
Nirmalya Roy

School of Electrical Engineering and Computer Science
Washington State University

Cpt S 122 – Data Structures

Functions Review

Topics

 Introduction

 Program Modules

 Functions

 Definitions

 Math Library Functions

 Function Prototypes
 Compilation Errors, Arguments coercion

 Data Structure in Function Call
 Stack and Stack Frame

 Standard Library Headers

 Arguments Passing By Value and By Reference

 Storage Classes

Introduction

 Most computer programs that solve real-world
problems are quite large.

 Experience has shown that the best way to develop
and maintain a large program is to construct it from
smaller pieces or modules, each of which is more
manageable than the original program.

 This technique is called divide and conquer.

 Key features of the C language that facilitate the
design, implementation, operation and maintenance
of large programs.

Program Modules

 Modules in C are called functions.

 C programs are typically written by combining new

functions you write with prepackaged functions

available in the C standard library.

 The C standard library provides a rich collection of

functions

 perform common mathematical calculations, string

manipulations, character manipulations, input/output,

and many other useful operations.

Software Engineering Observations

 Familiarize yourself with the rich collections of
functions in the C standard library.

 Avoid reinventing the wheel

 When possible use C standard library functions instead
of writing new functions.

 Using the functions in the C standard library helps
make program more portable.

Program Modules (Cont.)

 The functions printf, scanf and pow are standard

library functions.

 You can write your own functions to define tasks that may

be used at many points in a program.

 These are sometimes referred to as programmer-defined

functions.

 The statements defining the function are written only

once, and the statements are hidden from other functions.

 Functions are invoked by a function call, which specifies

the function name

 provides information (as arguments) that the called function

needs to perform its designated task.

Program Modules (Cont.)

 A common analogy for this is the hierarchical form of
management.

 A boss (the calling function or caller) asks a worker (the
called function) to perform a task and report back when
the task is done (Fig. 5.1).

 For example, a function needing to display information on
the screen calls the worker function printf to perform
that task
 printf displays the information and reports back—or returns—

to the calling function when its task is completed.

 The boss function does not know how the worker function
performs its designated tasks.

Program Modules (Cont.)

 The worker may call other worker functions, and the

boss will be unaware of this.

 We’ll soon see how this “hiding” of implementation

details promotes good software engineering.

 Figure 5.1 shows a boss function communicating

with several worker functions in a hierarchical

manner.

 Note that worker1 acts as a boss function to

worker4 and worker5.

 Relationships among functions may differ from the

hierarchical structure shown in this figure.

Functions

 Functions allow you to modularize a program.

 All variables defined in function definitions are local

variables

 They can be accessed only in the function in which they’re

defined.

 Most functions have a list of parameters that provide

the means for communicating information between

functions.

 A function’s parameters are also local variables of

that function.

Functions (Cont.)

 There are several motivations for “functionalizing” a program.

 The divide-and-conquer approach makes program development more
manageable.

 Another motivation is software reusability—using existing functions as
building blocks to create new programs.

 Software reusability is a major factor in the object-oriented programming
 C++, Java and C# (pronounced “C sharp”).

 We use abstraction each time we use standard library functions like
printf, scanf and pow.

 A third motivation is to avoid repeating code in a program.

 Packaging code as a function allows the code to be executed from other
locations in a program simply by calling the function.

Software Engineering Observations

 In programs containing many functions, main is often
implemented as a group of calls to functions that
perform the bulk of the program’s work.

 Each function should be limited to perform a single,
well-defined task, and function name should express
that task

 Facilitates abstraction and promotes software reusability.

 Break a multi-tasking function into several smaller
functions

 This is known as decomposition.

Function Definitions

 A program may consist of a function called main
that called standard library functions to accomplish

its tasks.

 We now consider how to write custom functions.

 Consider a program that uses a function square to

calculate and print the squares of the integers from 1

to 10 (Fig. 5.3).

Function Example (Cont.)

 Function square is invoked or called in main within the

printf statement (line 14)

printf("%d ", square(x)); // function call

 Function square receives a copy of the value of x in the

parameter y (line 21).

 Then square calculates y * y.

 The result is passed back returned to function printf in

main where square was invoked (line 14), and

printf displays the result.

 This process is repeated 10 times using the for statement.

Function (Cont.)

 The definition of function square shows that square
expects an integer parameter y.

