
Nirmalya Roy

School of Electrical Engineering and Computer Science
Washington State University

Cpt S 122 – Data Structures

Course Review
Midterm Exam # 2

Midterm Exam 2

 When: Monday (11/05) 12:10 pm -1pm
 Where: In Class

 Closed book, Closed notes
 Comprehensive

 Material for preparation:
 Lecture Slides
 Quizzes, Labs and Programming assignments
 Deitel & Deitel book (Read and re-read Chapter 15 to 22

and Chapter 24)

Course Overview

 C++ as a better C; Introducing Object Technology
(Chapter 15)

 Inline Function

 Function Overloading and Function Templates

 Pass-by-value and Pass-by-reference

 Introduction to Classes, Objects & Strings (Chapter 16)
 Data members, Members functions, set and get functions

 Constructors

 Classes: A Deeper Look, Part I (Chapter 17)

 Separating interface from implementation

 Destructors

Course Overview

 Classes: A Deeper Look, Part 2 (Chapter 18)
 const Objects and const Member functions

 Composition: Objects as members of class

 friend function and friend class

 this pointer

 Operator Overloading; Class String (Chapter 19)

 Implementation of operator overloading

 Dynamic memory management using new operator

 Explicit constructor

Course Overview

 Object Oriented Programming: Inheritance (Chapter 20)

 Base Classes & Derived Classes

 public, protected, and private Inheritance

 Object Oriented Programming: Polymorphism (Chap. 21)

 Abstract Classes & pure virtual Functions

 virtual Functions & Dynamic Binding

 Polymorphism & RunTime Type Information (RTTI)

 downcasting, dynamic_cast

 virtual Destructors

Course Overview

 Templates (Chapter 22)

 Function Template

 Class Templates

 STL Containers: example of container class template such
as stack

 Exception Handling (Chapter 24)

 Use of try, catch and throw to

detect, handle and indicate exceptions, respectively.

 Exception handling with constructors & destructors

 Processing new failures

Constructor & Destructor

 Constructor is a special member function which
enables an object to initialize itself when it is created

 Name is same as the class name

 Invoked whenever an object of its associated class is created

 Constructs the values of the data members of the class

 Destructor is a special member function that destroys
the objects when they are no longer required

Constructor (cont.)

class integer{

int m,n;

public:

integer (void); //constructor

…….

};

integer :: integer(void){ //constructor defined

m = 0; n = 0;

}

integer int1; // object int1 created

Constructors (cont.)

 Not only creates the object int1 of type integer

 But also initializes its data members m and n to zero.

 No need to invoke the constructor function.

 A constructor that accepts no parameters is called a
default constructor

 The default constructor for class integer is
 class integer :: integer();

 If no such constructor is defined then compiler supplies a
default constructor.

Parameterized Constructors

class integer{

int m,n;

public:

integer (int x, int y); //parameterized constructor

…….

};

integer :: integer(int x, int y){ //constructor defined

m = x; n = y;

}

integer int1 (10, 100); //must pass the initial values

when object int1 is declared; implicit call

integer int1 = integer (10, 100); //explicit call

Multiple Constructors in a Class
 integer (); // No arguments

 integer (int, int); // with arguments

class integer{

int m, n;

public:

integer (){ m = 0; n = 0;} //constructor 1

integer (int a; int b){ m = a; n = b;} //constructor 2

integer (integer & i){ m = i.m; n = i.n;} //constructor 3

};

integer I1; // object I1 created

integer I2 (20, 40); // object I2 created

integer I3 (I2); // object I3 created

 copies the value of I2 into I3

 sets the value of every data element of I3 to value of corresponding data

elements of I2.

 copy constructor

Copy Constructor

 A copy constructor is used to declare and initialize an
object from another object

 integer I3 (I2)

 define object I3 and at the same time initialize it to the
values of I2

 Another form is: integer I3 = I2;

 This process of initializing through a copy constructor is known as

copy initialization

 I3 = I2 ??

 Will not invoke the copy constructor

 However I3 and I2 are objects; the statement is legal and simply

assign the values of I2 to I3; member by member.

 This is the task of overloaded assignment operator (=)

 C++ enables several functions of the same name to be

defined, as long as they have different signatures.

 This is called function overloading.

 The C++ compiler selects the proper function to call

 examining the number, types and order of the arguments in the

call.

 Overloaded functions are distinguished by their signatures.

 A signature is a combination of a function’s name and its
parameter types (in order).

