
Nirmalya Roy

School of Electrical Engineering and Computer Science
Washington State University

Cpt S 122 – Data Structures

Course Review
Midterm Exam # 2

Midterm Exam 2

 When: Monday (11/05) 12:10 pm -1pm
 Where: In Class

 Closed book, Closed notes
 Comprehensive

 Material for preparation:
 Lecture Slides
 Quizzes, Labs and Programming assignments
 Deitel & Deitel book (Read and re-read Chapter 15 to 22

and Chapter 24)

Course Overview

 C++ as a better C; Introducing Object Technology
(Chapter 15)

 Inline Function

 Function Overloading and Function Templates

 Pass-by-value and Pass-by-reference

 Introduction to Classes, Objects & Strings (Chapter 16)
 Data members, Members functions, set and get functions

 Constructors

 Classes: A Deeper Look, Part I (Chapter 17)

 Separating interface from implementation

 Destructors

Course Overview

 Classes: A Deeper Look, Part 2 (Chapter 18)
 const Objects and const Member functions

 Composition: Objects as members of class

 friend function and friend class

 this pointer

 Operator Overloading; Class String (Chapter 19)

 Implementation of operator overloading

 Dynamic memory management using new operator

 Explicit constructor

Course Overview

 Object Oriented Programming: Inheritance (Chapter 20)

 Base Classes & Derived Classes

 public, protected, and private Inheritance

 Object Oriented Programming: Polymorphism (Chap. 21)

 Abstract Classes & pure virtual Functions

 virtual Functions & Dynamic Binding

 Polymorphism & RunTime Type Information (RTTI)

 downcasting, dynamic_cast

 virtual Destructors

Course Overview

 Templates (Chapter 22)

 Function Template

 Class Templates

 STL Containers: example of container class template such
as stack

 Exception Handling (Chapter 24)

 Use of try, catch and throw to

detect, handle and indicate exceptions, respectively.

 Exception handling with constructors & destructors

 Processing new failures

Constructor & Destructor

 Constructor is a special member function which
enables an object to initialize itself when it is created

 Name is same as the class name

 Invoked whenever an object of its associated class is created

 Constructs the values of the data members of the class

 Destructor is a special member function that destroys
the objects when they are no longer required

Constructor (cont.)

class integer{

int m,n;

public:

integer (void); //constructor

…….

};

integer :: integer(void){ //constructor defined

m = 0; n = 0;

}

integer int1; // object int1 created

Constructors (cont.)

 Not only creates the object int1 of type integer

 But also initializes its data members m and n to zero.

 No need to invoke the constructor function.

 A constructor that accepts no parameters is called a
default constructor

 The default constructor for class integer is
 class integer :: integer();

 If no such constructor is defined then compiler supplies a
default constructor.

Parameterized Constructors

class integer{

int m,n;

public:

integer (int x, int y); //parameterized constructor

…….

};

integer :: integer(int x, int y){ //constructor defined

m = x; n = y;

}

integer int1 (10, 100); //must pass the initial values

when object int1 is declared; implicit call

integer int1 = integer (10, 100); //explicit call

Multiple Constructors in a Class
 integer (); // No arguments

 integer (int, int); // with arguments

class integer{

int m, n;

public:

integer (){ m = 0; n = 0;} //constructor 1

integer (int a; int b){ m = a; n = b;} //constructor 2

integer (integer & i){ m = i.m; n = i.n;} //constructor 3

};

integer I1; // object I1 created

integer I2 (20, 40); // object I2 created

integer I3 (I2); // object I3 created

 copies the value of I2 into I3

 sets the value of every data element of I3 to value of corresponding data

elements of I2.

 copy constructor

Copy Constructor

 A copy constructor is used to declare and initialize an
object from another object

 integer I3 (I2)

 define object I3 and at the same time initialize it to the
values of I2

 Another form is: integer I3 = I2;

 This process of initializing through a copy constructor is known as

copy initialization

 I3 = I2 ??

 Will not invoke the copy constructor

 However I3 and I2 are objects; the statement is legal and simply

assign the values of I2 to I3; member by member.

 This is the task of overloaded assignment operator (=)

 C++ enables several functions of the same name to be

defined, as long as they have different signatures.

 This is called function overloading.

 The C++ compiler selects the proper function to call

 examining the number, types and order of the arguments in the

call.

 Overloaded functions are distinguished by their signatures.

 A signature is a combination of a function’s name and its
parameter types (in order).

 Function overloading is used to create several functions of

the same name

 perform similar tasks, but on different data types.

Function Overloading

Function Overloading

Example: Function Overloading

 With object-oriented programming, we focus on the

commonalities among objects in the system rather

than on the special cases.