 The keyword int preceding the function name (line 21)

indicates that square returns an integer result.

 The return statement in square passes the value of the

expression y * y (that is, the result of the calculation) back to

the calling function.

 Line 5
int square(int y); // function prototype

is a function prototype.

 The int in parentheses informs the compiler that square
expects to receive an integer value from the caller.

Function Definitions (Cont.)

 The int to the left of the function name square informs
the compiler that square returns an integer result to the
caller.

 The compiler refers to the function prototype to check that
any calls to square (line 14) contain the correct return
type, the correct number of arguments, the correct
argument types, and that the arguments are in the correct
order.

 The format of a function definition is
return-value-type function-name(parameter-list)
{

definitions
statements

}

Function Definitions (Cont.)

 The function-name is any valid identifier.

 The return-value-type is the data type of the result

returned to the caller.

 The return-value-type void indicates that a

function does not return a value.

 Together, the return-value-type, function-name and

parameter-list are sometimes referred to as the

function header.

Function Definitions (Cont.)

 The parameter-list is a comma-separated list that

specifies the parameters received by the function

when it’s called.

 If a function does not receive any values,

parameter-list is void.

 A type must be listed explicitly for each parameter.

Software Engineering Observations

 The function prototype, function header and function
calls should all agree in the number, type, and order of
arguments and parameters, and in the type of return
value.

Function Definitions (Cont.)

 There are three ways to return control from a called

function to the point at which a function was

invoked.

 If the function does not return a result, control is

returned simply when the function-ending

 right brace is reached, or

 by executing the statement

return;

 If the function does return a result, the statement
return expression;

returns the value of expression to the caller.

Function Definitions (Cont.)

main’s Return Type

 Notice that main has an int return type.

 The return value of main is used to indicate whether the

program executed correctly.

 In earlier versions of C, it’s been explicitly placed

return 0;

 at the end of main—0 indicates that a program ran

successfully.

 The C standard indicates that main implicitly returns 0.

Math Library Functions

 Math library functions allow you to perform certain
common mathematical calculations.

 Functions are normally used in a program by writing the
name of the function followed by a left parenthesis
followed by the argument (or a comma-separated list of
arguments) of the function followed by a right parenthesis.

 For example, a programmer desiring to calculate and print
the square root of 900.0 you might write

printf("%.2f", sqrt(900.0));

 When this statement executes, the math library function
sqrt is called to calculate the square root of the number
contained in the parentheses (900.0).

Math Library Functions (Cont.)

 The number 900.0 is the argument of the sqrt
function.

 The preceding statement would print 30.00.

 The sqrt function takes an argument of type

double and returns a result of type double.

 All functions in the math library that return floating-

point values return the data type double.

 Note that double values, like float values, can

be output using the %f conversion specification.

Math Library Functions (Cont.)

 #include <math.h> when using functions from Math
Library

 Function arguments may be constants, variables, or
expressions.

 If c1 = 13.0, d = 3.0 and f = 4.0, then the
statement

printf("%.2f", sqrt(c1 + d * f));

 calculates and prints the square root of 13.0 + 3.0
* 4.0 = 25.0, namely 5.00.

 In the figure, the variables x and y are of type
double.

Function Prototypes: A Deeper Look

 An important feature of C is the function prototype.

 This feature was borrowed from C++.

 The compiler uses function prototypes to validate

function calls.

Function Example

Function maximum

 Our second example uses a programmer-defined

function maximum to determine and return the

largest of three integers (Fig. 5.4).

 Next, they’re passed to maximum (line 19), which

determines the largest integer.

 This value is returned to main by the return
statement in maximum (line 36).

Function Prototypes: A Deeper Look (Cont.)

 The function prototype for maximum in Fig. 5.4

(line 5) is
// function prototype

int maximum(int x, int y, int z);

 It states that maximum takes three arguments of

type int and returns a result of type int.

 Notice that the function prototype is the same as the

first line of maximum’s function definition.

Function Prototypes: A Deeper Look (Cont.)

Compilation Errors

 A function call that does not match the function

prototype is a compilation error.

 An error is also generated if the function prototype

and the function definition disagree.

 For example, in Fig. 5.4, if the function prototype

had been written
void maximum(int x, int y, int z);

 the compiler would generate an error because the void
return type in the function prototype would differ from

the int return type in the function header.

