
Nirmalya Roy

School of Electrical Engineering and Computer Science
Washington State University

Cpt S 122 – Data Structures

Data Structures

Topics

 Introduction

 Self Referential Structures

 Dynamic Memory Allocation

 Linked List
 insert, delete, isEmpty, printList

 Stack
 push, pop

 Queue
 enqueue, dequeue

 Binary Search Tree
 insertNode, inOrder, preOrder, postOrder

Introduction

 Fixed-size data structures

 single-subscripted arrays, double-subscripted arrays and
structs.

 Dynamic data structures with sizes that grow and shrink
at execution time

 Linked lists are collections of data items “lined up in a row”

 insertions and deletions are made anywhere in a linked list.

 Stacks are important in compilers and operating systems

 insertions and deletions are made only at one end of a stack—its top.

Introduction

 Queues represent waiting lines

 insertions are made only at the back (also referred to as the tail)

of a queue and deletions are made only from the front (also

referred to as the head) of a queue.

 Binary trees facilitate high-speed searching and sorting of

data

 efficient elimination of duplicate data items,

 representing file system directories and compiling expressions

into machine language.

 Each of these data structures has many other

interesting applications.

Introduction

 We’ll discuss each of the major types of data structures

 implement programs that create and manipulate them.

 In C++ we’ll study data abstraction and abstract data types

(ADT).

 notion of an object (from object-oriented programming) is an

attempt to combine abstractions of data and code.

 ADT is a set of objects together with a set of operations

 e.g., List, Operations on a list: Insert, delete, search, sort

 C++ class are perfect for ADTs

 Enable us to build the data structures in a dramatically

different manner designed for producing software that’s

much easier to maintain and reuse.

Self Referential Structures

 A self-referential structure contains a pointer member

that points to a structure of the same structure type.

 For example, the definition
 struct node {

int data;
struct node *nextPtr;

}; // end struct node

defines a type, struct node.

 A structure of type struct node has two members

 integer member data and pointer member nextPtr.

Self Referential Structures (Cont.)

 Member nextPtr points to a structure of type

struct node

 a structure of the same type as the one being declared here,

hence the term “self-referential structure.”

 Member nextPtr is referred to as a link

 link a structure of type struct node to another structure

of the same type.

 Self-referential structures can be linked together to

form useful data structures

 lists, queues, stacks and trees.

Self Referential Structures (Cont.)

 Two self-referential structure objects linked together
to form a list.

 A slash represents a NULL pointer

 placed in the link member of the second self-referential
structure

 indicate that the link does not point to another structure.

 A NULL pointer normally indicates the end of a data
structure just as the null character indicates the end
of a string.

Example: Self Referential Structures

Dynamic Memory Allocation

 Creating and maintaining dynamic data structures requires
dynamic memory allocation

 obtain more memory space at execution time to hold new nodes.

 release space no longer needed.

 Functions malloc and free, and operator sizeof, are
essential to dynamic memory allocation.

Dynamic Memory Allocation (Cont.)

 Function malloc takes as an argument the number

of bytes to be allocated

 returns a pointer of type void * (pointer to void) to the

allocated memory.

 Function malloc is normally used with the

sizeof operator.

 A void * pointer may be assigned to a variable of

any pointer type.

Dynamic Memory Allocation (Cont.)

 For example, the statement

newPtr = malloc(sizeof(struct node));

 evaluates sizeof(struct node) to determine the

size in bytes of a structure of type struct node,

 allocates a new area in memory of that number of bytes

and stores a pointer to the allocated memory in variable

newPtr.

 The allocated memory is not initialized.

 If no memory is available, malloc returns NULL.

Dynamic Memory Allocation (Cont.)

 Function free deallocates memory

 the memory is returned to the system so that it can be

reallocated in the future.

 To free memory dynamically allocated by the

preceding malloc call, use the statement

 free(newPtr);

 C also provides functions calloc and realloc
for creating and modifying dynamic arrays.

 calloc allocates multiple blocks of storage, each of the

same size.

 realloc changes the already allocated memory size.

