WASHINGTON STATE
g UNIVERSITY
w

CptS 122 - Data Structures

Course Review
Midterm Exam # 2

Nirmalya Roy

School of Electrical Engineering and Computer Science
Washington State University

Midterm Exam 2

m When: Monday (11/05) 12:10 pm -1pm
Where: In Class

Closed book, Closed notes
Comprehensive

m Material for preparation:
O Lecture Slides

o Quizzes, Labs and Programming assignments

o Deitel & Deitel book (Read and re-read Chapter 15 to 22
and Chapter 24)

Course Overview

m C++ as a better C; Introducing Object Technology
(Chapter 15)

O Inline Function
o Function Overloading and Function Templates
o Pass-by-value and Pass-by-reference

m Introduction to Classes, Objects & Strings (Chapter 16)
o Data members, Members functions, set and get functions
o Constructors

m Classes: A Deeper Look, Part | (Chapter 17)

o Separating interface from implementation
o Destructors

Course Overview

m Classes: A Deeper Look, Part 2 (Chapter 18)

O

O

O

O

const Objects and const Member functions
Composition: Objects as members of class
friend function and friend class

this pointer

m Operator Overloading; Class String (Chapter 19)

O

O

O

Implementation of operator overloading
Dynamic memory management using new operator

Explicit constructor

Course Overview

m Object Oriented Programming: Inheritance (Chapter 20)

O

O

Base Classes & Derived Classes
public, protected, andprivate Inheritance

m Object Oriented Programming: Polymorphism (Chap. 21)

O

O

O

Abstract Classes & pure virtual Functions
virtual Functions & Dynamic Binding

Polymorphism & RunTime Type Information (RTTI)

m downcasting, dynamic_cast

virtual Destructors

Course Overview

m Templates (Chapter 22)
O Function Template
o Class Templates

o STL Containers: example of container class template such
as stack

m Exception Handling (Chapter 24)
o Use of try, catch and throw to
detect, handle and indicate exceptions, respectively.

o Exception handling with constructors & destructors
o Processing new failures

Constructor & Destructor

m Constructor is a special member function which
enables an object to initialize itself when it is created
o Name is same as the class name
o Invoked whenever an object of its associated class is created
o Constructs the values of the data members of the class

m Destructor is a special member function that destroys
the objects when they are no longer required

Constructor (cont.)

class 1nteger{
int m,n;
public:

integer (void); //constructor

integer :: integer(void){ //constructor defined
m = 0; n = 0;
}

integer intl; // object intl created

Constructors (cont.)

m Not only creates the object intl of type integer
o But also initializes its data members m and n to zero.
o No need to invoke the constructor function.

m A constructor that accepts no parameters is called a
default constructor
o The default constructor for class integer is

m class integer :: integer();

o If no such constructor is defined then compiler supplies a
default constructor.

Parameterized Constructors

class 1nteger{
int m,n;
public:
integer (int x, int y); //parameterized constructor

integer :: integer (int x, int y){ //constructor defined

m = X; n =Y,

}

integer intl (10, 100); //must pass the initial wvalues

when object intl i1s declared; 1mplicit call

integer intl = integer (10, 100); //explicit call

Multiple Constructors in a Class

class integer{ m integer (); // No arguments
ntm, n; m integer (int, int); // with arguments
public:

integer){ m=0; n=0;} //constructor 1
integer (int a; int b){ m =a; n = b;} //constructor 2
Integer (integer & 1){ m =1.m; n = i.n;} //constructor 3

};

Integer 11;// object 11 created

Integer 12 (20, 40); // object 12 created
integer 13 (12); // object 13 created

a copies the value of 12 into 13

O sets the value of every data element of I3 to value of corresponding data
elements of 12.

Q copy constructor

Copy Constructor

m A copy constructor is used to declare and initialize an
object from another object

O

O

Integer 13 (12)

define object 13 and at the same time initialize it to the
values of 12

Another form is: integer 13 = 12;

m This process of initializing through a copy constructor is known as
copy initialization

13 =12 7?7

= Will not invoke the copy constructor

m However I3 and 12 are objects; the statement is legal and simply
assign the values of 12 to 13; member by member.

m This is the task of overloaded assignment operator (=)

Function Overloading

C++ enables several functions of the same name to be
defined, as long as they have different signatures.

o This is called function overloading.

The C++ compiler selects the proper function to call

o examining the number, types and order of the arguments in the
call.