 We distinguish between the is-a relationship and the

has-a relationship.

 The is-a relationship represents inheritance.

 In an is-a relationship, an object of a derived class also

can be treated as an object of its base class.

 By contrast, the has-a relationship represents

composition.

Inheritance

Variety of Inheritance

B

A

Single Inheritance

C

A

DB

Hierarchical Inheritance Multiple Inheritance

BA

B

A

B

A

C

C

Multilevel Inheritance Hybrid Inheritance

C

D

Derived class cannot access Base class private data directly
but can access it through inherited member function

 The errors in BasePlusCommissionEmployee could

have been prevented by using

 the get member functions inherited from base class

CommissionEmployee.

 For example, we could have invoked

getCommissionRate and getGrossSales to access

 CommissionEmployee’s private data members

commissionRate and grossSales, respectively.

Accessing private data in base-class using
base-class member function

 Control the allocation and deallocation of memory in a program

 for objects and for arrays of any built-in or user-defined type.

 known as dynamic memory management.

 performed with new and delete.

 You can use the new operator to dynamically allocate (i.e.,
reserve) the exact amount of memory required to hold an object or
array at execution time.

 The object or array is created in the free store (also called the heap)

 a region of memory assigned to each program for storing
dynamically allocated objects.

 Once memory is allocated in the free store, you can
access it via the pointer that operator new returns.

 You can return memory to the free store by using the delete
operator to deallocate it.

Dynamic Memory Management

Dynamic Memory Management (cont.)

 To destroy a dynamically allocated object, use the

delete operator as follows:
 delete ptr;

 To deallocate a dynamically allocated array, use the

statement
 delete [] ptr;

What is this pointer?

 Every object has a special pointer "this" which points
to the object itself.

 This pointer is accessible to all members of the class
but not to any static members of the class.

 Can be used to find the address of the object in which
the function is a member.

 Presence of this pointer is not included in the sizeof
calculations.

Rule of Three (the Law of The Big Three or The
Big Three)

 Rule of three is a Rule of thumb in C++ that claims that
if a class defines one of the following

 it should probably explicitly define all three.

 A copy constructor, a destructor, and an overloaded
assignment operator

 provided as a group for any class that uses dynamically
allocated memory.

 Not providing a copy constructor, and an overloaded
assignment operator for a class when objects of that
class contain pointers to dynamically allocated
memory is a logic error.

Implementation of Operator Overloading:
Example: Array Class

Case Study: Array Class (cont.)

Default Constructor

 Declares the default constructor for the class and

specifies a default size of 10 elements.

 The default constructor validates and assigns the

argument to data member size,

 uses new to obtain the memory for the internal pointer-

based representation of this array

 assigns the pointer returned by new to data member ptr.

 Then the constructor uses a for statement to set all

the elements of the array to zero.

Default Constructor Explanation

Copy Constructor for class Array

 Declares a copy constructor that initializes an Array by
making a copy of an existing Array object.

 Such copying must be done carefully to avoid the pitfall of
leaving both Array objects pointing to the same dynamically
allocated memory.

 Copy constructors are invoked whenever a copy of an object
is needed
 such as in passing an object by value to a function,

 returning an object by value from a function or

 initializing an object with a copy of another object of the same class.

Copy Constructor Explanation

 The copy constructor for Array uses a member initializer
to copy the size of the initializer Array into data
member size,

 uses new to obtain the memory for the internal pointer-based
representation of this Array

 assigns the pointer returned by new to data member ptr.

 Then the copy constructor uses a for statement to copy
all the elements of the initializer Array into the new
Array object.

 An object of a class can look at the private data of any
other object of that class (using a handle that indicates
which object to access).

Copy Constructor Explanation

Infinite Recursion of Copy Constructor

 A copy constructor must receive its argument by
reference, not by value.

 Otherwise the copy constructor call results in
infinite recursion

 Receiving an object by value requires a copy constructor
to make a copy of the argument object.

 Recall that any time a copy of an object is required, the
class’s copy constructor is called.

 If the copy constructor received its argument by value,
the copy constructor would call itself recursively to make
a copy of its argument!

Destructor for class Array

 The destructor uses delete [] to release the

memory allocated dynamically by new in the

constructor.

Destructor Explanation

Equality Operator for class Array

 Overloaded equality operator (==) for the class.

 When the compiler sees the expression integers1 ==
integers2, the compiler invokes member function
operator== with the call

 integers1.operator==(integers2)

 Member function operator== immediately returns
false if the size members of the arrays are not equal.

 Otherwise, operator== compares each pair of elements.
 If they’re all equal, the function returns true.

 The first pair of elements to differ causes the function to return
false immediately.

Explanation for Equality Operator

Overloaded Assignment Operator

 Overloaded assignment operator function for the Array class.

