WASHINGTON STATE
G (UNIVERSITY
h

CptS 122 - Data Structures

Abstract Data Types

Nirmalya Roy

School of Electrical Engineering and Computer Science
Washington State University

Abstract Data Types (ADTs)

ADT is a set of objects together with a set of operations

o Abstract

m implementation of operations is not specified in ADT definition
m E.g., List

o Operations on a list: Insert, delete, search, sort
C++ class are perfect for ADTs

Can change ADT implementation details without
breaking code that uses the ADT

Abstract Data Types (ADTs) (cont'd)

m Lists
m Stacks

m Queues

The List ADT

m Listofsize N: Ay, A, ..., Ay
m Each element A, has a unique position k in the list
m Elements can be arbitrarily complex

m Operations
o insert(X,k)
remove(k)
find(X)
findKth(k)
printList()

O O O O

The List ADT (cont’d)

m |f thelistis 34, 12,52, 16 and 12
o find(52) might return 2
o insert(x, 2) might make the list into 34, 12, x, 52, 16, 12
o remove(52) might turn the list into 34, 12, x, 16, 12

Stack ADT

m Stack is a list where insert and remove take place
only at the “top”

m Operations
o Push —inserts element on top of the stack

m insertAtFront()

o Pop-—removes and returns element from top of the
stack
m removeAtFront()

o Top —returns element at the top of the stack
m LIFO (Last In First Out) top

Queue ADT

m Queueis a list where insert takes place at the back,
but remove takes place at the front

m Operations
o Enqueue —inserts element at the back of queue
m insertAtBack()

o Dequeue —removes and returns element from the front
of queue
m removeAtFront()

m FIFO (First In First Out)

Dequeue here L2 0 1 2 1 8 |3 [2 [8] Enqueue here

f f

front back

Lists Using Arrays

m Simple array vs. vector class in C++

O Estimating maximum size

m Operations

o insert(X, k) — O(N)
remove(k) — O(N)
find(X) — O(N)
findKth(k) — O(1)
printList() — O(N)

O O O O

Lists Using Arrays (cont'd)

m Array implementation

o printList() in linear time, findKth(k) operation takes
constant time

o insertion() and deletion() are potentially expensive
based on where those occur

m Front
m Middle
m End

O Array is not a good option
m Alternative is Linked List

Lists Using Linked List

m Elements are not stored in contiguous memory

O

Not necessarily adjacent in memory

m Nodes in list consist of data element and next

pointer
o Each node contains the element and a link to a node
containing its successor
o Linkis called as next link
o Last node’s next link points to NULL
node
Ao As 4+ A4 —

Lists Using Linked List (cont'd)

Where a change is to be made if known, inserting and

removing an item from a linked list does not require
moving lots of items

o Involves only a constant number of changes to the node
links

Special Cases:

o adding to the front or removing the first item: constant
time operation

O adding at the end or removing the last item: constant time
operation
m Removing the last item is trickier

m Find out the next-to-last item, change its next link to NULL, and
then update the link that maintains the last node

Lists Using Linked List (cont'd)

Operations

o Insert(X, A) — O(1) (if we are already at the position to insert X and
have another pointer pointing at previous node)

m Only change of two pointers

Y

S
A
|

AO S Al \" """""" Az e A3

o Remove(A)— O(1) (if we are already pointing at A and have
another pointer pointing at previous node)
m Only change of one pointer

T

AO > A] /- - e AQ — A3 > A4 = B 1

Lists Using Linked List (cont'd)

m Operations
o find(X) — O(N)
o findKth(k) — O(N)
o printList — O(N)
m Start at the first node in the list and then traverse
the list following the next links
o find(X) — O(N)
o printList— O(N)
m findKth(k) operation is no longer quite as efficient
as an array implementation
o It takes O(k) time and works by traversing down the list

Doubly-Linked List

m Singly-linked list

o insert(X, A) and remove(X) require pointer to node just
before X

m Doubly-linked list

o Also keep pointer to previous node

Doubly-Linked List (cont’d)

m insert(X,A) |newA = new Node (A) ;
newA->prev = X->prev;
newA->next = X;
X->prev->next = newA;
X->prev = newiA;

X->next;
X->prev;

B remove(X) |X->prev->next
X->next->prev

m Problems with operations at ends of list
o Need to take care of special cases

Sentinel Nodes

@ Dummy head and tail nodes to avoid special cases at
ends of list

m Doubly-linked list with sentinel nodes

a b =

=T <

\ head tail /

m Empty doubly-linked list with sentinel nodes

G T

r_ -~

heyak /tail

Lists Using STL

m Two popular implementation of the List ADT

o The vector provides a growable array implementation of
the List ADT
m Advantage: it is indexable in constant time

m Disadvantage: insertion and deletion are computationally
expensive

o The list provides a doubly linked list implementation of
the List ADT

m Advantage: insertion and deletion are cheap provided that the
position of the changes are known

m Disadvantage: list is not easily indexable

m Vector and list are class templates

o Can be instantiated with different type of items

Lists Using STL (cont’'d)

m vector<Object>
o Array-based implementation
o findKth-0(1)
o insert and remove — O(N)
m Unless change at end of vector

B list<Object>
o Doubly-linked list with sentinel nodes
o f£indKth- O(N)
0 insertand remove—0O(1)
m [f position of change is known

m Both require O(N) for search

Common Container Methods

m int size() const
o Return number of elements in container

B void clear ()

o Remove all elements from container

m bool empty()

o Return true if container has no elements, otherwise
return false

Vector and List Methods

Both vector and list support adding and removing from

the end of the list and accessing the front item in the
list in constant time

void push back (const Object & x)
o Add x to end of list

void pop back ()

o Remove object at end of list

const Object & back() const

o Return object at end of list

const Object & front() const

o Return object at front of list

List-Only Methods

m A doubly linked list allows an efficient changes at the

front, but a vector does not, the following two methods
are only available for list

void push front(const Object & x)
o Add x to front of list
® void pop front ()

o Remove object at front of list

Vector-Only Methods

The vector has its own set of methods
o Two methods allow efficient indexing
o Other two methods to view and change internal capacity

Object & operator[] (int idx)

o Return object at index idx in vector with no bounds-checking
Object & at(int idx)

o Return object at index idx in vector with bounds-checking
int capacity() const

o Return internal capacity of vector

void reserve (int newCapacity)

o Set new capacity for vector (avoid expansion)

C++ Standard Template Library (STL)

m Implementation of common data structures

o Available in C++ library, known as Standard Template
Library (STL)

o List, stack, queue, ...

o Generally these data structures are called containers or
collections

m WWW resources

o www.sgi.com/tech/stl

o www.cppreference.com/cppstl.html

http://www.sgi.com/tech/stl
http://www.cppreference.com/cppstl.html

