WASHINGTON STATE
G (UNIVERSITY
h

CptS 122 - Data Structures

Data Structures

Nirmalya Roy

School of Electrical Engineering and Computer Science
Washington State University

Topics

m Introduction
m Self Referential Structures
@ Dynamic Memory Allocation

m Linked List

O 1nsert, delete, 1sEmpty, printList
m Stack

O push, pop

B Queue

O enqueue, dequeue

m Binary Search Tree

O 1nsertNode, 1nOrder, preOrder, postOrder

Introduction

m Fixed-size data structures

o single-subscripted arrays, double-subscripted arrays and
structs.

m Dynamic data structures with sizes that grow and shrink
at execution time

o Linked lists are collections of data items “lined up in a row”
m insertions and deletions are made anywhere in a linked list.

o Stacks are important in compilers and operating systems
m insertions and deletions are made only at one end of a stack—its top.

Introduction

o Queues represent waiting lines
m insertions are made only at the back (also referred to as the tail)
of a queue and deletions are made only from the front (also
referred to as the head) of a queue.
o Binary trees facilitate high-speed searching and sorting of
data
m efficient elimination of duplicate data items,

m representing file system directories and compiling expressions
Into machine language.

m Each of these data structures has many other
Interesting applications.

Introduction

m We’ll discuss each of the major types of data structures
o Implement programs that create and manipulate them.

m In C++ we’ll study data abstraction and abstract data types
(ADT).
o notion of an object (from object-oriented programming) is an
attempt to combine abstractions of data and code.

o ADT is a set of objects together with a set of operations
m e.g., List, Operations on a list: Insert, delete, search, sort

o C++ class are perfect for ADTs

m Enable us to build the data structures in a dramatically
different manner designed for producing software that’s
much easier to maintain and reuse.

Self Referential Structures

m A self-referential structure contains a pointer member
that points to a structure of the same structure type.

m For example, the definition

m struct node {
int data;
struct node *nextPtr;
}: // end struct node

defines a type, struct node.

m A structure of type struct node has two members
o integer member data and pointer member nextPtr.

Self Referential Structures (Cont.)

Member nextPtr points to a structure of type
struct node

o astructure of the same type as the one being declared here,
hence the term “self-referential structure.”

Member nextPtr is referred to as a link

o link a structure of type struct node to another structure
of the same type.

Self-referential structures can be linked together to
form useful data structures

o lists, queues, stacks and trees.

Self Referential Structures (Cont.)

m Two self-referential structure objects linked together
to form a list.

m A slash represents a NULL pointer

o placed in the link member of the second self-referential
structure

o Indicate that the link does not point to another structure.

m A NULL pointer normally indicates the end of a data
structure just as the null character indicates the end
of a string.

Example: Self Referential Structures

15 —p» 10

Fig. 12.1 | Self-referential structures linked together.

Dynamic Memory Allocation

m Creating and maintaining dynamic data structures requires
dynamic memory allocation

o obtain more memory space at execution time to hold new nodes.
o release space no longer needed.

m Functionsmalloc and free, and operator sizeof, are
essential to dynamic memory allocation.

Dynamic Memory Allocation (Cont.)

s Function mal loc takes as an argument the number
of bytes to be allocated
o returns a pointer of type void * (pointer to void) to the
allocated memory.
s Functionmalloc is normally used with the
sizeof operator.

m A void * pointer may be assigned to a variable of
any pointer type.

Dynamic Memory Allocation (Cont.)

m For example, the statement
newPtr = malloc(sizeof(struct node));

o evaluates sizeof (struct node) to determine the
size in bytes of a structure of type struct node,

o allocates a new area in memory of that number of bytes
and stores a pointer to the allocated memory in variable
newPtr.

m The allocated memory is not initialized.
= If no memory is available, malloc returns NULL.