 When the compiler sees the expression integers1 =
integers2, the compiler invokes member function
operator= with the call

 integers1.operator=(integers2)

 Member function operator=’s implementation tests for
self-assignment in which an Array object is being assigned
to itself.
 if this is equal to the right operand’s address, a self-assignment is

being attempted, so the assignment is skipped.

Explanation for Overloaded Assignment
Operator

 operator= determines whether the sizes of the two arrays are
identical
 the original array of integers in the left-side Array object is not

reallocated.

 Otherwise, operator= uses delete
 to release the memory,

 copies the size of the source array to the size of the target array,

 uses new to allocate memory for the target array and

 places the pointer returned by new into the array’s ptr member.

 Regardless of whether this is a self-assignment, the member
function returns the current object (i.e., *this) as a constant
reference;
 this enables cascaded Array assignments such as x = y = z,

 prevents ones like (x = y) = z because z cannot be assigned to the
const Array- reference that is returned by (x = y).

Explanation of Overloaded Assignment
Operator (cont.)

Overloaded Inequality Operator

 Overloaded inequality operator (!=).

 Member function operator!= uses the overloaded

operator== function to determine whether one Array
is equal to another, then returns the opposite of that result.

 Writing operator!= in this manner enables you to

reuse operator==, which reduces the amount of code

that must be written in the class.

 Full function definition for operator!= allows the

compiler to inline the definition.

Explanation of Overloaded Inequality
Operator

 Any single-argument constructor can be used by the compiler to
perform an implicit conversion.

 The constructor’s argument is converted to an object of the
class in which the constructor is defined.

 The conversion is automatic and you need not use a
cast operator.

 In some situations, implicit conversions are undesirable or
error-prone.

 For example, our Array class defines a constructor that
takes a single int argument.

 The intent of this constructor is to create an Array object
containing the number of elements specified by the int
argument.

 However, this constructor can be misused by the compiler
to perform an implicit conversion.

explicit Constructors

Polymorphism

 One name, multiple forms

 Overloaded function, overloaded operators

 Overloaded member functions are selected for invoking by
matching argument, both type and number

 Information is known to the compiler at compile time
 Compiler is able to select the appropriate function at the compile time

 This is called early binding, or static binding, or static linking
 An object is bound to its function call at compile time

 This is also known as compile time polymorphism

Polymorphism (cont.)

 Consider the following class definition where the
function name and prototype is same in both the base
and derived classes.

class A{

int x;

public:

void show() {…} //show() in base class

};

class B: public A{

int y;

public:

void show() {…} //show() in derived class

};

Polymorphism (cont.)

 How do we use the member function show() to print the
values of objects of both the classes A and B?

 prototype show() is same in both the places.

 The function is not overloaded and therefore static binding
does not apply.

 It would be nice if appropriate member function could be selected
while the program is running

 This is known as runtime polymorphism

 How could it happen?
 C++ supports a mechanism known as virtual function to achieve

runtime polymorphism

 At run time, when it is known what class objects are under
consideration, the appropriate version of the function is called.

Polymorphsim (cont.)

 Function is linked with a particular class much later
after the compilation, this processed is termed as late
binding

 It is also known as dynamic binding because the selection of
the appropriate function is done dynamically at runtime.

 Dynamic binding is one of the powerful feature in C++

 Requires the use of pointers to objects

 Object pointers and virtual functions are used to implement
dynamic binding or runtime polymorphism

Polymorphism

Polymorphism

Compile time
Polymorphism

Runtime
Polymorphism

Function
Overloading

Operator
Overloading

Virtual
Functions

 Demonstrate how base-class and derived-class pointers can be
aimed at base-class and derived-class objects
 how those pointers can be used to invoke member functions that

manipulate those objects.

 A key concept
 an object of a derived class can be treated as an object of its base class.

 the compiler allows this because each derived-class object is an object of
its base class.

 However, we cannot treat a base-class object as an object of any
of its derived classes.

 The is-a relationship applies only from a derived class to its
direct and indirect base classes.

Relationships Among Objects in an
Inheritance Hierarchy

 virtual function invocation through

 a base-class pointer to a derived-class object

 a base-class reference to a derived-class object

 the program will choose the correct derived-
class function dynamically (i.e., at execution
time) based on the object type
 not the pointer or reference type.

 This is known as dynamic binding or late
binding.

Virtual Function

 A class is made abstract by declaring one or more of its

virtual functions to be “pure.”

 A pure virtual function is specified by placing

“= 0” in its declaration, as in

virtual void draw() const = 0; //
pure virtual function

 The “= 0” is a pure specifier.

 Pure virtual functions do not provide

implementations.

