
Nirmalya Roy

School of Electrical Engineering and Computer Science
Washington State University

Cpt S 122 – Data Structures

Abstract Data Types

Abstract Data Types (ADTs)

 ADT is a set of objects together with a set of operations
 Abstract

 implementation of operations is not specified in ADT definition

 E.g., List

 Operations on a list: Insert, delete, search, sort

 C++ class are perfect for ADTs

 Can change ADT implementation details without
breaking code that uses the ADT

Abstract Data Types (ADTs) (cont’d)

 Lists

 Stacks

 Queues

The List ADT

 List of size N: A0, A1, …, AN-1

 Each element Ak has a unique position k in the list

 Elements can be arbitrarily complex

 Operations

 insert(X,k)

 remove(k)

 find(X)

 findKth(k)

 printList()

The List ADT (cont’d)

 If the list is 34, 12, 52, 16 and 12

 find(52) might return 2

 insert(x, 2) might make the list into 34, 12, x, 52, 16, 12

 remove(52) might turn the list into 34, 12, x, 16, 12

Stack ADT

 Stack is a list where insert and remove take place
only at the “top”

 Operations

 Push – inserts element on top of the stack
 insertAtFront()

 Pop – removes and returns element from top of the
stack
 removeAtFront()

 Top – returns element at the top of the stack

 LIFO (Last In First Out)

3

1

7

9

2top

Queue ADT

 Queue is a list where insert takes place at the back,
but remove takes place at the front

 Operations

 Enqueue – inserts element at the back of queue
 insertAtBack()

 Dequeue – removes and returns element from the front
of queue
 removeAtFront()

 FIFO (First In First Out)

5 7 2 6 3 2 8

front back

Dequeue here Enqueue here

Lists Using Arrays

 Simple array vs. vector class in C++

 Estimating maximum size

 Operations

 insert(X, k) – O(N)

 remove(k) – O(N)

 find(X) – O(N)

 findKth(k) – O(1)

 printList() – O(N)

Lists Using Arrays (cont’d)

 Array implementation

 printList() in linear time, findKth(k) operation takes
constant time

 insertion() and deletion() are potentially expensive
based on where those occur
 Front

 Middle

 End

 Array is not a good option
 Alternative is Linked List

Lists Using Linked List

 Elements are not stored in contiguous memory

 Not necessarily adjacent in memory

 Nodes in list consist of data element and next
pointer

 Each node contains the element and a link to a node
containing its successor

 Link is called as next link

 Last node’s next link points to NULL

Lists Using Linked List (cont’d)

 Where a change is to be made if known, inserting and
removing an item from a linked list does not require
moving lots of items

 Involves only a constant number of changes to the node
links

 Special Cases:

 adding to the front or removing the first item: constant
time operation

 adding at the end or removing the last item: constant time
operation
 Removing the last item is trickier

 Find out the next-to-last item, change its next link to NULL, and
then update the link that maintains the last node

Lists Using Linked List (cont’d)
 Operations

 Insert(X, A) – O(1) (if we are already at the position to insert X and
have another pointer pointing at previous node)
 Only change of two pointers

 Remove(A) – O(1) (if we are already pointing at A and have
another pointer pointing at previous node)
 Only change of one pointer

Lists Using Linked List (cont’d)

 Operations

 find(X) – O(N)

 findKth(k) – O(N)

 printList – O(N)

 Start at the first node in the list and then traverse
the list following the next links

 find(X) – O(N)

 printList – O(N)

 findKth(k) operation is no longer quite as efficient
as an array implementation

 It takes O(k) time and works by traversing down the list

Doubly-Linked List

 Singly-linked list

 insert(X, A) and remove(X) require pointer to node just
before X

 Doubly-linked list

 Also keep pointer to previous node

Doubly-Linked List (cont’d)

 insert(X, A)

 remove(X)

 Problems with operations at ends of list
 Need to take care of special cases

newA = new Node(A);

newA->prev = X->prev;

newA->next = X;

X->prev->next = newA;

X->prev = newA;

X->prev->next = X->next;

X->next->prev = X->prev;

Sentinel Nodes

 Dummy head and tail nodes to avoid special cases at
ends of list

 Doubly-linked list with sentinel nodes

 Empty doubly-linked list with sentinel nodes

Lists Using STL

 Two popular implementation of the List ADT

 The vector provides a growable array implementation of
the List ADT
 Advantage: it is indexable in constant time

 Disadvantage: insertion and deletion are computationally
expensive

 The list provides a doubly linked list implementation of
the List ADT
 Advantage: insertion and deletion are cheap provided that the

position of the changes are known

 Disadvantage: list is not easily indexable

 Vector and list are class templates

 Can be instantiated with different type of items

Lists Using STL (cont’d)

 vector<Object>

 Array-based implementation

 findKth – O(1)

 insert and remove – O(N)
 Unless change at end of vector

 list<Object>

 Doubly-linked list with sentinel nodes

 findKth – O(N)

 insert and remove – O(1)
 If position of change is known

 Both require O(N) for search

Common Container Methods

 int size() const

 Return number of elements in container

 void clear()

 Remove all elements from container

 bool empty()

 Return true if container has no elements, otherwise
return false

Vector and List Methods

 Both vector and list support adding and removing from
the end of the list and accessing the front item in the
list in constant time

 void push_back(const Object & x)

 Add x to end of list

 void pop_back()

 Remove object at end of list

 const Object & back() const

 Return object at end of list

 const Object & front() const

 Return object at front of list

List-Only Methods

 A doubly linked list allows an efficient changes at the
front, but a vector does not, the following two methods
are only available for list

 void push_front(const Object & x)

 Add x to front of list

 void pop_front()

 Remove object at front of list

Vector-Only Methods
 The vector has its own set of methods

 Two methods allow efficient indexing

 Other two methods to view and change internal capacity

 Object & operator[](int idx)

 Return object at index idx in vector with no bounds-checking

 Object & at(int idx)

 Return object at index idx in vector with bounds-checking

 int capacity() const

 Return internal capacity of vector

 void reserve(int newCapacity)

 Set new capacity for vector (avoid expansion)

C++ Standard Template Library (STL)

 Implementation of common data structures

 Available in C++ library, known as Standard Template
Library (STL)

 List, stack, queue, …

 Generally these data structures are called containers or
collections

 WWW resources

 www.sgi.com/tech/stl

 www.cppreference.com/cppstl.html

http://www.sgi.com/tech/stl
http://www.cppreference.com/cppstl.html