Dynamic Memory Allocation (Cont.)

m Function free deallocates memory

o the memory is returned to the system so that it can be
reallocated in the future.
m To free memory dynamically allocated by the
preceding ma 1 1oc call, use the statement

o free(newPtr);

m C also provides functions cal loc and real loc
for creating and modifying dynamic arrays.

o calloc allocates multiple blocks of storage, each of the
same size.

o real loc changes the already allocated memory size.

Observations

m When using malloc test for a NULL pointer return
value.

m Memory Leak: Not returning dynamically allocated
memory when it’s no longer needed can cause system
to run out of memory prematurely. This is known as
“memory leak”.

o Use free to return the memory to system.

Memory Allocation Process

m C programming language manages memory statically,
automatically, or dynamically.

variables, Function Calls

Local Variables, Automatic
Stack

Free Memory l
Heap

Global & Static Variables

Permanent
C Program Instructions Storage Area

Conceptual view of storage of a C program in memory

Linked Lists

Linked Lists

m A linked list 1s a linear collection of self-referential
structures

o known as nodes, connected by pointer links.
m A linked list Is accessed via a pointer to the first
node of the list.

o Subsequent nodes are accessed via the link pointer
member stored in each node.

o The link pointer in the last node of a list Is set to NULL to
mark the end of the list.

m Data is stored in a linked list dynamically
o each node is created as necessary.

Linked Lists (Cont.)

= A node can contain data of any type including other
struct objects.

m Stacks and queues are also linear data structures,

O

constrained versions of linked lists.

m Trees are nonlinear data structures.
m The size of an array created at compile time is fixed.

O

O

Arrays can become full.

Linked lists become full only when the system has
Insufficient memory to satisfy dynamic storage allocation
requests.

Linked Lists & Array Comparison

Lists of data can be stored in arrays, but linked lists
provide several advantages.

O

A linked list is appropriate when the number of data elements to
be represented in the data structure is unpredictable.

Linked lists are dynamic, so the length of a list can increase or
decrease as necessary.

Provide flexibility in allowing the items to be rearranged
efficiently.

Linked lists can be maintained in sorted order by inserting each
new element at the proper point in the list.

Insertion & deletion in a sorted array can be time consuming

m All the elements following the inserted and deleted elements must be shifted
appropriately.

Linked Lists & Array Comparison (Cont.)

m Linked-list nodes are normally not stored contiguously
In memory.

o Logically, however, the nodes of a linked list appear to be
contiguous.

m The elements of an array are stored contiguously in
memory.

m Linked use more storage than an array with the same
number of items.
o Each item has an additional link field.

m Dynamic overhead incurs the overhead of function
calls.

Linked Lists Functions

m The primary functions of linked lists are Tnhsert and
delete.

m Function 1sEmpty is called a predicate function

o It does not alter the list in any way.

o It determines whether the list is empty (i.e., the pointer to the
first node of the list is NULL).

o If the list is empty, 1 is returned; otherwise, O is returned.
m Function printList prints the list.

Linked Lists Example

startPtr

17 —p 79 —p .. ——p G3

Fig. 12.2 | Linked list graphical representation.

Example of a Pointer to Pointer (Double indirection)

double strtod(const char *nPtr, char **endPtr);

Converts the string nPtr to double.
long strtol(const char *nPtr, char **endPtr, int base);
Converts the string nPtr to Tong.
unsigned long strtoul(const char *nPtr, char **endPtr, int base);

Converts the string nPtr to unsigned Tong.

Fig. 8.5 | String-conversion functions of the general utilities
library.

m The function uses the char ** argument to modify a char * in the calling
function (stringPtr)

m d = strtod(string, &stringPtr)
o indicates that d is assigned the double value converted from string

o stringPtr isassigned the location of the first character after the converted value
in string.