Overloaded functions are distinguished by their signatures.

o A signature 1s a combination of a function’s name and its
parameter types (in order).

Function overloading is used to create several functions of
the same name

o perform similar tasks, but on different data types.

Function Overloading

// Fig. 6.24: fig06_24.cpp
// Overloaded functions.
#include <iostream>

using namespace std;

// function square for int values
int square(int x)

{

VoO~NOTNDE WN =—

cout << << X << -

10 return x * Xx;
Il } // end function square with int argument

I3 // function square for double values
14 double square(double y)

15 {
16 cout << << Yy << ;
17 return y * y;

I8 } // end function square with double argument
19

Fig. 6.24 | Overloaded square functions. (Part | of 2.)

Example: Function Overloading

20 int main()

21 {

22 cout << square(7); // calls int version

23 cout << endl;

24 cout << square(7.5); // calls double version
25 cout << endl;

26 } // end main

square of integer 7 is 49
square of double 7.5 is 56.25

Fig. 6.24 | Overloaded square functions. (Part 2 of 2.)

Inheritance

= With object-oriented programming, we focus on the
commonalities among objects in the system rather
than on the special cases.

m We distinguish between the is-a relationship and the
has-a relationship.
m The is-a relationship represents inheritance.

o Inan is-arelationship, an object of a derived class also
can be treated as an object of its base class.

m By contrast, the has-a relationship represents
composition.

Variety of Inheritance

I

Single Inheritance Hierarchical Inheritance Multiple Inheritance

s

Multilevel Inheritance Hybrid Inheritance

Derived class cannot access Base class private data directly
but can access it through inherited member function

32 // calculate earnings
33 double BasePlusCommissionEmployee::earnings() const

34 {

35 // derived class cannot access the base class’s private data
36 return baseSalary + (commissionRate * grossSales);

37 } // end function earnings

38

39 // print BasePlusCommissionEmployee object
40 void BasePlusCommissionEmployee::print() const

41 {

42 // derived class cannot access the base class’s private data

43 cout << << firstName <<

44 << lastName << << socialSecurityNumber
45 << << grossSales

46 << << commissionRate

47 << << baseSalary;

48 } // end function print

Fig. 12.11 | BasePlusCommissionEmployee implementation file:
private base-class data cannot be accessed from derived class. (Part
3 0f5.)

Accessing private data in base-class using
base-class member function

m Theerrors in BasePlusCommissionEmployee could
have been prevented by using

o the get member functions inherited from base class
CommissionEmployee.
m For example, we could have invoked
getCommissionRate and getGrossSales to access

o CommissionEmployee’s private data members
commissionRate and grossSales, respectively.

Dynamic Memory Management

Control the allocation and deallocation of memory in a program
o for objects and for arrays of any built-in or user-defined type.
o known as dynamic memory management.

o performed with new and delete.

You can use the new operator to dynamically allocate (i.e.,

reserve) the exact amount of memory required to hold an object or
array at execution time.

The object or array is created in the free store (also called the heap)

o aregion of memory assigned to each program for storing
dynamically allocated objects.

Once memory Is allocated in the free store, you can
access It via the pointer that operator new returns.

You can return memory to the free store by using the delete
operator to deallocate It.

Dynamic Memory Management (cont.)

m To destroy a dynamically allocated object, use the
delete operator as follows:

m delete ptr;
m To deallocate a dynamically allocated array, use the

statement
m delete [] ptr;

Whatis this pointer?

Every object has a special pointer "this" which points
to the object itself.

This pointer is accessible to all members of the class
but not to any static members of the class.

Can be used to find the address of the object in which
the function is a member.

Presence of this pointer is not included in the sizeof
calculations.

Rule of Three (the Law of The Big Three or The
Big Three)

m Rule of three is a Rule of thumb in C++ that claims that
if a class defines one of the following

o it should probably explicitly define all three.

m A copy constructor, a destructor, and an overloaded
assignment operator
o provided as a group for any class that uses dynamically

allocated memory.

m Not providing a copy constructor, and an overloaded
assignment operator for a class when objects of that
class contain pointers to dynamically allocated
memory is a logic error.

Implementation of Operator Overloading:
Example: Array Class

I // Fig. 11.10: Array.h

2 // Array class definition with overloaded operators.