 Function overloading is used to create several functions of

the same name

 perform similar tasks, but on different data types.

Function Overloading

Function Overloading

Example: Function Overloading

 With object-oriented programming, we focus on the

commonalities among objects in the system rather

than on the special cases.

 We distinguish between the is-a relationship and the

has-a relationship.

 The is-a relationship represents inheritance.

 In an is-a relationship, an object of a derived class also

can be treated as an object of its base class.

 By contrast, the has-a relationship represents

composition.

Inheritance

Variety of Inheritance

B

A

Single Inheritance

C

A

DB

Hierarchical Inheritance Multiple Inheritance

BA

B

A

B

A

C

C

Multilevel Inheritance Hybrid Inheritance

C

D

Derived class cannot access Base class private data directly
but can access it through inherited member function

 The errors in BasePlusCommissionEmployee could

have been prevented by using

 the get member functions inherited from base class

CommissionEmployee.

 For example, we could have invoked

getCommissionRate and getGrossSales to access

 CommissionEmployee’s private data members

commissionRate and grossSales, respectively.

Accessing private data in base-class using
base-class member function

 Control the allocation and deallocation of memory in a program

 for objects and for arrays of any built-in or user-defined type.

 known as dynamic memory management.

 performed with new and delete.

 You can use the new operator to dynamically allocate (i.e.,
reserve) the exact amount of memory required to hold an object or
array at execution time.

 The object or array is created in the free store (also called the heap)

 a region of memory assigned to each program for storing
dynamically allocated objects.

 Once memory is allocated in the free store, you can
access it via the pointer that operator new returns.

 You can return memory to the free store by using the delete
operator to deallocate it.

Dynamic Memory Management

Dynamic Memory Management (cont.)

 To destroy a dynamically allocated object, use the

delete operator as follows:
 delete ptr;

 To deallocate a dynamically allocated array, use the

statement
 delete [] ptr;

What is this pointer?

 Every object has a special pointer "this" which points
to the object itself.

 This pointer is accessible to all members of the class
but not to any static members of the class.

 Can be used to find the address of the object in which
the function is a member.

 Presence of this pointer is not included in the sizeof
calculations.

Rule of Three (the Law of The Big Three or The
Big Three)

 Rule of three is a Rule of thumb in C++ that claims that
if a class defines one of the following

 it should probably explicitly define all three.

 A copy constructor, a destructor, and an overloaded
assignment operator

 provided as a group for any class that uses dynamically
allocated memory.

 Not providing a copy constructor, and an overloaded
assignment operator for a class when objects of that
class contain pointers to dynamically allocated
memory is a logic error.

Implementation of Operator Overloading:
Example: Array Class

Case Study: Array Class (cont.)

Default Constructor

 Declares the default constructor for the class and

specifies a default size of 10 elements.

 The default constructor validates and assigns the

argument to data member size,

 uses new to obtain the memory for the internal pointer-

based representation of this array

 assigns the pointer returned by new to data member ptr.

 Then the constructor uses a for statement to set all

the elements of the array to zero.

Default Constructor Explanation

Copy Constructor for class Array

 Declares a copy constructor that initializes an Array by
making a copy of an existing Array object.

 Such copying must be done carefully to avoid the pitfall of
leaving both Array objects pointing to the same dynamically
allocated memory.

 Copy constructors are invoked whenever a copy of an object
is needed
 such as in passing an object by value to a function,

 returning an object by value from a function or

 initializing an object with a copy of another object of the same class.

Copy Constructor Explanation

 The copy constructor for Array uses a member initializer
to copy the size of the initializer Array into data
member size,

 uses new to obtain the memory for the internal pointer-based
representation of this Array

 assigns the pointer returned by new to data member ptr.

 Then the copy constructor uses a for statement to copy
all the elements of the initializer Array into the new
Array object.

 An object of a class can look at the private data of any
other object of that class (using a handle that indicates
which object to access).

Copy Constructor Explanation

Infinite Recursion of Copy Constructor

 A copy constructor must receive its argument by
reference, not by value.

 Otherwise the copy constructor call results in
infinite recursion

 Receiving an object by value requires a copy constructor
to make a copy of the argument object.

 Recall that any time a copy of an object is required, the
class’s copy constructor is called.

 If the copy constructor received its argument by value,
the copy constructor would call itself recursively to make
a copy of its argument!

Destructor for class Array

 The destructor uses delete [] to release the

memory allocated dynamically by new in the

constructor.