Observations

 When using malloc test for a NULL pointer return
value.

 Memory Leak: Not returning dynamically allocated
memory when it’s no longer needed can cause system
to run out of memory prematurely. This is known as
“memory leak”.

 Use free to return the memory to system.

Memory Allocation Process

Local Variables, Automatic
variables, Function Calls

Free Memory

Global & Static Variables

C Program Instructions

Stack

Conceptual view of storage of a C program in memory

Heap

Permanent

Storage Area

 C programming language manages memory statically,
automatically, or dynamically.

Linked Lists

Linked Lists

 A linked list is a linear collection of self-referential
structures

 known as nodes, connected by pointer links.

 A linked list is accessed via a pointer to the first
node of the list.

 Subsequent nodes are accessed via the link pointer
member stored in each node.

 The link pointer in the last node of a list is set to NULL to
mark the end of the list.

 Data is stored in a linked list dynamically

 each node is created as necessary.

Linked Lists (Cont.)

 A node can contain data of any type including other
struct objects.

 Stacks and queues are also linear data structures,
 constrained versions of linked lists.

 Trees are nonlinear data structures.

 The size of an array created at compile time is fixed.

 Arrays can become full.

 Linked lists become full only when the system has

insufficient memory to satisfy dynamic storage allocation

requests.

Linked Lists & Array Comparison

 Lists of data can be stored in arrays, but linked lists
provide several advantages.

 A linked list is appropriate when the number of data elements to
be represented in the data structure is unpredictable.

 Linked lists are dynamic, so the length of a list can increase or
decrease as necessary.

 Provide flexibility in allowing the items to be rearranged
efficiently.

 Linked lists can be maintained in sorted order by inserting each
new element at the proper point in the list.

 Insertion & deletion in a sorted array can be time consuming
 All the elements following the inserted and deleted elements must be shifted

appropriately.

Linked Lists & Array Comparison (Cont.)

 Linked-list nodes are normally not stored contiguously

in memory.

 Logically, however, the nodes of a linked list appear to be

contiguous.

 The elements of an array are stored contiguously in

memory.

 Linked use more storage than an array with the same

number of items.

 Each item has an additional link field.

 Dynamic overhead incurs the overhead of function

calls.

Linked Lists Functions

 The primary functions of linked lists are insert and

delete.

 Function isEmpty is called a predicate function

 It does not alter the list in any way.

 It determines whether the list is empty (i.e., the pointer to the

first node of the list is NULL).

 If the list is empty, 1 is returned; otherwise, 0 is returned.

 Function printList prints the list.

Linked Lists Example

 The function uses the char ** argument to modify a char * in the calling

function (stringPtr)

 d = strtod(string, &stringPtr)

 indicates that d is assigned the double value converted from string

 stringPtr is assigned the location of the first character after the converted value

in string.

Example of a Pointer to Pointer (Double indirection)

Passing Arguments to Functions by Reference

void swap(int *a, int *b) {

int temp;

temp = *a;

*a = *b;

*b = temp;

}

void main(void) {

int x = 3; y = 5;

printf(“x = %d, y = %d\n”, x, y);

swap(&x, &y);

printf(“x = %d, y = %d\n”, x, y);

}

Linked Lists Example Code

 Manipulates a list of characters.

 insert a character in the list in alphabetical order

(function insert).

 delete a character from the list (function delete).

address

Linked Lists Operation Examples

Linked Lists Example (Cont.)

Linked Lists Example (Cont.)

 Characters are inserted in the list in alphabetical order.

 Function insert receives the address of the list and a
character to be inserted.

 The list’s address is necessary when a value is to be inserted
at the start of the list.

 Providing the address enables the list (i.e., the pointer to the
first node of the list) to be modified via a call by reference.

 Because the list itself is a pointer (to its first element)

 passing its address creates a pointer to a pointer (i.e., double
indirection).