3 #ifndef

4 #define

5

6 #include <iostream>

7 using namespace std;

8

9 «class Array

10 {

11 friend ostream &operator<<(ostream &, const Array &);
12 friend istream &operator>>(istream &, Array &);

I3 public:

14 Array(int =); // default constructor

15 Array(const Array &); // copy constructor

16 ~Array(); // destructor

17 int getSize() const; // return size

I8

19 const Array &operator=(const Array &); // assignment operator
20 bool operator==(const Array &) const; // equality operator
21

Fig. 11.10 | Array class definition with overloaded operators. (Part |
of 2.)

Case Study: Array Class (cont.)

22 // inequality operator; returns opposite of == operator

23 bool operator!=(const Array &right) const

24 {

25 return ! (*this == right); // invokes Array::operator==
26 } // end function operator!=

27

28 // subscript operator for non-const objects returns modifiable Tvalue
29 int &operator[](int);

30

31 // subscript operator for const objects returns rvalue

32 int operator[](int) const;

33 private:

34 int size; // pointer-based array size

35 int *ptr; // pointer to first element of pointer-based array
36 }; // end class Array

37

38 #endif

Fig. 11.10 | Array class definition with overloaded operators. (Part 2
of 2.)

Default Constructor

I // Fig 11.11: Array.cpp

2 // Array class member- and friend-function definitions.

3 #include <iostream>

4 #include <iomanip>

5 #include <cstdlib> // exit function prototype

6 #include "Array.h" // Array class definition

7 using namespace std;

8

9 // default constructor for class Array (default size 10)

10 Array::Array(int arraySize)

11 {

12 // validate arraySize

13 if (arraySize >)

14 size = arraySize;

15 else

16 throw invalid_argument();
17

18 ptr = new int[size]; // create space for pointer-based array
19
20 for (int 1 = 0; 1 < size; ++1)
21 ptr[i] = 0; // set pointer-based array element
22 1} // end Array default constructor

Fig. 11.11 | Array class member- and friend-function definitions.

(Part | of 8.)

Default Constructor Explanation

m Declares the default constructor for the class and
specifies a default size of 10 elements.

m The default constructor validates and assigns the
argument to data member s1ize,

o uses new to obtain the memory for the internal pointer-
based representation of this array

o assigns the pointer returned by new to data member ptr.

m Then the constructor uses a for statement to set all
the elements of the array to zero.

Copy Constructor for class Array

23
24
25
26
27
28
29
30
31
32
33
34

// copy constructor for class Array;
// must receive a reference to prevent infinite recursion
Array::Array(const Array &arrayToCopy)
: size(arrayToCopy.size)
{

ptr = new int[size]; // create space for pointer-based array

for (int 1 = 0; 1 < size; ++1)
ptr[i] = arrayToCopy.ptr[i]; // copy into object
} // end Array copy constructor

Fig. 11.11 | Array class member- and friend-function definitions.
(Part 2 of 8.)

Copy Constructor Explanation

= Declares a copy constructor that initializes an Array by
making a copy of an existing Array object.

m Such copying must be done carefully to avoid the pitfall of
leaving both Array objects pointing to the same dynamically
allocated memory.

m Copy constructors are invoked whenever a copy of an object
IS needed
o such as in passing an object by value to a function,
o returning an object by value from a function or
o Initializing an object with a copy of another object of the same class.

Copy Constructor Explanation

m The copy constructor for Array uses a member initializer
to copy the s7ze of the initializer Array into data
member s7ze,

O uses new to obtain the memory for the internal pointer-based
representation of this Array

o assigns the pointer returned by new to data member ptr.

= Then the copy constructor uses a for statement to copy
all the elements of the initializer Array into the new
Array object.

= An object of a class can look at the private data of any
other object of that class (using a handle that indicates
which object to access).

Infinite Recursion of Copy Constructor

m A copy constructor must receive its argument by
reference, not by value.

m Otherwise the copy constructor call results in
infinite recursion

o Receiving an object by value requires a copy constructor
to make a copy of the argument object.

o Recall that any time a copy of an object is required, the
class’s copy constructor is called.

o If the copy constructor received its argument by value,
the copy constructor would call itself recursively to make
a copy of its argument!

Destructor for class Array

35 // destructor for class Array
36 Array::~Array()

37 {

38 delete [] ptr; // release pointer-based array space
39 1} // end destructor

40

41 // return number of elements of Array
42 1int Array::getSize() const

43 {

44 return size; // number of elements in Array
45 } // end function getSize

46

Fig. 11.11 | Array class member- and friend-function definitions.
(Part 3 of 8.)

Destructor Explanation

m The destructor uses delete [] to release the
memory allocated dynamically by new in the
constructor.