Destructor Explanation

Equality Operator for class Array

 Overloaded equality operator (==) for the class.

 When the compiler sees the expression integers1 ==
integers2, the compiler invokes member function
operator== with the call

 integers1.operator==(integers2)

 Member function operator== immediately returns
false if the size members of the arrays are not equal.

 Otherwise, operator== compares each pair of elements.
 If they’re all equal, the function returns true.

 The first pair of elements to differ causes the function to return
false immediately.

Explanation for Equality Operator

Overloaded Assignment Operator

 Overloaded assignment operator function for the Array class.

 When the compiler sees the expression integers1 =
integers2, the compiler invokes member function
operator= with the call

 integers1.operator=(integers2)

 Member function operator=’s implementation tests for
self-assignment in which an Array object is being assigned
to itself.
 if this is equal to the right operand’s address, a self-assignment is

being attempted, so the assignment is skipped.

Explanation for Overloaded Assignment
Operator

 operator= determines whether the sizes of the two arrays are
identical
 the original array of integers in the left-side Array object is not

reallocated.

 Otherwise, operator= uses delete
 to release the memory,

 copies the size of the source array to the size of the target array,

 uses new to allocate memory for the target array and

 places the pointer returned by new into the array’s ptr member.

 Regardless of whether this is a self-assignment, the member
function returns the current object (i.e., *this) as a constant
reference;
 this enables cascaded Array assignments such as x = y = z,

 prevents ones like (x = y) = z because z cannot be assigned to the
const Array- reference that is returned by (x = y).

Explanation of Overloaded Assignment
Operator (cont.)

Overloaded Inequality Operator

 Overloaded inequality operator (!=).

 Member function operator!= uses the overloaded

operator== function to determine whether one Array
is equal to another, then returns the opposite of that result.

 Writing operator!= in this manner enables you to

reuse operator==, which reduces the amount of code

that must be written in the class.

 Full function definition for operator!= allows the

compiler to inline the definition.

Explanation of Overloaded Inequality
Operator

 Any single-argument constructor can be used by the compiler to
perform an implicit conversion.

 The constructor’s argument is converted to an object of the
class in which the constructor is defined.

 The conversion is automatic and you need not use a
cast operator.

 In some situations, implicit conversions are undesirable or
error-prone.

 For example, our Array class defines a constructor that
takes a single int argument.

 The intent of this constructor is to create an Array object
containing the number of elements specified by the int
argument.

 However, this constructor can be misused by the compiler
to perform an implicit conversion.

explicit Constructors

Polymorphism

 One name, multiple forms

 Overloaded function, overloaded operators

 Overloaded member functions are selected for invoking by
matching argument, both type and number

 Information is known to the compiler at compile time
 Compiler is able to select the appropriate function at the compile time

 This is called early binding, or static binding, or static linking
 An object is bound to its function call at compile time

 This is also known as compile time polymorphism

Polymorphism (cont.)

 Consider the following class definition where the
function name and prototype is same in both the base
and derived classes.

class A{

int x;

public:

void show() {…} //show() in base class

};

class B: public A{

int y;

public:

void show() {…} //show() in derived class

};

Polymorphism (cont.)

 How do we use the member function show() to print the
values of objects of both the classes A and B?

 prototype show() is same in both the places.

 The function is not overloaded and therefore static binding
does not apply.

 It would be nice if appropriate member function could be selected
while the program is running

 This is known as runtime polymorphism

 How could it happen?
 C++ supports a mechanism known as virtual function to achieve

runtime polymorphism

 At run time, when it is known what class objects are under
consideration, the appropriate version of the function is called.

Polymorphsim (cont.)

 Function is linked with a particular class much later
after the compilation, this processed is termed as late
binding

 It is also known as dynamic binding because the selection of
the appropriate function is done dynamically at runtime.

 Dynamic binding is one of the powerful feature in C++

 Requires the use of pointers to objects

 Object pointers and virtual functions are used to implement
dynamic binding or runtime polymorphism

Polymorphism

Polymorphism

Compile time
Polymorphism

Runtime
Polymorphism

Function
Overloading

Operator
Overloading

Virtual
Functions

 Demonstrate how base-class and derived-class pointers can be
aimed at base-class and derived-class objects
 how those pointers can be used to invoke member functions that

manipulate those objects.

 A key concept
 an object of a derived class can be treated as an object of its base class.

 the compiler allows this because each derived-class object is an object of
its base class.

 However, we cannot treat a base-class object as an object of any
of its derived classes.