 This is a complex notion and requires careful programming.

Function Insert

Insert Example

insert

Function insert

Function insert (Cont.)

Function insert (Cont.)

 The steps for inserting a character in the list are as follows:

 Create a node by calling malloc, assigning to newPtr the address of
the allocated memory. Assigning the character to be inserted to
newPtr->data . Assigning NULL to newPtr->nextPtr.

 Initialize previousPtr to NULL and currentPtr to *sPtr,
the pointer to the start of the list. Pointers previousPtr and
currentPtr store the locations of the node preceding the insertion
point and the node after the insertion point.

 While currentPtr is not NULL and the value to be inserted is
greater than currentPtr->data, assign currentPtr to
previousPtr and advance currentPtr to the next node in the
list. This locates the insertion point for the value.

 If previousPtr is NULL, //insert at the beginning
 Insert the new node as the first node in the list.

 Assign *sPtr to newPtr->nextPtr (the new node link
points to the former first node) and assign newPtr to
*sPtr (*sPtr points to the new node).

 Otherwise, if previousPtr is not NULL, the new
node is inserted in place. //insert in the middle
 Assign newPtr to previousPtr->nextPtr (the

previous node points to the new node).

 Assign currentPtr to newPtr->nextPtr (the new
node link points to the current node).

Function insert (Cont.)

delete Example

Function delete

Function delete (Cont.)

Function delete

 Function delete receives the address of the pointer to the start of
the list and a character to be deleted.

 The steps for deleting a character from the list are as follows:

 If the character to be deleted matches the character in the first node of the
list, assign *sPtr to tempPtr (tempPtr will be used to free the
unneeded memory), assign (*sPtr)->nextPtr to *sPtr (*sPtr
now points to the second node in the list), free the memory pointed to
by tempPtr, and return the character that was deleted.

 Otherwise, initialize previousPtr with *sPtr and initialize
currentPtr with (*sPtr)->nextPtr to advance the second node.

 While currentPtr is not NULL and the value to be deleted is not equal
to currentPtr->data, assign currentPtr to previousPtr,
and assign currentPtr->nextPtr to currentPtr. This locates
the character to be deleted if it’s contained in the list.

Function delete (Cont.)

 If currentPtr is not NULL, assign currentPtr to

tempPtr, assign currentPtr->nextPtr to

previousPtr->nextPtr, free the node pointed to by

tempPtr, and return the character that was deleted from the

list .

 If currentPtr is NULL, return the null character ('\0') to

signify that the character to be deleted was not found in the

list.

Function printList

Function printList

 Function printList receives a pointer to the start

of the list as an argument and refers to the pointer as

currentPtr.

 The function first determines whether the list is

empty and, if so, prints “List is empty." and

terminates.

 Otherwise, it prints the data in the list.

 While currentPtr is not NULL, the value of

currentPtr->data is printed by the function,

and currentPtr->nextPtr is assigned to

currentPtr to advance to the next node.

 The printing algorithm is identical for linked lists,

stacks and queues.

Function printList

Doubly-Linked List (DLL)

 In the linked lists, each node provides information about
where is the next node in the list.

 No knowledge about where the previous node lies in memory.

 If we are at say 100th node in the list, then to reach the 99th
node we have to traverse the list right from the first node.

 To avoid this we can store in each node not only the
address of next node but also the address of the
previous node in linked list.

 This arrangement is often known as 'Doubly-Linked List’.

Exercise: (Homework/Programming 3)

 Write a C program to implement the Doubly-Linked List
(DLL).

 For example, structure representing a node of the
doubly-linked list,

 struct dnode {

struct dnode *prevPtr;
int data;
struct dnode *nextPtr;

}; // end struct dnode

defines a type, struct dnode.

 The prevPtr of the first node and nextPtr of the
last node is set to NULL.

Conclusions

 Self Referential Structures

 Dynamic Memory Allocation Function and
Process

 Linked List
 insert, delete, isEmpty, printList

 Doubly-Linked List

