
Nirmalya Roy

School of Electrical Engineering and Computer Science
Washington State University

Cpt S 122 – Data Structures

Classes: A Deeper Look
Part -II

Topics

 const objects and const Member functions

 Composition: Objects as Member of Classes

 friend Functions and friend Classes

 Using this pointer

 static class Members

 const objects and const member functions
 prevent modifications of objects and enforce the principle of least

privilege.

 Composition
 a form of reuse in which a class can have objects of other classes as

members.

 Friendship
 enables a class designer to specify nonmember functions that can

access a class’s non-public members

 The this pointer
 an implicit argument to each of a class’s non-static member

functions.

 allows those member functions to access the correct object’s data
members and other non-static member functions.

 Motivate the need for static class members.

Introduction

 You may use keyword const to specify that an

object is not modifiable

 any attempt to modify the object should result in a

compilation error.

 C++ disallows member function calls for const
objects unless the member functions themselves are

also declared const.

 True even for get member functions that do not modify

the object.

 A member function is specified as const both in

its prototype and in its definition.

const Object and const Member Function

 Member initializer syntax

 All data members can be initialized using member
initializer syntax,

 const data members must be initialized using member
initializers.

 Member initializers appear between a constructor’s
parameter list and the left brace that begins the
constructor’s body.

 Separated from the parameter list with a colon (:).

 Each member initializer consists of the data member name
followed by parentheses containing the member’s initial
value.

const Object and const Member Function

const Data Member

const Data Member

 Composition

 Sometimes referred to as a has-a relationship

 A class can have objects of other classes as members

 An object’s constructor can pass arguments to

member-object constructors via member initializers.

Composition: Objects as Member of Classes

 As you study class Date, notice that the class does
not provide a constructor that receives a parameter of
type Date.

 Why can the Employee constructor’s member
initializer list initialize the birthDate and
hireDate objects by passing Date object’s to their
Date constructors?

 The compiler provides each class with a default copy
constructor that copies each data member of the
constructor’s argument object into the corresponding
member of the object being initialized.

Composition: Objects as Member of Classes

 A friend function of a class is defined outside that

class’s scope

 It has the right to access the non-public (and public)

members of the class.

 Standalone functions, entire classes or member functions

of other classes may be declared to be friends of another

class.

 Using friend functions can enhance performance.

 Friendship is granted, not taken.

 The friendship relation is neither symmetric nor

transitive.

friend Functions and friend Classes

friend Functions

friend Functions

 How do member functions know which object’s data

members to manipulate?

 Every object has access to its own address through a pointer called
this (a C++ keyword).

 The this pointer is not part of the object itself.

 The this pointer is passed (by the compiler) as an implicit

argument to each of the object’s non-static member functions.

 Objects use the this pointer implicitly or explicitly to

reference their data members and member functions.

 The type of the this pointer depends on the type of the

object and

 the member function in which this is used is declared const.

Using the this Pointer

this Pointer

this Pointer

 Another use of the this pointer is to enable cascaded

member-function calls

 invoking multiple functions in the same statement

 Modify class Time’s set functions setTime,

setHour, setMinute and setSecond
 such that each returns a reference to a Time object to

enable cascaded member function calls.

Using the this pointer

 Why does the technique of returning *this as a
reference work?

 The dot operator (.) associates from left to right,

 first evaluates t.setHour(18), then returns a reference
to object t as the value of this function call.

 The remaining expression is then interpreted as
 t.setMinute(30).setSecond(22)

 The t.setMinute(30) call executes and returns
a reference to the object t.

 The remaining expression is interpreted as
 t.setSecond(22)

Using the this pointer

 In certain cases, only one copy of a variable should

be shared by all objects of a class.

 A static data member is used for these and other

reasons.

 Such a variable represents “class-wide” information.

 Use static data members to save storage when a

single copy of the data for all objects of a class will

suffice.

static class members