Passing Arguments to Functions by Reference

void swap(int *a, int *b) {
int temp;
temp = *a;
*a = *Db;

*b = temp;

void main(void) {

int x = 3; y 5;

printf(“x = %d, y = %d\n”, x, y);
swap (&x, &y)

printf(“'x = %d, y = %d\n”, x, y);

Linked Lists Example Code

m Manipulates a list of characters.

m Insert a character in the list in alphabetical order
(function 1nsert).

m delete a character from the list (function delete).

Linked Lists Operation Examples

O~ nh WN =

// Fig. 12.3: figl2_03.c

// Inserting and deleting nodes in a Tist
#include <stdio.h>

#include <stdlib.h>

// self-referential structure
struct listNode {
char data; // each listNode contains a character
struct listNode *nextPtr; // pointer to next node
}; // end structure listNode

typedef struct TistNode ListNode; // synonym for struct TistNode

typedef ListNode *ListNodePtr; // synonym for ListNode®
address

// prototypes
void insert(ListNodePtr *sPtr, char value);

char delete(ListNodePtr *sPtr, char value);
int isEmpty(ListNodePtr sPtr);

void printList(ListNodePtr currentPtr);
void instructions(void);

. 12.3 | Inserting and deleting nodes in a list. (Part 1 of 8.)

Linked Lists Example (Cont.)

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

int main(void)

{

ListNodePtr startPtr = i // initially there are no nodes
unsigned int choice; // user's choice
char item; // char entered by user

instructions(); // display the menu
printf(,);
scanf(, &choice);

// Toop while user does not choose 3
while (choice I=) {

switch (choice) {
case 1:
printf(,)
scant(, &item);
insert(&startPtr, item); // insert item in 1list
printList(startPtr);
break;
case 2: // delete an element
// 1T 1ist 1s not empty
if (lisEmpty(startPtr)) {
printf(,);
scanf(, &item);

Fig. 12.3 | Inserting and deleting nodes in a list. (Part 2 of 8.)

Linked Lists Example (Cont.)

47

48 // 1f character 1is found, remove it
49 if (delete(&startPtr, item)) { // remove item
50 printf(, ltem);
51 printList(startPtr);

52 } // end 1if

53 else {

54 printf(, l1tem);
55 Y // end else

56 ¥ // end if

57 else {

58 puts()

59 } // end else

60

61 break;

62 default:

63 puts ()3

64 instructions();

65 break;

66 } // end switch

67

68 printf(,);

69 scanf (, &choice);

70 } // end while

71

Fig. 12.3 | Inserting and deleting nodes in a list. (Part 3 of 8.)

Function Insert

m Characters are inserted in the list in alphabetical order.

m Function 1nsert receives the address of the list and a
character to be inserted.

m The list’s address is necessary when a value 1s to be inserted
at the start of the list.

m Providing the address enables the list (i.e., the pointer to the
first node of the list) to be modified via a call by reference.

m Because the list itself is a pointer (to its first element)

o passing its address creates a pointer to a pointer (i.e., double
Indirection).

m This is a complex notion and requires careful programming.

Insert Example

(a) *sPtr previousPtr currentPtr

newPtr

(b) *sPtr previousPtr currentPtr

4
1
1
1
newPtr ;

l_____b

——p (®

——» [

Fig. 12.5 | Inserting a node in order in a list.

Function 1nsert

J/ self-referential structure
struct TistNode {

72 puts()’ char data; // each listNode contains a character
. struct TlistNode *nextPtr; // pointer to next node
73 } // end main }; // end structure listNode
74 . . . typedef struct TistNode ListMode; // synonym for struct TistNode
75 // di Sp1ay program instructions to user typedef ListNode *ListNodePtr; // synonym for ListNode*
76 void instructions(void)
77 {
78 puts(
79
80
81)

82 1} // end function instructions

83 insert
84 // insert a new value into the 1ist in sorted order
85 void insert(ListNodePtr *sPtr, char value)

86 {

87 ListNodePtr newPtr; // pointer to new node

88 ListNodePtr previousPtr; // pointer to previous node in 1ist
89 ListNodePtr currentPtr; // pointer to current node in 1list
90

91 newPtr = malloc(sizeof(ListNode)); // create node

92

93 if (newPtr !=) { // 1s space available

94 newPtr->data = value; // place value in node

95 newPtr->nextPtr = : // node does not Tink to another node
96

Fig. 12.3 | Inserting and deleting nodes in a list. (Part 4 of 8.)

