
Nirmalya Roy

School of Electrical Engineering and Computer Science
Washington State University

Cpt S 122 – Data Structures

Standard Template Library (STL)

Topics

 Introduction to Standard Template Library (STL)

 Introduction to Containers
 Templated data structure

 vector, list, deque; set, multiset, map,

multimap; stack, queue, priority_queue

 Introduction to Iterators

 Access the elements of STL containers

 Introduction to Algorithms

 Program with many STL algorithms

 equal, size, find, remove, replace,

min, max, swap, basic searching, sorting
algorithms

 The Standard Template Library (STL) defines powerful,

template-based, reusable components.

 Implement many common data structures and

algorithms used to process those data structures.

 The STL was conceived and designed for performance
and flexibility.

 STL has three key components

 containers (popular templatized data structures)

 iterators (to access the elements of STL containers)

 algorithms (searching, sorting, comparing etc)

Introduction to the Standard Template
Library (STL)

 Data structures.

 linked lists, queues, stacks and trees.

 objects are linked together with pointers.

 Pointer-based code is complex

 the slightest omission or oversight can lead to serious memory-access
violations and memory-leak errors with no compiler complaints.

 Implementing additional data structures, such as deques,
priority queues, sets and maps, requires substantial extra
work.

 An advantage of the STL is that you can reuse the STL
containers, iterators and algorithms

 implement common data structures and manipulations project-wide.

Advantage of STL

STL Pillars

Containers
Iterators

Algorithms

 Each STL container has associated member functions.

 A subset of these member functions is defined in all STL

containers.

 Example of STL containers

 vector (a dynamically resizable array)

 list (a doubly linked list)

 deque (a double-ended queue, pronounced “deck”).

 Double-ended queues are sequence containers with dynamic sizes
that can be expanded or contracted on both ends (either its front or
its back).

 individual elements are accessed directly through random access
iterators

STL Containers

 STL iterators

 properties similar to those of pointers

 used by programs to manipulate the STL-container elements.

 Standard arrays can be manipulated by STL algorithms

 using standard pointers as iterators.

 Manipulating containers with iterators is convenient

 provides tremendous expressive power combined with STL algorithms

 reduce many lines of code to a single statement.

 There are five categories of iterators

 input,

 output,

 forward,

 bidirectional,

 random.

STL Iterators

 STL algorithms are functions that perform common data
manipulations

 searching, sorting and comparing elements (or entire containers) etc.

 Each algorithm has minimum requirements for the types of
iterators that can be used with it.

 Each first-class container supports specific iterator types,
some more powerful than others.

 A container’s supported iterator type determines whether the
container can be used with a specific algorithm.

STL Algorithms

 The STL containers are divided into three major

categories

 sequence containers

 associative containers

 container adapters

 There are three styles of container classes

 first-class containers

 adapters

 near containers

Containers

Containers Types and Examples

Containers Types and Examples

 The sequence containers represent linear data structures
 vectors and linked lists.

 The associative containers are nonlinear containers
 locate elements stored in the containers quickly

 store sets of values or key/value pairs.

 The sequence containers and associative containers are
collectively referred to as the first-class containers.

 Stacks and queues actually are constrained versions of
sequential containers.
 STL implements stacks and queues as container adapters

 enable a program to view a sequential container in a constrained
manner.

 near containers

 C-like pointer-based arrays, bitsets for maintaining sets of flag values

 exhibit capabilities similar to those of the first-class containers, but do
not support all the first-class-container capabilities.

Containers Types

 Most STL containers provide similar functionality.

 Many generic operations, such as member function size,

apply to all containers

 other operations apply to subsets of similar containers.

 encourages extensibility of the STL with new classes.

 [Note: Overloaded operators <, <=, >, >=, == and != are

not provided for priority_queues.]

Containers’ Common Member Functions

Containers’ Common Member Functions

Containers’ Common Member Functions

Common Member Functions

Container Headers

Container typedefs

 These typedefs are used in generic declarations

of variables, parameters to functions and return

values from functions.

Container typedefs

 Iterators have many similarities to pointers
 point to first-class container elements.

 Certain iterator operations are uniform across containers.

 For example, the dereferencing operator (*) dereferences an
iterator
 get the element to which it points.

 The ++ operation on an iterator moves it to the container’s next
element

Introduction to Iterators

 STL first-class containers provide member functions

begin and end.

 Function begin returns an iterator pointing to the

first element of the container.

 Function end returns an iterator pointing to the first

element past the end of the container (an element

that doesn’t exist).

Iterators

 Iterator i points to a particular element

 ++i points to the “next” element

 *i refers to the element pointed to by i

 The iterator resulting from end is typically used in
an equality or inequality comparison

 determine whether the “moving iterator” (i in this case)
has reached the end of the container.

 An object of type iterator refers to a container
element that can be modified.

 An object of type const_iterator refers to a
container element that cannot be modified.

Iterators

 Different categories of STL iterators.

 Each category provides a specific set of functionality.

 The hierarchy of iterator categories.

 each iterator category supports all the functionality of the

categories above it.

 the “weakest” iterator types are at the top and the most

powerful one is at the bottom.

 this is not an inheritance hierarchy.

Iterators Categories

Iterators Categories

 Predefined iterator typedefs

 found in the class definitions of the STL containers.

 Not every typedef is defined for every container.

 Use const versions of the iterators for traversing read-only

containers.

 Use reverse iterators to traverse containers in the reverse

direction.

 STL algorithms can be used generically across a variety of
containers.

 STL provides many algorithms to manipulate containers.
 inserting, deleting, searching, sorting etc.

 The algorithms operate on container elements only indirectly
through iterators.

 Many algorithms operate on sequences of elements defined by
pairs of iterators
 one pointing to the first element of the sequence

 one pointing to one element past the last element

Introduction to Algorithms

 Algorithms often return iterators that indicate the

results of the algorithms.

 Algorithm find

 locates an element and returns an iterator to that element.

 If the element is not found, find returns the “one past the

end” iterator.

 The find algorithm can be used with any first-class

STL container.

 Some algorithms demand powerful iterators; e.g.,

sort demands random-access iterators.

Introduction to Algorithms

 Mutating-sequence algorithms

 the algorithms that result in modifications of the containers

to which the algorithms are applied.

 Non-modifying sequence algorithms

 the algorithms that do not result in modifications of the

containers to which they’re applied.

Introduction to Algorithms

Modifying Algorithms

Non-modifying Algorithms

