
Nirmalya Roy

School of Electrical Engineering and Computer Science
Washington State University

Cpt S 122 – Data Structures

Data Structures

Topics

 Introduction

 Self Referential Structures

 Dynamic Memory Allocation

 Linked List
 insert, delete, isEmpty, printList

 Stack
 push, pop

 Queue
 enqueue, dequeue

 Binary Search Tree
 insertNode, inOrder, preOrder, postOrder

Introduction

 Fixed-size data structures

 single-subscripted arrays, double-subscripted arrays and
structs.

 Dynamic data structures with sizes that grow and shrink
at execution time

 Linked lists are collections of data items “lined up in a row”

 insertions and deletions are made anywhere in a linked list.

 Stacks are important in compilers and operating systems

 insertions and deletions are made only at one end of a stack—its top.

Introduction

 Queues represent waiting lines

 insertions are made only at the back (also referred to as the tail)

of a queue and deletions are made only from the front (also

referred to as the head) of a queue.

 Binary trees facilitate high-speed searching and sorting of

data

 efficient elimination of duplicate data items,

 representing file system directories and compiling expressions

into machine language.

 Each of these data structures has many other

interesting applications.

Introduction

 We’ll discuss each of the major types of data structures

 implement programs that create and manipulate them.

 In C++ we’ll study data abstraction and abstract data types

(ADT).

 notion of an object (from object-oriented programming) is an

attempt to combine abstractions of data and code.

 ADT is a set of objects together with a set of operations

 e.g., List, Operations on a list: Insert, delete, search, sort

 C++ class are perfect for ADTs

 Enable us to build the data structures in a dramatically

different manner designed for producing software that’s

much easier to maintain and reuse.

Self Referential Structures

 A self-referential structure contains a pointer member

that points to a structure of the same structure type.

 For example, the definition
 struct node {

int data;
struct node *nextPtr;

}; // end struct node

defines a type, struct node.

 A structure of type struct node has two members

 integer member data and pointer member nextPtr.

Self Referential Structures (Cont.)

 Member nextPtr points to a structure of type

struct node

 a structure of the same type as the one being declared here,

hence the term “self-referential structure.”

 Member nextPtr is referred to as a link

 link a structure of type struct node to another structure

of the same type.

 Self-referential structures can be linked together to

form useful data structures

 lists, queues, stacks and trees.

Self Referential Structures (Cont.)

 Two self-referential structure objects linked together
to form a list.

 A slash represents a NULL pointer

 placed in the link member of the second self-referential
structure

 indicate that the link does not point to another structure.

 A NULL pointer normally indicates the end of a data
structure just as the null character indicates the end
of a string.

Example: Self Referential Structures

Dynamic Memory Allocation

 Creating and maintaining dynamic data structures requires
dynamic memory allocation

 obtain more memory space at execution time to hold new nodes.

 release space no longer needed.

 Functions malloc and free, and operator sizeof, are
essential to dynamic memory allocation.

Dynamic Memory Allocation (Cont.)

 Function malloc takes as an argument the number

of bytes to be allocated

 returns a pointer of type void * (pointer to void) to the

allocated memory.

 Function malloc is normally used with the

sizeof operator.

 A void * pointer may be assigned to a variable of

any pointer type.

Dynamic Memory Allocation (Cont.)

 For example, the statement

newPtr = malloc(sizeof(struct node));

 evaluates sizeof(struct node) to determine the

size in bytes of a structure of type struct node,

 allocates a new area in memory of that number of bytes

and stores a pointer to the allocated memory in variable

newPtr.

 The allocated memory is not initialized.

 If no memory is available, malloc returns NULL.

Dynamic Memory Allocation (Cont.)

 Function free deallocates memory

 the memory is returned to the system so that it can be

reallocated in the future.

 To free memory dynamically allocated by the

preceding malloc call, use the statement

 free(newPtr);

 C also provides functions calloc and realloc
for creating and modifying dynamic arrays.

 calloc allocates multiple blocks of storage, each of the

same size.

 realloc changes the already allocated memory size.