Function i1nsert (Cont.)

97 previousPtr = ;

98 currentPtr = *sPtr;

99

100 // loop to find the correct location in the 1ist

101 while (currentPtr != && value > currentPtr->data) {
102 previousPtr = currentPtr; // walk to ...

103 currentPtr = currentPtr->nextPtr; // ... next node

104 } // end while

105

106 // insert new node at beginning of 1list

107 if (previousPtr == Yy {

108 newPtr->nextPtr = *sPtr;

109 *sPtr = newPtr;

110 } // end if

111 else { // insert new node between previousPtr and currentPtr
112 previousPtr->nextPtr = newPtr;

113 hewPtr->nextPtr = currentPtr;

114 } // end else

115 } // end 1if

116 else {

117 printf(, value);
118 Y // end else

119 } // end function insert

120

Fig. 12.3 | Inserting and deleting nodes in a list. (Part 5 of 8.)

Function 1nsert (Cont.)

m The steps for inserting a character in the list are as follows:

o Create a node by calling malloc, assigning to newPtr the address of
the allocated memory. Assigning the character to be inserted to
newPtr->data . Assigning NULL to newPtr->nextPtr.

o Initialize previousPtr to NULL and currentPtr to *sPtr,

the pointer to the start of the list. Pointers previousPtrand
currentPtr store the locations of the node preceding the insertion
point and the node after the insertion point.

o While currentPtr is not NULL and the value to be inserted is
greater than currentPtr->data, assign currentPtr to
previousPtr and advance currentPtr to the next node in the
list. This locates the insertion point for the value.

Function 1nsert (Cont.)

m If previousPtr is NULL, //insert at the beginning

O
O

Insert the new node as the first node in the list.

Assign *sPtr to newPtr->nextPtr (the new node link
points to the former first node) and assign newPtr to
*SPtr (*sPtr points to the new node).

m Otherwise, if previousPtr is not NULL, the new
node Is Inserted In place. //insert in the middle

O

Assign newPtr to previousPtr->nextPtr (the
previous node points to the new node).

Assign currentPtr to newPtr->nextPtr (the new
node link points to the current node).

delete Example

{a) *sPtr previousPtr currentPtr
A ——» B —» (——» D —» [
(b) *sPtr previousPtr currentPtr
A ——» B ¢ C ——» | ——» [
1
4 :
_____ e e e e e e
]
1
)
L
tempPtr
Fig. 12.6 | Deleting a node from a list.

Function delete

121 // delete a list element
122 char delete(ListNodePtr *sPtr, char value)

123 |

124 ListNodePtr previousPtr; // pointer to previous node in 1ist
125 ListNodePtr currentPtr; // pointer to current node in 1list
126 ListNodePtr tempPtr; // temporary node pointer

127

128 // delete Tirst node

129 if (value == *sPtr)->data) {

130 tempPtr = *sPtr; // hold onto node being removed

131 *sPtr = (*sPtr)-»nextPtr; // de-thread the node

132 free(tempPtr); // free the de-threaded node

133 return value;

134 } // end if

135 else {

136 previousPtr = *sPtr;

137 currentPtr = (*sPtr)-»nextPtr;

138

139 // loop to find the correct location in the 1ist

140 while (currentPtr != && currentPtr->data != value) {
141 previousPtr = currentPtr; // walk to ...

142 currentPtr = currentPtr->nextPtr; // ... next node
143 Y // end while

144

Fig. 12.3 | Inserting and deleting nodes in a list. (Part 6 of 8.)