Function Prototypes: A Deeper Look (Cont.)

Argument Coercion and “Usual Arithmetic Conversion
Rules”

 Another important feature of function prototypes is the
coercion of arguments, i.e., the forcing of arguments to
the appropriate type.

 For example, the math library function sqrt can be
called with an integer argument even though the
function prototype in <math.h> specifies a double
parameter, and the function will still work correctly.

 The statement
printf("%.3f\n", sqrt(4));

correctly evaluates sqrt(4) and prints the value
2.000.

Function Prototypes: A Deeper Look (Cont.)

 The function prototype causes the compiler to
convert a copy of the integer value 4 to the double
value 4.0 before the copy is passed to sqrt.

 In general, argument values that do not correspond
precisely to the parameter types in the function
prototype are converted to the proper type before
the function is called.

 These conversions can lead to incorrect results if C’s
usual arithmetic conversion rules are not followed.

 These rules specify how values can be converted to
other types without losing data.

Function Prototypes: A Deeper Look (Cont.)

 In our sqrt example above, an int is

automatically converted to a double without

changing its value.

 However, a double converted to an int truncates

the fractional part of the double value, thus

changing the original value.

 Converting large integer types to small integer types

(e.g., long to short) may also result in changed

values.

Function Prototypes: A Deeper Look (Cont.)

 The usual arithmetic conversion rules automatically

apply to expressions containing values of two or

more data types (also referred to as mixed-type

expressions) and are handled for you by the

compiler.

 In a mixed-type expression, the compiler makes a

temporary copy of the value that needs to be

converted then converts the copy to the “highest”

type in the expression—the original value remains

unchanged.

Function Prototypes: A Deeper Look (Cont.)

 The usual arithmetic conversion rules for a mixed-

type expression containing at least one floating-

point value are:

 If one of the values is a long double, the other is

converted to a long double.

 If one of the values is a double, the other is converted to a

double.

 If one of the values is a float, the other is converted to a

float.

Function Call Stack and Stack Frames

 To understand how C performs function calls, we first
need to consider a data structure (i.e., collection of related
data items) known as a stack.

 Think of a stack as analogous to a pile of dishes.

 When a dish is placed on the pile, it’s normally placed at
the top (referred to as pushing the dish onto the stack).

 Similarly, when a dish is removed from the pile, it’s
normally removed from the top (referred to as popping the
dish off the stack).

 Stacks are known as last-in, first-out (LIFO) data
structures—the last item pushed (inserted) on the stack is
the first item popped (removed) from the stack.

Function Call Stack and Stack Frames (Cont.)

 An important mechanism for computer science
students to understand is the function call stack
(sometimes referred to as the program execution
stack).

 This data structure—working “behind the scenes”—
supports the function call/return mechanism.

 It also supports the creation, maintenance and
destruction of each called function’s automatic
variables.

Function Call Stack and Stack Frames (Cont.)

 As each function is called, it may call other

functions, which may call other functions—all

before any function returns.

 Each function eventually must return control to the

function that called it.

 So, we must keep track of the return addresses that

each function needs to return control to the function

that called it.

 The function call stack is the perfect data structure

for handling this information.

Function Call Stack and Stack Frames (Cont.)

 Each time a function calls another function, an entry

is pushed onto the stack.

 This entry, called a stack frame, contains the return

address that the called function needs in order to

return to the calling function.

 If the called function returns, instead of calling

another function before returning, the stack frame

for the function call is popped, and control transfers

to the return address in the popped stack frame.

Function Call Stack and Stack Frames (Cont.)

 The stack frames have another important

responsibility.

 Most functions have automatic variables—parameters

and some or all of their local variables.

 Automatic variables need to exist while a function is

executing.

 But when a called function returns to its caller, the

called function’s automatic variables need to “go

away.”

 The called function’s stack frame is a perfect place to

reserve the memory for automatic variables.

Function Call Stack and Stack Frames (Cont.)

 Of course, the amount of memory in a computer is

finite, so only a certain amount of memory can be

used to store stack frames on the function call stack.

 If more function calls occur than can have their

stack frames stored on the function call stack, a fatal

error known as a stack overflow occurs.

Function Call Stack and Stack Frames (Cont.)

Function Call Stack in Action

 Now let’s consider how the call stack supports the

operation of a square function called by main

 First the operating system calls main—this pushes a

stack frame onto the stack.