Observations

 When using malloc test for a NULL pointer return
value.

 Memory Leak: Not returning dynamically allocated
memory when it’s no longer needed can cause system
to run out of memory prematurely. This is known as
“memory leak”.

 Use free to return the memory to system.

Memory Allocation Process

Local Variables, Automatic
variables, Function Calls

Free Memory

Global & Static Variables

C Program Instructions

Stack

Conceptual view of storage of a C program in memory

Heap

Permanent

Storage Area

 C programming language manages memory statically,
automatically, or dynamically.

Linked Lists

Linked Lists

 A linked list is a linear collection of self-referential
structures

 known as nodes, connected by pointer links.

 A linked list is accessed via a pointer to the first
node of the list.

 Subsequent nodes are accessed via the link pointer
member stored in each node.

 The link pointer in the last node of a list is set to NULL to
mark the end of the list.

 Data is stored in a linked list dynamically

 each node is created as necessary.

Linked Lists (Cont.)

 A node can contain data of any type including other
struct objects.

 Stacks and queues are also linear data structures,
 constrained versions of linked lists.

 Trees are nonlinear data structures.

 The size of an array created at compile time is fixed.

 Arrays can become full.

 Linked lists become full only when the system has

insufficient memory to satisfy dynamic storage allocation

requests.

Linked Lists & Array Comparison

 Lists of data can be stored in arrays, but linked lists
provide several advantages.

 A linked list is appropriate when the number of data elements to
be represented in the data structure is unpredictable.

 Linked lists are dynamic, so the length of a list can increase or
decrease as necessary.

 Provide flexibility in allowing the items to be rearranged
efficiently.

 Linked lists can be maintained in sorted order by inserting each
new element at the proper point in the list.

 Insertion & deletion in a sorted array can be time consuming
 All the elements following the inserted and deleted elements must be shifted

appropriately.

Linked Lists & Array Comparison (Cont.)

 Linked-list nodes are normally not stored contiguously

in memory.

 Logically, however, the nodes of a linked list appear to be

contiguous.

 The elements of an array are stored contiguously in

memory.

 Linked use more storage than an array with the same

number of items.

 Each item has an additional link field.

 Dynamic overhead incurs the overhead of function

calls.

Linked Lists Functions

 The primary functions of linked lists are insert and

delete.

 Function isEmpty is called a predicate function

 It does not alter the list in any way.

 It determines whether the list is empty (i.e., the pointer to the

first node of the list is NULL).

 If the list is empty, 1 is returned; otherwise, 0 is returned.

 Function printList prints the list.

Linked Lists Example

 The function uses the char ** argument to modify a char * in the calling

function (stringPtr)

 d = strtod(string, &stringPtr)

 indicates that d is assigned the double value converted from string

 stringPtr is assigned the location of the first character after the converted value

in string.

Example of a Pointer to Pointer (Double indirection)

Passing Arguments to Functions by Reference

void swap(int *a, int *b) {

int temp;

temp = *a;

*a = *b;

*b = temp;

}

void main(void) {

int x = 3; y = 5;

printf(“x = %d, y = %d\n”, x, y);

swap(&x, &y);

printf(“x = %d, y = %d\n”, x, y);

}

Linked Lists Example Code

 Manipulates a list of characters.

 insert a character in the list in alphabetical order

(function insert).

 delete a character from the list (function delete).

address

Linked Lists Operation Examples

Linked Lists Example (Cont.)

Linked Lists Example (Cont.)

 Characters are inserted in the list in alphabetical order.

 Function insert receives the address of the list and a
character to be inserted.

 The list’s address is necessary when a value is to be inserted
at the start of the list.

 Providing the address enables the list (i.e., the pointer to the
first node of the list) to be modified via a call by reference.

 Because the list itself is a pointer (to its first element)

 passing its address creates a pointer to a pointer (i.e., double
indirection).