Function delete (Cont.)

145 // delete node at currentPtr
146 if (currentPtr !'=) {
147 tempPtr = currentPtr;

148 previousPtr->nextPtr = currentPtr->nextPtr;
149 free(tempPtr);

150 return value;

151 } // end if

152 Y // end else

153

154 return ;

155 } // end function delete

156

157 // return 1 if the 1list is empty, 0 otherwise
158 1int isEmpty(ListNodePtr sPtr)

159 {

160 return sPtr == ;
161 } // end function 1isEmpty
162

Fig. 12.3 | Inserting and deleting nodes in a list. (Part 7 of 8.)

Function delete

s Function delete receives the address of the pointer to the start of
the list and a character to be deleted.

m The steps for deleting a character from the list are as follows:

o If the character to be deleted matches the character in the first node of the
list, assign *sPtr to tempPtr (tempPtr will be used to free the
unneeded memory), assign (*sPtr)->nextPtrto *sPtr (*sPtr
now points to the second node in the list), free the memory pointed to
by tempPtr, and return the character that was deleted.

o Otherwise, initialize previousPtr with *sPtr and initialize
currentPtr with (*sPtr)->nextPtr to advance the second node.

o While currentPtr is not NULL and the value to be deleted is not equal
to currentPtr->data, assign currentPtrto previousPtr,
and assign currentPtr->nextPtrto currentPtr. This locates
the character to be deleted if it’s contained 1n the list.

Function delete (Cont.)

O

If currentPtr isnot NULL, assigh currentPtr to
tempPtr, assign currentPtr->nextPtr to
previousPtr->nextPtr, free the node pointed to by
tempPtr, and return the character that was deleted from the
list .

If currentPtr is NULL, return the null character (' \0"') to
signify that the character to be deleted was not found in the

list.

Function printList

163 // print the Tist
164 void printList(ListNodePtr currentPtr)

165 {

166 // 1f 1ist 1s empty

167 if (isEmpty(currentPtr)) {

168 puts();

169 } // end 1if

170 else {

171 puts()

172

173 // while not the end of the Tist

174 while (currentPtr !=)y {

175 printf(, currentPtr->data);
176 currentPtr = currentPtr->nextPtr;
177 } // end while

178

179 puts()

180 Y // end else

181 1} // end function printList

Fig. 12.3 | Inserting and deleting nodes in a list. (Part 8 of 8.)

Function printList

m Function printList receives a pointer to the start
of the list as an argument and refers to the pointer as
currentPtr.

m The function first determines whether the list is
empty and, if so, prints “L1st 1s empty." and
terminates.

o Otherwise, it prints the data in the list.

Function printList

m While currentPtr is not NULL, the value of
currentPtr->data is printed by the function,
and currentPtr->nextPtr iIs assigned to
currentPtr to advance to the next node.

m The printing algorithm is identical for linked lists,
stacks and queues.

Doubly-Linked List (DLL)

m [n the linked lists, each node provides information about
where is the next node in the list.

o No knowledge about where the previous node lies in memory.
o If we are at say 100th node in the list, then to reach the 99th
node we have to traverse the list right from the first node.

m To avoid this we can store in each node not only the
address of next node but also the address of the
previous node in linked list.

o This arrangement is often known as 'Doubly-Linked List’.

d —

\
= a . b\\ C

e o) U if

Exercise: (Homework/Programming 3)

m Write a C program to implement the Doubly-Linked List
(DLL).

m For example, structure representing a node of the
doubly-linked list,
= struct dnode {

struct dnode *prevPtr;
int data;

struct dnode *nextPtr;
}: // end struct dnode

defines a type, struct dnode.

m The prevPtr of the first node and nextPtr of the
last node is set to NULL.

Conclusions

m Self Referential Structures

m Dynamic Memory Allocation Function and
Process

m Linked List

O 1nsert, delete, 1sEmpty, printlList

m Doubly-Linked List

