert, delete, isEmpty, printList

 Stacks
 push, pop

 Queues
 enqueue, dequeue

 Trees
 insertNode, inOrder, preOrder, postOrder

 Fixed-size data structures such as one-dimensional arrays and two-
dimensional arrays.

 Dynamic data structures that grow and shrink during execution.

 Linked lists are collections of data items logically “lined up in a row”

 insertions and removals are made anywhere in a linked list.

 Stacks are important in compilers and operating systems:

 Insertions and removals are made only at one end of a stack—its top.

 Queues represent waiting lines;

 insertions are made at the back (also referred to as the tail) of a queue

 removals are made from the front (also referred to as the head) of a
queue.

 Binary trees facilitate high-speed searching and sorting of data, efficient
elimination of duplicate data items,

 representation of file-system directories

 compilation of expressions into machine language.

Introduction

 Classes, class templates, inheritance and composition is
used to create and package these data structures for
reusability and maintainability.

 Standard Template Library (STL)

 The STL is a major portion of the C++ Standard Library.

 The STL provides containers, iterators for traversing those
containers

 algorithms for processing the containers’ elements.

 The STL packages data structures into templatized classes.

 The STL code is carefully written to be portable, efficient
and extensible.

Introduction (cont.)

 A self-referential class contains a pointer member that

points to a class object of the same class type.

Self-Referential Classes

 A self-referential class contains a pointer member that

points to a class object of the same class type.

 Sample Node class definition:
class Node

{
public:

Node(int); // constructor
void setData(int); // set data member
int getData() const; // get data member
void setNextPtr(Node *); // set pointer to next Node
Node *getNextPtr() const; // get pointer to next Node

private:
int data; // data stored in this Node
Node *nextPtr; // pointer to another object of same type

}; // end class Node

Self-Referential Classes

 Member nextPtr points to an object of type Node
 another object of the same type as the one being declared here,

hence the term “self-referential class.”

 Member nextPtr is referred to as a link

 nextPtr can “tie” an object of type Node to another object of
the same type.

 Self-referential class objects can be linked together to
form useful data structures such as lists, queues, stacks
and trees.
 Two self-referential class objects linked together to form a list.

 A null (0) pointer is placed in the link member of the second self-referential
class object to indicate that the link does not point to another object.

 A null pointer normally indicates the end of a data structure just as the null
character ('\0') indicates the end of a string.

Self-Referential Classes (cont.)

 The new operator takes as an argument
 the type of the object being dynamically allocated

 returns a pointer to an object of that type.

 For example, the following statement
 allocates sizeof(Node) bytes,

 runs the Node constructor and assigns the new Node’s address to
newPtr.
 // create Node with data 10

Node *newPtr = new Node(10);

 If no memory is available, new throws a bad_alloc
exception.

 The delete operator runs the Node destructor and
deallocates memory allocated with new
 the memory is returned to the system so that the memory can be

reallocated in the future.

Dynamic Memory Allocation and Data
Structures

 If nodes contain base-class pointers to base-class and

derived-class objects related by inheritance,

 we can have a linked list of such nodes and process them

polymorphically using virtual function calls.

 Stacks and queues are linear data structures

 can be viewed as constrained versions of linked lists.

 Trees are nonlinear data structures.

Linked Lists (cont.)

 A linked list is appropriate when the number of data elements
to be represented at one time is unpredictable.

 Linked lists are dynamic, so the length of a list can increase
or decrease as necessary.

 Linked lists can be maintained in sorted order

 By inserting each new element at the proper point in the list.

 Existing list elements do not need to be moved.

 Pointers merely need to be updated to point to the correct

node.

Linked Lists Performance

 Insertion & deletion in sorted array is time consuming

 All the elements following the inserted and deleted elements

must be shifted appropriately.

 Linked list allows efficient insertion operations

anywhere in the list

 Linked-list nodes are not stored contiguously in

memory, but logically they appear to be contiguous.

Linked Lists Performance (cont.)

 The program uses a List class template

 manipulate a list of integer values and a list of floating-point

values.

 The program uses class templates

 ListNode and List.

 Encapsulated in each List object is a linked list of

ListNode objects.

Linked Lists (cont.)

 Class template ListNode contains

 private members data and nextPtr

 a constructor to initialize these members and

 function getData to return the data in a node.

 Member data stores a value of type NODETYPE

 the type parameter passed to the class template.

 Member nextPtr stores a pointer to the next ListNode
object in the linked list.

ListNode Class Template

 ListNode class template definition declares class
List< NODETYPE > as a friend.

 This makes all member functions of a given specialization of class
template List friends of the corresponding specialization of class
template ListNode,

 so they can access the private members of ListNode
objects of that type.

 ListNode template parameter NODETYPE is used as the
template argument for List in the friend declaration,

 ListNode specialized with a particular type can be
processed only by a List specialized with the same type

 a List of int values manages ListNode objects that
store int values.

Linked Lists (cont.)

ListNode Template Class

ListNode Member Function

List Class Template

List Class Template

 List class template declare private data members

 firstPtr (a pointer to the first ListNode in a List)

 lastPtr (a pointer to the last ListNode in a List).

 The default constructor initializes both pointers to 0
(null).

 The destructor ensures that all ListNode objects in a

List object are destroyed when that List object is

destroyed.

List (cont.)

 The primary List functions are
 insertAtFront,

 insertAtBack,

 removeFromFront and

 removeFromBack .

 Function isEmpty is called a predicate function

 Function print displays the List’s contents.

 Utility function getNewNode returns a dynamically allocated
ListNode object.

 Called from functions insertAtFront and insertAtBack.

List (cont.)

List Class Constructor

List Class Destructor

insertAtFront()

insertAtBack()

removeFromFront()

removeFromBack()

isEmpty()

print()

 Create List objects for types int and double,

respectively.

 Invoke the testList function template to manipulate

objects.

List (cont.)

List

 Singly linked list

 begins with a pointer to the first node

 each node contains a pointer to the next node “in sequence.”

 This list terminates with a node whose pointer member
has the value 0.

 A singly linked list may be traversed in only one
direction.

 A circular singly linked list begins with a pointer to the first node

 each node contains a pointer to the next node.

 The “last node” does not contain a 0 pointer

 the pointer in the last node points back to the first node, thus
closing the “circle.”

Linked Lists (cont.)

Circular Singly Linked List

 A doubly linked list allows traversals both forward and backward.

 Implemented with two “start pointers”

 one that points to the first element of the list to allow front-to-back
traversal of the list

 one that points to the last element to allow back-to-front traversal.

 Each node has both

 forward pointer to the next node in the list in the forward direction

 backward pointer to the next node in the list in the backward direction

 List contains an alphabetized telephone directory

 a search for someone whose name begins with a letter near the front
of the alphabet might begin from the front of the list.

 Searching for someone whose name begins with a letter near the end
of the alphabet might begin from the back of the list.

Doubly Linked List

Doubly Linked List

 Circular doubly linked list

 forward pointer of the last node points to the first node

 backward pointer of the first node points to the last node,

thus closing the “circle.”

Circular Doubly Linked List

Circular Doubly Linked List