Abstract Classes and pure virtual Functions

 There are cases in which it’s useful to define classes from which
you never intend to instantiate any objects.

 Such classes are called abstract classes.

 These classes normally are used as base classes in inheritance
hierarchies

 These classes cannot be used to instantiate objects, because,
abstract classes are incomplete

 derived classes must define the “missing pieces.”

 An abstract class provides a base class from which other
classes can inherit.

 Classes that can be used to instantiate objects are called
concrete classes.

 Such classes define every member function they declare.

Abstract Classes and pure virtual Functions

 Internal implementation of polymorphism, virtual
functions and dynamic binding.

 Appreciate the overhead of polymorphism due to its
elegant data structure

 Polymorphism is accomplished through three levels of
pointers (i.e., “triple indirection”).

 C++ compiles a class that has one or more virtual
functions

 builds a virtual function table (vtable) for that class.

 An executing program uses the vtable to select the proper
function implementation each time a virtual function
of that class is called.

Polymorphism, Virtual Functions and Dynamic
Binding “Under the Hood”

Virtual function working mechanism

 Demonstrate the powerful capabilities of runtime type information
(RTTI) and dynamic casting,

 enable a program to determine the type of an object at
execution time and act on that object accordingly.

 To accomplish this, we use operator dynamic_cast to
determine whether the type of each object is derived class i.e;
BasePlusCommissionEmployee.

 This is the downcast operation.

 Dynamically downcast base-class or abstract
base-class pointer/reference i.e;
 employees[i] from type Employee * to type

BasePlusCommissionEmployee *.

Polymorphism and Runtime Type Information with
Downcasting, dynamic_cast, typeid and type_info

Observations

 If a class has a virtual function; provide a virtual
destructor, even if one is not required for the class.

 ensure that a custom derived-class destructor will be
invoked (if there is one) when a derived-class object is
deleted via a base class pointer

 Constructor cannot be virtual

 Declaring a constructor virtual is a compilation error.

 Function templates and class templates enable to specify, with a
single code segment,

 an entire range of related (overloaded) functions
 function-template specializations

 an entire range of related classes
 class-template specializations.

 This technique is called generic programming.

 Note the distinction between templates and template
specializations:

 Function templates and class templates are like stencils out of
which we trace shapes.

 Function-template specializations and class-template
specializations are like the separate tracings that all have the
same shape, but could, for example, be drawn in different
colors.

Templates

 All function template definitions begin with the template
keyword followed by
 a template parameter list to the function template enclosed in angle

brackets (< and >).

 Every parameter in the template parameter list is preceded by
keyword typename or keyword class.

 The formal type parameters are placeholders for fundamental
types or user-defined types.

 These placeholders are used to specify the types of the
function’s parameters,
 to specify the function’s return type and

 to declare variables within the body of the function definition.

What is Function Template?

Example: Function Templates

 If the program logic and operations are identical for each

data type

 overloading may be performed more compactly and

conveniently by using function templates.

 When the compiler detects a templated function invocation
in the client program,

 the compiler uses its overload resolution capabilities to find a
definition of function that best matches the function call.

Why Function Templates & How it works

STL: Containers

 Standard Template Library: Containers

 A container is a holder object that stores a collection of other
objects (its elements).

 Implemented as class templates, which allows a great flexibility
in the types supported as elements.

 Containers replicate structures very commonly used in
programming:

 dynamic arrays (vector), queues (queue), stacks (stack), heaps
(priority_queue), linked lists (list), trees (set), associative arrays
(map) etc

 The container manages the storage space for its elements

 provides member functions to access them, either directly or
through iterators (reference objects like pointers).

Exception Handling

 What is exception handling?

 Example: Handling an attempt to divide by zero

 Use try, catch and throw to detect, handle and indicate
exceptions, respectively.

 Rethrowing an exception

 Exception Specifications

 Processing unexpected and uncaught exceptions

 Stack unwinding

 enables exceptions not caught in one scope to be caught
in another

Exception Handling

 Constructors, destructors & exception handling

 Processing new failures

 Dynamic memory allocation

 Use unique_ptr to prevent memory leak

 Exception & Inheritance

 Understand the exception inheritance hierarchy

Tentative Midterm Exam#2 Structure

 Part I: Conceptual Questions
 Short answer, Fill-in-the-blank, and True/False (30 pts)

 Go though the self-review exercises at the end of each
chapter

 Part II: Programming Questions
 Write C++ code (70 pts)

 Programming questions

 Retake Quiz 3 and Quiz 4

 Inheritance, Operator overloading, Polymorphism, and
Templates

Good Luck !

 Special office hours on Monday (11/05) morning for
the exam

 From 9 am to 12:00 pm, EME 127

