WASHINGTON STATE

GL\I\H\H\

CptS 122 - Data Structures

Standard Template Library (STL)

Nirmalya Roy

School of Electrical Engineering and Computer Science
Washington State University

Topics

m [Introduction to Standard Template Library (STL)
®m Introduction to Containers

o Templated data structure

O vector, list, deque; set, multiset, map,
multimap; stack, queue, priority queue

m Introduction to Iterators
o Access the elements of STL containers

®m Introduction to Algorithms

o Program with many STL algorithms

O equal, size, find, remove, replace,
min, max, swap, basicsearching, sorting
algorithms

Introduction to the Standard Template
Library (STL)

m The Standard Template Library (STL) defines powerful,
template-based, reusable components.

m Implement many common data structures and
algorithms used to process those data structures.

m The STL was concelved and designed for performance
and flexibility.

m STL has three key components
o containers (popular templatized data structures)
o Iterators (to access the elements of STL containers)
o algorithms (searching, sorting, comparing etc)

Advantage of STL

Data structures.
o linked lists, queues, stacks and trees.
o objects are linked together with pointers.

Pointer-based code is complex

o the slightest omission or oversight can lead to serious memory-access
violations and memory-leak errors with no compiler complaints.

Implementing additional data structures, such as deques,

priority queues, sets and maps, requires substantial extra

work.

An advantage of the STL is that you can reuse the STL
containers, iterators and algorithms

o Implement common data structures and manipulations project-wide.

STL Pillars

Containers [lterators }

[Algorithms }

STL Containers

m Each STL container has associated member functions.

o A subset of these member functions is defined in all STL
containers.

m Example of STL containers

vector (a dynamically resizable array)
o list (adoubly linked list)

o deque (a double-ended queue, pronounced “deck™).

m Double-ended queues are sequence containers with dynamic sizes
that can be expanded or contracted on both ends (either its front or
its back).

m individual elements are accessed directly through random access
iterators

STL Iterators

STL iterators

o properties similar to those of pointers
o used by programs to manipulate the STL-container elements.

Standard arrays can be manipulated by STL algorithms
o using standard pointers as iterators.

Manipulating containers with iterators Is convenient
o provides tremendous expressive power combined with STL algorithms
o reduce many lines of code to a single statement.

There are five categories of iterators
o Input,

output,

forward,

bidirectional,

random.

O O O O

STL Algorithms

STL algorithms are functions that perform common data
manipulations
o searching, sorting and comparing elements (or entire containers) etc.

Each algorithm has minimum requirements for the types of
Iterators that can be used with it.

Each first-class container supports specific iterator types,
some more powerful than others.

A container’s supported iterator type determines whether the
container can be used with a specific algorithm.

Containers

m The STL containers are divided into three major
categories
O Seguence containers
O associative containers
o container adapters

m There are three styles of container classes
o first-class containers
o adapters
O hear containers

Containers Types and Examples

Sequence containers

vector

deque

Tist

Associative containers
set

multiset

map

multimap

Rapid insertions and deletions at back. Direct access to any ele-
ment.

Rapid insertions and deletions at front or back. Direct access to
any element.

Doubly linked list, rapid insertion and deletion anywhere.

Rapid lookup, no duplicates allowed.
Rapid lookup, duplicates allowed.

One-to-one mapping, no duplicates allowed, rapid key-based
lookup.

One-to-many mapping, duplicates allowed, rapid key-based
lookup.

Fig. 22.1 | Standard Library container classes. (Part | of 2.)

Containers Types and Examples

Container adapters

stack Last-in, first-out (LIFO).

queue First-in, first-out (FIFO).

priority_queue Highest-priority element is always the first element out.

Fig. 22.1 | Standard Library container classes. (Part 2 of 2.)

Containers Types

m The sequence containers represent linear data structures
o vectors and linked lists.

m The associative containers are nonlinear containers
o locate elements stored in the containers quickly
o store sets of values or key/value pairs.

= The sequence containers and associative containers are
collectively referred to as the first-class containers.

m Stacks and queues actually are constrained versions of
sequential containers.
o STL implements stacks and queues as container adapters

o enable a program to view a sequential container in a constrained
manner.

m near containers

o C-like pointer-based arrays, b1tsets for maintaining sets of flag values

o exhibit capabilities similar to those of the first-class containers, but do
not support all the first-class-container capabilities.

