
Nirmalya Roy

School of Electrical Engineering and Computer Science
Washington State University

Cpt S 122 – Data Structures

Standard Template Library (STL)

Topics

 Introduction to Standard Template Library (STL)

 Introduction to Containers
 Templated data structure

 vector, list, deque; set, multiset, map,

multimap; stack, queue, priority_queue

 Introduction to Iterators

 Access the elements of STL containers

 Introduction to Algorithms

 Program with many STL algorithms

 equal, size, find, remove, replace,

min, max, swap, basic searching, sorting
algorithms

 The Standard Template Library (STL) defines powerful,

template-based, reusable components.

 Implement many common data structures and

algorithms used to process those data structures.

 The STL was conceived and designed for performance
and flexibility.

 STL has three key components

 containers (popular templatized data structures)

 iterators (to access the elements of STL containers)

 algorithms (searching, sorting, comparing etc)

Introduction to the Standard Template
Library (STL)

 Data structures.

 linked lists, queues, stacks and trees.

 objects are linked together with pointers.

 Pointer-based code is complex

 the slightest omission or oversight can lead to serious memory-access
violations and memory-leak errors with no compiler complaints.

 Implementing additional data structures, such as deques,
priority queues, sets and maps, requires substantial extra
work.

 An advantage of the STL is that you can reuse the STL
containers, iterators and algorithms

 implement common data structures and manipulations project-wide.

Advantage of STL

STL Pillars

Containers
Iterators

Algorithms

 Each STL container has associated member functions.

 A subset of these member functions is defined in all STL

containers.

 Example of STL containers

 vector (a dynamically resizable array)

 list (a doubly linked list)

 deque (a double-ended queue, pronounced “deck”).

 Double-ended queues are sequence containers with dynamic sizes
that can be expanded or contracted on both ends (either its front or
its back).

 individual elements are accessed directly through random access
iterators

STL Containers

 STL iterators

 properties similar to those of pointers

 used by programs to manipulate the STL-container elements.

 Standard arrays can be manipulated by STL algorithms

 using standard pointers as iterators.

 Manipulating containers with iterators is convenient

 provides tremendous expressive power combined with STL algorithms

 reduce many lines of code to a single statement.

 There are five categories of iterators

 input,

 output,

 forward,

 bidirectional,

 random.

STL Iterators

 STL algorithms are functions that perform common data
manipulations

 searching, sorting and comparing elements (or entire containers) etc.

 Each algorithm has minimum requirements for the types of
iterators that can be used with it.

 Each first-class container supports specific iterator types,
some more powerful than others.

 A container’s supported iterator type determines whether the
container can be used with a specific algorithm.

STL Algorithms

 The STL containers are divided into three major

categories

 sequence containers

 associative containers

 container adapters

 There are three styles of container classes

 first-class containers

 adapters

 near containers

Containers

Containers Types and Examples

Containers Types and Examples

 The sequence containers represent linear data structures
 vectors and linked lists.

 The associative containers are nonlinear containers
 locate elements stored in the containers quickly

 store sets of values or key/value pairs.

 The sequence containers and associative containers are
collectively referred to as the first-class containers.

 Stacks and queues actually are constrained versions of
sequential containers.
 STL implements stacks and queues as container adapters

 enable a program to view a sequential container in a constrained
manner.

 near containers

 C-like pointer-based arrays, bitsets for maintaining sets of flag values

 exhibit capabilities similar to those of the first-class containers, but do
not support all the first-class-container capabilities.

Containers Types

 Most STL containers provide similar functionality.

 Many generic operations, such as member function size,

apply to all containers

 other operations apply to subsets of similar containers.

 encourages extensibility of the STL with new classes.

 [Note: Overloaded operators <, <=, >, >=, == and != are

not provided for priority_queues.]

Containers’ Common Member Functions

Containers’ Common Member Functions

Containers’ Common Member Functions

Common Member Functions

Container Headers

Container typedefs

 These typedefs are used in generic declarations

of variables, parameters to functions and return

values from functions.

Container typedefs

 Iterators have many similarities to pointers
 point to first-class container elements.

 Certain iterator operations are uniform across containers.

 For example, the dereferencing operator (*) dereferences an
iterator
 get the element to which it points.

 The ++ operation on an iterator moves it to the container’s next
element

Introduction to Iterators

 STL first-class containers provide member functions

begin and end.

 Function begin returns an iterator pointing to the

first element of the container.

 Function end returns an iterator pointing to the first

element past the end of the container (an element

that doesn’t exist).

Iterators

 Iterator i points to a particular element

 ++i points to the “next” element

 *i refers to the element pointed to by i

 The iterator resulting from end is typically used in
an equality or inequality comparison

 determine whether the “moving iterator” (i in this case)
has reached the end of the container.

 An object of type iterator refers to a container
element that can be modified.

 An object of type const_iterator refers to a
container element that cannot be modified.

Iterators

 Different categories of STL iterators.

 Each category provides a specific set of functionality.

 The hierarchy of iterator categories.

 each iterator category supports all the functionality of the

categories above it.

 the “weakest” iterator types are at the top and the most

powerful one is at the bottom.

 this is not an inheritance hierarchy.

Iterators Categories

Iterators Categories

 Predefined iterator typedefs

 found in the class definitions of the STL containers.

 Not every typedef is defined for every container.

 Use const versions of the iterators for traversing read-only

containers.

 Use reverse iterators to traverse containers in the reverse

direction.

 STL algorithms can be used generically across a variety of
containers.

 STL provides many algorithms to manipulate containers.
 inserting, deleting, searching, sorting etc.

 The algorithms operate on container elements only indirectly
through iterators.

 Many algorithms operate on sequences of elements defined by
pairs of iterators
 one pointing to the first element of the sequence

 one pointing to one element past the last element

Introduction to Algorithms

 Algorithms often return iterators that indicate the

results of the algorithms.

 Algorithm find

 locates an element and returns an iterator to that element.

 If the element is not found, find returns the “one past the

end” iterator.

 The find algorithm can be used with any first-class

STL container.

 Some algorithms demand powerful iterators; e.g.,

sort demands random-access iterators.

Introduction to Algorithms

 Mutating-sequence algorithms

 the algorithms that result in modifications of the containers

to which the algorithms are applied.

 Non-modifying sequence algorithms

 the algorithms that do not result in modifications of the

containers to which they’re applied.

Introduction to Algorithms

Modifying Algorithms

Non-modifying Algorithms