Equality Operator for class Array

69 // determine if two Arrays are equal and
70 // return true, otherwise return false
71 bool Array::operator==(const Array &right) const

72 {

73 if (size != right.size)

74 return false; // arrays of different number of elements
75

76 for (int i = 0; 1 < size; ++1)

77 if Cptr[1] !'= right.ptr[1])

78 return false; // Array contents are not equal
79

80 return true; // Arrays are equal

81 } // end function operator==

82

Fig. 11.11 | Array class member- and friend-function definitions.
(Part 5 of 8.)

Explanation for Equality Operator

Overloaded equality operator (==) for the class.

When the compiler sees the expression 1htegersl ==
1ntegers?2, the compiler invokes member function
operator== with the call

m 1ntegersl.operator==(integers?2)

= Member function operator== immediately returns
false if the s1ze members of the arrays are not equal.

m Otherwise, operator== compares each pair of elements.
o Ifthey’re all equal, the function returns true.

o The first pair of elements to differ causes the function to return
false immediately.

Overloaded Assignment Operator

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

// overloaded assignment operator;
// const return avoids: (al = a2) = a3
const Array &Array::operator=(const Array &right)
{
if (&right != this) // avoid self-assignment
{
// for Arrays of different sizes, deallocate original
// left-side array, then allocate new left-side array
if (size != right.size)
{
delete [] ptr; // release space
size = right.size; // resize this object
ptr = new int[size]; // create space for array copy
} // end inner if

for (int i = 0; i < size; ++1)
ptr[i] = right.ptr[1]; // copy array into object
} // end outer if

return *this; // enables x = y = z, for example
} // end function operator=

Fig. 11.11 | Array class member- and friend-function definitions.
(Part 4 of 8.)

Explanation for Overloaded Assignment
Operator

m Overloaded assignment operator function for the Array class.

= When the compiler sees the expression Thtegersl =
1ntegers2, the compiler invokes member function
operator= with the call
m 1ntegersl.operator=(1ntegers2)

s Member function operator=’s implementation tests for
self-assignment in which an Array object Is being assigned
to itself.

o if thisisequal to the right operand’s address, a self-assignment is
being attempted, so the assignment is skipped.

Explanation of Overloaded Assignment
Operator (cont.)

m operator=determines whether the sizes of the two arrays are
Identical
o the original array of integers in the left-side Array object is not
reallocated.
s Otherwise, operator=uses delete
o to release the memory,
o copies the s1ze of the source array to the s1ze of the target array,
o uses new to allocate memory for the target array and
o places the pointer returned by new into the array’s ptr member.

s Regardless of whether this is a self-assignment, the member
function returns the current object (i.e., *th1s) as a constant
reference;

o this enables cascaded Array assignments suchas X =y = z,

o prevents ones like (X =y) = z because z cannot be assigned to the
const Array- reference that is returned by (x =y).

Overloaded Inequality Operator

// inequality operator; returns opposite of == operator
bool operator!=(const Array &right) const
{
return ! (*this == right); // invokes Array::operator==

} // end function operator!=

Explanation of Overloaded Inequality
Operator

m Overloaded inequality operator (!=).

= Member function operator != uses the overloaded
operator== function to determine whether one Array
IS equal to another, then returns the opposite of that result.

m Writing operator = in this manner enables you to
reuse operator==, which reduces the amount of code
that must be written in the class.

= Full function definition for operator!= allows the
compiler to inline the definition.

explicit Constructors

Any single-argument constructor can be used by the compiler to
perform an implicit conversion.

o The constructor’s argument 1s converted to an object of the
class in which the constructor is defined.

The conversion iIs automatic and you need not use a
cast operator.

In some situations, implicit conversions are undesirable or
error-prone.

o For example, our Array class defines a constructor that
takes a single 1nt argument.

o The intent of this constructor Is to create an Array object
containing the number of elements specified by the 1nt
argument.

o However, this constructor can be misused by the compiler
to perform an implicit conversion.

Polymorphism

= One name, multiple forms

O

O

Overloaded function, overloaded operators

Overloaded member functions are selected for invoking by
matching argument, both type and number

Information is known to the compiler at compile time
m Compiler is able to select the appropriate function at the compile time

This is called early binding, or static binding, or static linking

m Anobjectis bound to its function call at compile time

This is also known as compile time polymorphism

Polymorphism (cont.)

m Consider the following class definition where the
function name and prototype is same in both the base
and derived classes.

class A{

int X;

public:

void show() {...} //show() in base class

¢
class B: public A{

inty;

public:

void show() {...} //show() in derived class

Polymorphism (cont.)