Containers’ Common Member Functions

m Most STL containers provide similar functionality.
= Many generic operations, such as member function size,

apply to all containers
o other operations apply to subsets of similar containers.
o encourages extensibility of the STL with new classes.

m [Note: Overloaded operators <, <=, >, >=, ==and /=are
not provided for priority_queues.]

Containers’ Common Member Functions

default constructor A constructor that initializes an empty container. Normally, each con-
tainer has several constructors that provide different initialization
methods for the container.

copy constructor A constructor that initializes the container to be a copy of an existing
container of the same type.

destructor Destructor function for cleanup after a container is no longer needed.

empty Returns true if there are no elements in the container; otherwise,

returns false.

insert Inserts an item in the container.

size Returns the number of elements currently in the container.
operator= Assigns one container to another.

operator< Returns true if the contents of the first container is less than the sec-

ond; otherwise, returns false.

Fig. 22.2 | Common member functions for most STL containers.
(Part | of 3.)

Containers’ Common Member Functions

operator<= Returns true if the contents of the first container is less than or equal
to the second; otherwise, returns false.

operator> Returns true if the contents of the first container is greater than the
second; otherwise, returns false.

operator>= Returns true if the contents of the first container is greater than or
equal to the second; otherwise, returns false.

operator== Returns true if the contents of the first container is equal to the sec-
ond; otherwise, returns false.

operator!= Returns true if the contents of the first container is not equal to the
second; otherwise, returns false.

swap Swaps the elements of two containers.

Fig. 22.2 | Common member functions for most STL containers.
(Part 2 of 3.)

Common Member Functions

Functions found only in first-class containers

max_size Returns the maximum number of elements for a container.

begin The two versions of this function return either an iterator or a
const_iterator that refers to the first element of the container.

end The two versions of this function return either an iterator or a
const_iterator that refers to the next position after the end of the
container.

rbegin The two versions of this function return either a reverse_iterator or
a const_reverse_iterator that refers to the last element of the con-
tainer.

rend The two versions of this function return either a reverse_iterator or
a const_reverse_iterator that refers to next position after the last
element of the container.

erase Erases one or more elements from the container.

clear Erases all elements from the container.

Fig. 22.2 | Common member functions for most STL containers.
(Part 3 of 3.)

Container Headers

<vector>

<list>

<deque>

<queue> Contains both queue and priority_queue.
<stack>

<map> Contains both map and multimap.

<set> Contains both set and multiset.
<valarray>

<bitset>

Fig. 22.3 | Standard Library container headers.

Container typedefs

allocator_type
value_type
reference

const_reference

pointer
const_pointer

iterator

const_iterator

reverse_ijterator

The type of the object used to allocate the container’s memory.

The type of element stored in the container.
A reference for the container’s element type.

A constant reference for the container’s element type. Such a ref-
erence can be used only for reading elements in the container
and for performing const operations.

A pointer for the container’s element type.
A pointer for a constant of the container’s element type.

An iterator that points to an element of the container’s element
type.

A constant iterator that points to an element of the container’s
element type and can be used only to read elements.

A reverse iterator that points to an element of the container’s
element type. This type of iterator is for iterating through a con-
tainer in reverse.

Fig. 22.4 | typedefs found in first-class containers. (Part | of 2.)

Container typedefs

const_reverse_iterator A constant reverse iterator that points to an element of the con-
tainer’s element type and can be used only to read elements.
This type of iterator is for iterating through a container in
reverse.

difference_type The type of the result of subtracting two iterators that refer to
the same container (operator - is not defined for iterators of
Tists and associative containers).

size_type The type used to count items in a container and index through
a sequence container (cannot index through a 1ist).

Fig. 22.4 | typedefs found in first-class containers. (Part 2 of 2.)

m These typedefs are used in generic declarations
of variables, parameters to functions and return
values from functions.

Introduction to Iterators

Iterators have many similarities to pointers
o point to first-class container elements.

Certain Iterator operations are uniform across containers.

For example, the dereferencing operator (*) dereferences an
Iterator
o get the element to which it points.