 This is a complex notion and requires careful programming.

Function Insert

Insert Example

insert

Function insert

Function insert (Cont.)

Function insert (Cont.)

 The steps for inserting a character in the list are as follows:

 Create a node by calling malloc, assigning to newPtr the address of
the allocated memory. Assigning the character to be inserted to
newPtr->data . Assigning NULL to newPtr->nextPtr.

 Initialize previousPtr to NULL and currentPtr to *sPtr,
the pointer to the start of the list. Pointers previousPtr and
currentPtr store the locations of the node preceding the insertion
point and the node after the insertion point.

 While currentPtr is not NULL and the value to be inserted is
greater than currentPtr->data, assign currentPtr to
previousPtr and advance currentPtr to the next node in the
list. This locates the insertion point for the value.

 If previousPtr is NULL, //insert at the beginning
 Insert the new node as the first node in the list.

 Assign *sPtr to newPtr->nextPtr (the new node link
points to the former first node) and assign newPtr to
*sPtr (*sPtr points to the new node).

 Otherwise, if previousPtr is not NULL, the new
node is inserted in place. //insert in the middle
 Assign newPtr to previousPtr->nextPtr (the

previous node points to the new node).

 Assign currentPtr to newPtr->nextPtr (the new
node link points to the current node).

Function insert (Cont.)

delete Example

Function delete

Function delete (Cont.)

Function delete

 Function delete receives the address of the pointer to the start of
the list and a character to be deleted.

 The steps for deleting a character from the list are as follows:

 If the character to be deleted matches the character in the first node of the
list, assign *sPtr to tempPtr (tempPtr will be used to free the
unneeded memory), assign (*sPtr)->nextPtr to *sPtr (*sPtr
now points to the second node in the list), free the memory pointed to
by tempPtr, and return the character that was deleted.

 Otherwise, initialize previousPtr with *sPtr and initialize
currentPtr with (*sPtr)->nextPtr to advance the second node.

 While currentPtr is not NULL and the value to be deleted is not equal
to currentPtr->data, assign currentPtr to previousPtr,
and assign currentPtr->nextPtr to currentPtr. This locates
the character to be deleted if it’s contained in the list.

Function delete (Cont.)

 If currentPtr is not NULL, assign currentPtr to

tempPtr, assign currentPtr->nextPtr to

previousPtr->nextPtr, free the node pointed to by

tempPtr, and return the character that was deleted from the

list .

 If currentPtr is NULL, return the null character ('\0') to

signify that the character to be deleted was not found in the

list.

Function printList

Function printList

 Function printList receives a pointer to the start

of the list as an argument and refers to the pointer as

currentPtr.

 The function first determines whether the list is

empty and, if so, prints “List is empty." and

terminates.

 Otherwise, it prints the data in the list.

 While currentPtr is not NULL, the value of

currentPtr->data is printed by the function,

and currentPtr->nextPtr is assigned to

currentPtr to advance to the next node.

 The printing algorithm is identical for linked lists,

stacks and queues.

Function printList

Doubly-Linked List (DLL)

 In the linked lists, each node provides information about
where is the next node in the list.

 No knowledge about where the previous node lies in memory.

 If we are at say 100th node in the list, then to reach the 99th
node we have to traverse the list right from the first node.

 To avoid this we can store in each node not only the
address of next node but also the address of the
previous node in linked list.

 This arrangement is often known as 'Doubly-Linked List’.

Exercise: (Homework/Programming 3)

 Write a C program to implement the Doubly-Linked List
(DLL).

 For example, structure representing a node of the
doubly-linked list,

 struct dnode {

struct dnode *prevPtr;
int data;
struct dnode *nextPtr;

}; // end struct dnode

defines a type, struct dnode.

 The prevPtr of the first node and nextPtr of the
last node is set to NULL.

Conclusions

 Self Referential Structures

 Dynamic Memory Allocation Function and
Process

 Linked List
 insert, delete, isEmpty, printList

 Doubly-Linked List

