
Nirmalya Roy

School of Electrical Engineering and Computer Science
Washington State University

Cpt S 122 – Data Structures

Abstract Data Types

Abstract Data Types (ADTs)

 ADT is a set of objects together with a set of operations
 Abstract

 implementation of operations is not specified in ADT definition

 E.g., List

 Operations on a list: Insert, delete, search, sort

 C++ class are perfect for ADTs

 Can change ADT implementation details without
breaking code that uses the ADT

Abstract Data Types (ADTs) (cont’d)

 Lists

 Stacks

 Queues

The List ADT

 List of size N: A0, A1, …, AN-1

 Each element Ak has a unique position k in the list

 Elements can be arbitrarily complex

 Operations

 insert(X,k)

 remove(k)

 find(X)

 findKth(k)

 printList()

The List ADT (cont’d)

 If the list is 34, 12, 52, 16 and 12

 find(52) might return 2

 insert(x, 2) might make the list into 34, 12, x, 52, 16, 12

 remove(52) might turn the list into 34, 12, x, 16, 12

Stack ADT

 Stack is a list where insert and remove take place
only at the “top”

 Operations

 Push – inserts element on top of the stack
 insertAtFront()

 Pop – removes and returns element from top of the
stack
 removeAtFront()

 Top – returns element at the top of the stack

 LIFO (Last In First Out)

3

1

7

9

2top

Queue ADT

 Queue is a list where insert takes place at the back,
but remove takes place at the front

 Operations

 Enqueue – inserts element at the back of queue
 insertAtBack()

 Dequeue – removes and returns element from the front
of queue
 removeAtFront()

 FIFO (First In First Out)

5 7 2 6 3 2 8

front back

Dequeue here Enqueue here

Lists Using Arrays

 Simple array vs. vector class in C++

 Estimating maximum size

 Operations

 insert(X, k) – O(N)

 remove(k) – O(N)

 find(X) – O(N)

 findKth(k) – O(1)

 printList() – O(N)

Lists Using Arrays (cont’d)

 Array implementation

 printList() in linear time, findKth(k) operation takes
constant time

 insertion() and deletion() are potentially expensive
based on where those occur
 Front

 Middle

 End

 Array is not a good option
 Alternative is Linked List

Lists Using Linked List

 Elements are not stored in contiguous memory

 Not necessarily adjacent in memory

 Nodes in list consist of data element and next
pointer

 Each node contains the element and a link to a node
containing its successor

 Link is called as next link

 Last node’s next link points to NULL

Lists Using Linked List (cont’d)

 Where a change is to be made if known, inserting and
removing an item from a linked list does not require
moving lots of items

 Involves only a constant number of changes to the node
links

 Special Cases:

 adding to the front or removing the first item: constant
time operation

 adding at the end or removing the last item: constant time
operation
 Removing the last item is trickier

 Find out the next-to-last item, change its next link to NULL, and
then update the link that maintains the last node

Lists Using Linked List (cont’d)
 Operations

 Insert(X, A) – O(1) (if we are already at the position to insert X and
have another pointer pointing at previous node)
 Only change of two pointers

 Remove(A) – O(1) (if we are already pointing at A and have
another pointer pointing at previous node)
 Only change of one pointer

Lists Using Linked List (cont’d)

 Operations

 find(X) – O(N)

 findKth(k) – O(N)

 printList – O(N)

 Start at the first node in the list and then traverse
the list following the next links

 find(X) – O(N)

 printList – O(N)

 findKth(k) operation is no longer quite as efficient
as an array implementation

 It takes O(k) time and works by traversing down the list

Doubly-Linked List

 Singly-linked list

 insert(X, A) and remove(X) require pointer to node just
before X

 Doubly-linked list

 Also keep pointer to previous node

Doubly-Linked List (cont’d)

 insert(X, A)

 remove(X)

 Problems with operations at ends of list
 Need to take care of special cases

newA = new Node(A);

newA->prev = X->prev;

newA->next = X;

X->prev->next = newA;

X->prev = newA;

X->prev->next = X->next;

X->next->prev = X->prev;

Sentinel Nodes

 Dummy head and tail nodes to avoid special cases at
ends of list

 Doubly-linked list with sentinel nodes

 Empty doubly-linked list with sentinel nodes

Lists Using STL

 Two popular implementation of the List ADT

 The vector provides a growable array implementation of
the List ADT
 Advantage: it is indexable in constant time

 Disadvantage: insertion and deletion are computationally
expensive

 The list provides a doubly linked list implementation of
the List ADT
 Advantage: insertion and deletion are cheap provided that the

position of the changes are known

 Disadvantage: list is not easily indexable

 Vector and list are class templates

 Can be instantiated with different type of items

Lists Using STL (cont’d)

 vector<Object>

 Array-based implementation

 findKth – O(1)

 insert and remove – O(N)
 Unless change at end of vector

 list<Object>

 Doubly-linked list with sentinel nodes

 findKth – O(N)

 insert and remove – O(1)
 If position of change is known

 Both require O(N) for search

Common Container Methods

 int size() const

 Return number of elements in container

 void clear()

 Remove all elements from container

 bool empty()

 Return true if container has no elements, otherwise
return false

Vector and List Methods

 Both vector and list support adding and removing from
the end of the list and accessing the front item in the
list in constant time

 void push_back(const Object & x)

 Add x to end of list

 void pop_back()

 Remove object at end of list

 const Object & back() const

 Return object at end of list

 const Object & front() const

 Return object at front of list

List-Only Methods

 A doubly linked list allows an efficient changes at the
front, but a vector does not, the following two methods
are only available for list

 void push_front(const Object & x)

 Add x to front of list

 void pop_front()

 Remove object at front of list

Vector-Only Methods
 The vector has its own set of methods

 Two methods allow efficient indexing

 Other two methods to view and change internal capacity

 Object & operator[](int idx)

 Return object at index idx in vector with no bounds-checking

 Object & at(int idx)

 Return object at index idx in vector with bounds-checking

 int capacity() const

 Return internal capacity of vector

 void reserve(int newCapacity)

 Set new capacity for vector (avoid expansion)

C++ Standard Template Library (STL)

 Implementation of common data structures

 Available in C++ library, known as Standard Template
Library (STL)

 List, stack, queue, …

 Generally these data structures are called containers or
collections

 WWW resources

 www.sgi.com/tech/stl

 www.cppreference.com/cppstl.html

http://www.sgi.com/tech/stl
http://www.cppreference.com/cppstl.html