The ++ operation on an iterator moves it to the container’s next
element

[terators

m STL first-class containers provide member functions
begin and end.

m Function begin returns an iterator pointing to the
first element of the container.

m Function end returns an iterator pointing to the first
element past the end of the container (an element
that doesn’t exist).

[terators

Iterator 1 points to a particular element
O ++1 points to the “next” element
o *1 refers to the element pointed to by 1

The iterator resulting from end is typically used in

an equality or inequality comparison

o determine whether the “moving iterator” (1 in this case)
has reached the end of the container.

An object of type 1terator refers to a container
element that can be modified.

An object of type const_1terator referstoa
container element that cannot be modified.

[terators Categories

m Different categories of STL iterators.
o Each category provides a specific set of functionality.

m The hierarchy of iterator categories.

o each iterator category supports all the functionality of the
categories above It.

o the “weakest” iterator types are at the top and the most
powerful one is at the bottom.

o this is not an inheritance hierarchy.

input output

forward

bidirectional

random access

[terators Categories

input

output

forward

bidirectional

random access

Used to read an element from a container. An input iterator can move
only in the forward direction (i.e., from the beginning of the container
to the end) one element at a time. Input iterators support only one-pass
algorithms—the same input iterator cannot be used to pass through a
sequence twice.

Used to write an element to a container. An output iterator can move
only in the forward direction one element at a time. Output iterators
support only one-pass algorithms—the same output iterator cannot be
used to pass through a sequence twice.

Combines the capabilities of input and output iterators and retains their
position in the container (as state information).

Combines the capabilities of a forward iterator with the ability to move
in the backward direction (i.e., from the end of the container toward the
beginning). Bidirectional iterators support multipass algorithms.

Combines the capabilities of a bidirectional iterator with the ability to
directly access any element of the container, i.e., to jump forward or
backward by an arbitrary number of elements.

Fig. 22.6 | lterator categories.

Sequence containers (first class)

vector random access
deque random access
Tist bidirectional

Associative containers (first class)

set bidirectional
multiset bidirectional
map bidirectional
multimap bidirectional

Fig. 22.8 | lterator types supported by each
container. (Part | of 2.)

Container adapters

stack no iterators supported
queue no iterators supported
priority_queue no iterators supported

Fig. 22.8 | lterator types supported by each
container. (Part 2 of 2.)

iterator forward read/write
const_iterator forward read
reverse_iterator backward read/write

const_reverse_iterator backward read

Fig. 22.9 | Iterator typedefs.
Predefined iterator typedefs
o found In the class definitions of the STL containers.
Not every typedef is defined for every container.

Use const versions of the iterators for traversing read-only
containers.

Use reverse iterators to traverse containers in the reverse
direction.

Introduction to Algorithms

= STL algorithms can be used generically across a variety of
containers.

m STL provides many algorithms to manipulate containers.
o Inserting, deleting, searching, sorting etc.

m The algorithms operate on container elements only indirectly
through iterators.

= Many algorithms operate on sequences of elements defined by
pairs of iterators
o one pointing to the first element of the sequence
o one pointing to one element past the last element

Introduction to Algorithms

Algorithms often return iterators that indicate the
results of the algorithms.

Algorithm find

o locates an element and returns an iterator to that element.

o If the element is not found, T1nd returns the “one past the
end” iterator.

The £1nd algorithm can be used with any first-class

STL container.

Some algorithms demand powerful iterators; e.g.,
sort demands random-access iterators.

Introduction to Algorithms

m Mutating-sequence algorithms

o the algorithms that result in modifications of the containers
to which the algorithms are applied.

= Non-modifying sequence algorithms

o the algorithms that do not result in modifications of the
containers to which they’re applied.

Modifying Algorithms

copy partition replace_copy stable_partition
copy_backward random_shuffle replace_copy_if swap

i1l remove replace_if swap_ranges
fill_n remove_copy reverse transform
generate remove_copy_if reverse_copy unique
generate_n remove_if rotate unique_copy
iter_swap replace rotate_copy

Fig. 22.11 | Mutating-sequence algorithms.

Non-modifying Algorithms
Nomosbgequsois

adjacent_find equal find_end mismatch
count find find_first_of search
count_if find_each find_if search_n

Fig. 22.12 | Nonmodifying sequence algorithms.

