
Nirmalya Roy

School of Electrical Engineering and Computer Science
Washington State University

Cpt S 122 – Data Structures

Data Structures
Stacks

Topics

 Stacks
 push, pop, printstack, isEmpty

 Stacks Applications
 Function calls, balancing symbols

 Infix to postfix, postfix evaluation

Stacks

 A stack can be implemented as a constrained version

of a linked list.

 New nodes can be added to a stack and removed

from a stack only at the top.

 For this reason, a stack is referred to as a last-in,

first-out (LIFO) data structure.

 A stack is referenced via a pointer to the top element

of the stack.

 The link member in the last node of the stack is set

to NULL to indicate the bottom of the stack.

 A stack with several nodes

 stackPtr points to the stack’s top element.

 Stacks and linked lists are represented identically.

 The difference between stacks and linked lists is that

insertions and deletions may occur anywhere in a

linked list, but only at the top of a stack.

Stacks (Cont.)

Stacks (Cont.)

 The primary functions used to manipulate a stack are push
and pop.

 Function push creates a new node and places it on top of
the stack.

 Function pop removes a node from the top of the stack,
frees the memory that was allocated to the popped node and
returns the popped value.

Stacks Example

Stacks Example

Stacks Example

Function push

Function push

 Function push places a new node at the top of the

stack.

 The function consists of three steps:

 Create a new node by calling malloc and assign the

location of the allocated memory to newPtr.

 Assign to newPtr->data the value to be placed on the

stack and assign *topPtr (the stack top pointer) to

newPtr->nextPtr

 the link member of newPtr now points to the previous top node.

 Assign newPtr to *topPtr

 *topPtr now points to the new stack top.

push operation

Function pop

Function pop

 Function pop removes a node from the top of the stack.

 Function main determines if the stack is empty before
calling pop.

 The pop operation consists of five steps:

 Assign *topPtr to tempPtr; tempPtr will be used to free
the unneeded memory.

 Assign (*topPtr)->data to popValue to save the value in
the top node.

 Assign (*topPtr)->nextPtr to *topPtr so *topPtr
contains address of the new top node.

 Free the memory pointed to by tempPtr.

 Return popValue to the caller.

pop operation

Function printstack

Function isEmpty

Output

Output

Applications of Stacks

 Stacks have many interesting applications.

 For example, whenever a function call is made, the

called function must know how to return to its

caller, so the return address is pushed onto a stack.

 If a series of function calls occurs, the successive

return values are pushed onto the stack in last-in,

first-out order so that each function can return to its

caller.

Applications of Stacks (Cont.)

 Stacks support recursive function calls in the same
manner as conventional nonrecursive calls.

 Stacks contain the space created for automatic
variables on each invocation of a function.

 When the function returns to its caller, the space for
that function's automatic variables is popped off the
stack, and these variables no longer are known to the
program.

 Stacks are used by compilers in the process of
evaluating expressions and generating machine-
language code.

Applications of Stacks (Cont.)

 Balancing symbols

 Compiler checks for program syntax errors

 Every right brace, bracket, and parenthesis must
correspond to its left counterpart

 The sequence [()] is legal, but [(]) is wrong

 Infix to Postfix Conversion

 Postfix Expressions Evaluations

Balancing Symbols

 Balancing symbols: ((()())(()))

stack<char> s;

while not end of file or input {

read character c

if (c == ‘(’) then

s.push(c)

if (c == ‘)’) then

if (s.empty()) then

error

else

s.pop();

}

if (!s.empty()) then

error

else

okay

 Make an empty stack

 Read characters until end of file

 If a character is an opening symbol,
push it onto to the stack

 If it is a closing symbol, then if the
stack is empty report an error,
otherwise pop the stack

 If the symbol popped is not the
corresponding opening symbol,
then report an error

 At the EOF, the stack is not empty
report an error

Infix to Postfix Conversion

 Infix to Postfix Conversion

 Use a stack to convert an expression in standard form
(infix) into postfix

 Example: Infix expression: ((1 * 2) + 3) + (4 * 5)

 Postfix expression: 1 2 * 3 + 4 5 * +

Infix to Postfix Conversion (Cont.)

 Steps:

 When an operand is read, place it onto the output

 Operators are not immediately output, so save them
somewhere else which is stack
 If a left parenthesis is encountered, stack it

 Start with an initially empty stack
 If we see a right parenthesis, pop the stack, writing symbols until we

encounter a left parenthesis which is popped but not output

 If we see any other symbols of higher priority inside stack, then we pop
the entries from the stack until we find an entry of lower priority

 When popping is done, we the push the operator onto the stack

 Finally, if we read the end of input, pop the stack until it is
empty, writing symbols onto the output

Infix to Postfix Conversion (Cont.)

 Convert the infix expression

 Infix: a + b * c + (d * e + f) * g

 Postfix: a b c * + d e * f + g * +

 Note. We never remove a ‘(‘ from the stack except
when processing a ‘)’

Algorithm

Evaluation of Postfix Expressions
 Evaluation of Postfix expressions

 Infix expression: ((1 * 2) + 3) + (4 * 5)

 Postfix expression: 1 2 * 3 + 4 5 * +

 Unambiguous (no need for parenthesis)

 Infix needs parenthesis or else implicit precedence specification to
avoid ambiguity

 E.g. a + b * c can be (a + b) * c or a + (b * c)

 Postfix expression evaluation uses stack

 E.g. Evaluate 1 2 * 3 + 4 5 * +

 Rule of postfix expression evaluation
 When a number/operand is seen push it onto the stack

 When a operator is seen, the operator is applied to the two numbers
(symbols) that are popped from the stack, and

 Result is pushed onto the stack

Exercise: Infix-to-Postfix Converter

 Write a C program that converts an ordinary infix
arithmetic expression (assume a valid expression is
entered) with a single-digit integers such as

(6 + 2) * 5 – 8 / 4

to a postfix expression. The postfix version of preceding
infix expression is

6 2 + 5 * 8 4 / -

 Solve our textbook Deitel & Deitel Exercise 12.12 (Infix-
to-Postfix converter) problem.

Exercise: Postfix Evaluation

 Write a C program that evaluates a postfix expression
(assume it is valid) such as

6 2 + 5 * 8 4 / -

 Solve our textbook Deitel & Deitel Exercise 12.13
(Postfix Evaluator) problem.