 The stack frame tells main how to return to the

operating system (i.e., transfer to return address R1)

and contains the space for main’s automatic variable

(i.e., a, which is initialized to 10).

Function Call Stack and Stack Frames (Cont.)

 Function main—before returning to the operating

system—now calls function square.

 This causes a stack frame for square to be pushed

onto the function call stack (Fig. 5.8).

 This stack frame contains the return address that

square needs to return to main (i.e., R2) and the

memory for square’s automatic variable (i.e., x).

Function Call Stack and Stack Frames (Cont.)

 After square calculates the square of its argument,

it needs to return to main—and no longer needs the

memory for its automatic variable x.

 So the stack is popped—giving square the return

location in main (i.e., R2) and losing square’s

automatic variable.

 Figure 5.9 shows the function call stack after

square’s stack frame has been popped.

Function Call Stack and Stack Frames (Cont.)

 Function main now displays the result of calling

square.

 Reaching the closing right brace of main causes its

stack frame to be popped from the stack, gives main

the address it needs to return to the operating system

(i.e., R1 in Fig. 5.7) and causes the memory for

main’s automatic variable (i.e., a) to become

unavailable.

Headers

 Each standard library has a corresponding header

 contains the function prototypes for all the functions in that
library.

 definitions of various data types and constants needed by those
functions.

 You can create custom headers.

 A programmer-defined header can be included by using the

#include preprocessor directive.

 For example, assume the prototype for our square

function was located in the header square.h

 we have to include that header in our program by using the

following directive at the top of the program:

#include "square.h"

Passing Arguments By Value and By Reference

 In many programming languages, there are two ways to
pass arguments—pass-by-value and pass-by-reference.

 When arguments are passed by value, a copy of the
argument’s value is made and passed to the called
function.

 Changes to the copy do not affect an original variable’s
value in the caller.

 When an argument is passed by reference, the caller
allows the called function to modify the original variable’s
value.

 Pass-by-value should be used whenever the called function
does not need to modify the value of the caller’s original
variable.

Passing Arguments By Value and By Reference(Cont.)

 This prevents the accidental side effects (variable

modifications) that so greatly hinder the development

of correct and reliable software systems.

 Pass-by-reference should be used only with trusted

called functions that need to modify the original

variable.

 In C, all arguments are passed by value.

 Simulate pass-by-reference by using the address operator

and the indirection operator

Storage Classes

 We use identifiers for variable names.

 The attributes of variables include name, type, size and value.

 We also use identifiers as names for user-defined functions.

 Actually, each identifier in a program has other attributes,
including storage class, storage duration, scope and linkage.

 C provides the storage class specifiers: auto, register,
extern and static.

 An identifier’s storage class determines its storage duration,
scope and linkage.

 An identifier’s storage duration is the period during which the
identifier exists in memory.

Storage Classes (Cont.)

 Some exist briefly, some are repeatedly created and
destroyed, and others exist for the program’s entire
execution.

 An identifier’s scope is where the identifier can be
referenced in a program.

 Some can be referenced throughout a program, others from
only portions of a program.

 An identifier’s linkage determines for a multiple-source-file
program whether the identifier is known only in the current
source file or in any source file with proper declarations.

Storage Classes (Cont.)

Local Variables

 Only variables can have automatic storage duration.

 A function’s local variables (those declared in the

parameter list or function body) normally have

automatic storage duration.

 Keyword auto explicitly declares variables of

automatic storage duration.

Storage Classes (Cont.)

 Global variables are created by placing variable
declarations outside any function definition, and
they retain their values throughout the execution of
the program.

 Global variables and functions can be referenced by
any function that follows their declarations or
definitions in the file.

 This is one reason for using function prototypes—
when we include stdio.h in a program that calls
printf, the function prototype is placed at the
start of our file to make the name printf known to
the rest of the file.

Storage Classes (Cont.)

 Local variables declared with the keyword static
are still known only in the function in which they’re

defined, but unlike automatic variables, static
local variables retain their value when the function

is exited.

 The next time the function is called, the static
local variable contains the value it had when the

function last exited.

 The following statement declares local variable

count to be static and initializes it to 1.
 static int count = 1;

Conclusion

 Function Definitions and Prototypes

 Function Call Stack and Stack Frames

 Passing Arguments By Value and By Reference

 Storage Classes

 Live Code Examples