How do we use the member function show() to print the
values of objects of both the classes A and B?

o prototype show() is same in both the places.

o The function is not overloaded and therefore static binding
does not apply.

It would be nice if appropriate member function could be selected
while the program is running

o This is known as runtime polymorphism
o How could it happen?

m C++ supports a mechanism known as virtual function to achieve
runtime polymorphism

m Atruntime, when it is known what class objects are under
consideration, the appropriate version of the function is called.

Polymorphsim (cont.)

m Function is linked with a particular class much later
after the compilation, this processed is termed as /ate
binding
o Itis also known as dynamic binding because the selection of

the appropriate function is done dynamically at runtime.

m Dynamic binding is one of the powerful feature in C++

o Requires the use of pointers to objects

o Object pointers and virtual functions are used to implement
dynamic binding or runtime polymorphism

Polymorphism

Polymorphism j

Compile time Runtime
Polymorphism Polymorphism
v
Virtual
Function Operator Functions

Overloading Overloading

Relationships Among Objects in an
Inheritance Hierarchy

Demonstrate how base-class and derived-class pointers can be

almed at base-class and derived-class objects

o how those pointers can be used to invoke member functions that
manipulate those objects.

A key concept

o an object of a derived class can be treated as an object of its base class.

o the compiler allows this because each derived-class object is an object of
its base class.

However, we cannot treat a base-class object as an object of any

of its derived classes.

The is-a relationship applies only from a derived class to its
direct and indirect base classes.

Virtual Function

m Vvirtual function invocation through
o a base-class pointer to a derived-class object
o abase-class reference to a derived-class object

o the program will choose the correct derived-
class function dynamically (i.e., at execution
time) based on the object type

m not the pointer or reference type.

o This 1s known as dynamic binding or late
binding.

Abstract Classes and pure virtual Functions

m A class is made abstract by declaring one or more of its
virtual functions to be “pure.”

o Apurevirtual function is specified by placing
“=0” 1n its declaration, as in

virtual void draw() const = 0; //
pure virtual function

m The “= 07 is a pure specifier.

m Pure virtual functions do not provide
Implementations.

Abstract Classes and pure virtual Functions

m There are cases in which it’s useful to define classes from which
you never intend to instantiate any objects.

o Such classes are called abstract classes.

o These classes normally are used as base classes in inheritance
hierarchies

m These classes cannot be used to instantiate objects, because,
abstract classes are incomplete

o derived classes must define the “missing pieces.”

m An abstract class provides a base class from which other
classes can inherit.

m Classes that can be used to instantiate objects are called
concrete classes.

o Such classes define every member function they declare.

Polymorphism, Virtual Functions and Dynamic
Binding “Under the Hood”

= Internal implementation of polymorphism, virtual
functions and dynamic binding.

m Appreciate the overhead of polymorphism due to its
elegant data structure

m Polymorphism is accomplished through three levels of
pointers (i.e., “triple indirection™).

m C++ compiles a class that has one or more virtual
functions
o builds a virtual function table (vtable) for that class.

= An executing program uses the vtable to select the proper
function implementation each time a virtual function
of that class is called.

Virtual function working mechanism

{abstract <lass)
Employee wable

earnings ° (0 ndScates pure vetual lunction)
print
first last
ssn: L.,
SalariedEsployee salariedEnployes
uadle §
earnings 3
klySal -
kSt 4 John Seith vector < Employee * >
int i11-1-111
salarfed .¢—. $800.00 | esployees(4);
enployee i
0 &salarfed-
(03 Employes
ComnissionEmployee commissionfaployee (1] scomeission:
wtable A Employwe SO
earnings : _ i AbasePlus-
grossSales : e
* commissionRate R Sue Jones Comaission-
print 33333035 [mploywe
Commianlon ——— $120,000,00

employee: ... ’ o8

basePlusComm) ssionteployee

BasePlusCommissionfmployee
wable .

Inu-Sa).u‘y . earnings k.
(grossSales Lowi
* commissionRate) .:‘_'“_“:‘
base. «—OFICESS $5.000.00 .
salaried o
commission $300.00
employee: ...

Flow of Virtual Function Call baseClassPtr->print() baseClassper

When baseClassPtr Points to Object hourlyEnployee
pass &commissionEmployee getto commissionEmployee execute prine o
w baseClassPtr viabie commissionEmployee

g2t to commissionEnployee 28t 10 print poirter
oyect n vtable

Fig. 13.18 | How virtual function calls work.

Polymorphism and Runtime Type Information with
Downcasting, dynamic_cast, typeid and type_info

s Demonstrate the powerful capabilities of runtime type information
(RTTI) and dynamic casting,

o enable a program to determine the type of an object at
execution time and act on that object accordingly.

m To accomplish this, we use operator dynamic_cast to
determine whether the type of each object is derived class I.e;
BasePlusCommissionEmployee.

o This is the downcast operation.
o Dynamically downcast base-class or abstract
base-class pointer/reference 1.e;

m employees[1] fromtype Employee * to type
BasePlusCommissionEmployee *.

Observations

If a class has a virtual function; provide a virtual
destructor, even if one is not required for the class.

o ensure that a custom derived-class destructor will be
invoked (if there is one) when a derived-class object is
deleted via a base class pointer

Constructor cannot be virtual

o Declaring a constructor virtual is a compilation error.

Templates

Function templates and class templates enable to specify, with a
single code segment,
o an entire range of related (overloaded) functions

m function-template specializations

o an entire range of related classes
m class-template specializations.

This technique is called generic programming.

Note the distinction between templates and template
specializations:

o Function templates and class templates are like stencils out of
which we trace shapes.

o Function-template specializations and class-template
specializations are like the separate tracings that all have the
same shape, but could, for example, be drawn in different
colors.

What is Function Template?

= All function template definitions begin with the template
keyword followed by

o atemplate parameter list to the function template enclosed in angle
brackets (< and >).

m Every parameter in the template parameter list is preceded by
keyword typename or keyword class.

m The formal type parameters are placeholders for fundamental
types or user-defined types.

m These placeholders are used to specify the types of the
function’s parameters,

o to specify the function’s return type and
o to declare variables within the body of the function definition.

Example: Function Templates

VoO~NOTNDE WN =—

16
17

// Fig. 6.26: maximum.h

// Definition of function template maximum.

template < typename T > // or template< typename T >
T maximum(T valuel, T value2, T value3)

{

T maximumValue = valuel; // assume valuel is maximum

// determine whether value2 1is greater than maximumValue
if (value2 > maximumValue)
maximumValue = value?2;

// determine whether value3 1is greater than maximumValue
if (value3 > maximumValue)
maximumValue = value3;

return maximumValue;
} // end function template maximum

Fig. 6.26 | Function template maximum header.

Why Function Templates & How it works

m If the program logic and operations are identical for each

data type

o overloading may be performed more compactly and
conveniently by using function templates.
m When the compiler detects a tempTated function invocation

In the client program,

o the compiler uses its overload resolution capabilities to find a
definition of function that best matches the function call.

STL: Containers

m Standard Template Library: Containers

o A container is a holder object that stores a collection of other
objects (its elements).

o Implemented as class templates, which allows a great flexibility
in the types supported as elements.
m Containers replicate structures very commonly used in
programming:
o dynamic arrays (vector), queues (queue), stacks (stack), heaps
(priority _queue), linked lists (list), trees (set), associative arrays
(map) etc
m The container manages the storage space for its elements

o provides member functions to access them, either directly or
through iterators (reference objects like pointers).

Exception Handling

m What is exception handling?
o Example: Handling an attempt to divide by zero

o Use try, catch and throw to detect, handle and indicate
exceptions, respectively.

o Rethrowing an exception
m Exception Specifications

O Processing unexpected and uncaught exceptions
m Stack unwinding

O enables exceptions not caught in one scope to be caught
in another

Exception Handling

m Constructors, destructors & exception handling
m Processing new failures

o Dynamic memory allocation
o Useunique ptr to prevent memory leak

m Exception & Inheritance
o Understand the exception inheritance hierarchy

Tentative Midterm Exam#2 Structure

m Part|l: Conceptual Questions
o Short answer, Fill-in-the-blank, and True/False (30 pts)
O Go though the self-review exercises at the end of each
chapter
m Part ll: Programming Questions
o Write C++ code (70 pts)
O Programming questions
O Retake Quiz 3 and Quiz 4

o Inheritance, Operator overloading, Polymorphism, and
Templates

WASHINGTON STATE

UU\m RSITY

m Special office hours on Monday (11/05) morning for
the exam

B From9amto 12:00 pm, EME 127

Good Luck!!