 The is-a relationship applies only from a derived class to its
direct and indirect base classes.

Relationships Among Objects in an
Inheritance Hierarchy

 virtual function invocation through

 a base-class pointer to a derived-class object

 a base-class reference to a derived-class object

 the program will choose the correct derived-
class function dynamically (i.e., at execution
time) based on the object type
 not the pointer or reference type.

 This is known as dynamic binding or late
binding.

Virtual Function

 A class is made abstract by declaring one or more of its

virtual functions to be “pure.”

 A pure virtual function is specified by placing

“= 0” in its declaration, as in

virtual void draw() const = 0; //
pure virtual function

 The “= 0” is a pure specifier.

 Pure virtual functions do not provide

implementations.

Abstract Classes and pure virtual Functions

 There are cases in which it’s useful to define classes from which
you never intend to instantiate any objects.

 Such classes are called abstract classes.

 These classes normally are used as base classes in inheritance
hierarchies

 These classes cannot be used to instantiate objects, because,
abstract classes are incomplete

 derived classes must define the “missing pieces.”

 An abstract class provides a base class from which other
classes can inherit.

 Classes that can be used to instantiate objects are called
concrete classes.

 Such classes define every member function they declare.

Abstract Classes and pure virtual Functions

 Internal implementation of polymorphism, virtual
functions and dynamic binding.

 Appreciate the overhead of polymorphism due to its
elegant data structure

 Polymorphism is accomplished through three levels of
pointers (i.e., “triple indirection”).

 C++ compiles a class that has one or more virtual
functions

 builds a virtual function table (vtable) for that class.

 An executing program uses the vtable to select the proper
function implementation each time a virtual function
of that class is called.

Polymorphism, Virtual Functions and Dynamic
Binding “Under the Hood”

Virtual function working mechanism

 Demonstrate the powerful capabilities of runtime type information
(RTTI) and dynamic casting,

 enable a program to determine the type of an object at
execution time and act on that object accordingly.

 To accomplish this, we use operator dynamic_cast to
determine whether the type of each object is derived class i.e;
BasePlusCommissionEmployee.

 This is the downcast operation.

 Dynamically downcast base-class or abstract
base-class pointer/reference i.e;
 employees[i] from type Employee * to type

BasePlusCommissionEmployee *.

Polymorphism and Runtime Type Information with
Downcasting, dynamic_cast, typeid and type_info

Observations

 If a class has a virtual function; provide a virtual
destructor, even if one is not required for the class.

 ensure that a custom derived-class destructor will be
invoked (if there is one) when a derived-class object is
deleted via a base class pointer

 Constructor cannot be virtual

 Declaring a constructor virtual is a compilation error.

 Function templates and class templates enable to specify, with a
single code segment,

 an entire range of related (overloaded) functions
 function-template specializations

 an entire range of related classes
 class-template specializations.

 This technique is called generic programming.

 Note the distinction between templates and template
specializations:

 Function templates and class templates are like stencils out of
which we trace shapes.

 Function-template specializations and class-template
specializations are like the separate tracings that all have the
same shape, but could, for example, be drawn in different
colors.

Templates

 All function template definitions begin with the template
keyword followed by
 a template parameter list to the function template enclosed in angle

brackets (< and >).

 Every parameter in the template parameter list is preceded by
keyword typename or keyword class.

 The formal type parameters are placeholders for fundamental
types or user-defined types.

 These placeholders are used to specify the types of the
function’s parameters,
 to specify the function’s return type and

 to declare variables within the body of the function definition.

What is Function Template?

Example: Function Templates

 If the program logic and operations are identical for each

data type

 overloading may be performed more compactly and

conveniently by using function templates.

 When the compiler detects a templated function invocation
in the client program,

 the compiler uses its overload resolution capabilities to find a
definition of function that best matches the function call.

Why Function Templates & How it works

STL: Containers

 Standard Template Library: Containers

 A container is a holder object that stores a collection of other
objects (its elements).

 Implemented as class templates, which allows a great flexibility
in the types supported as elements.

 Containers replicate structures very commonly used in
programming:

 dynamic arrays (vector), queues (queue), stacks (stack), heaps
(priority_queue), linked lists (list), trees (set), associative arrays
(map) etc

 The container manages the storage space for its elements

 provides member functions to access them, either directly or
through iterators (reference objects like pointers).

Exception Handling

 What is exception handling?

 Example: Handling an attempt to divide by zero

 Use try, catch and throw to detect, handle and indicate
exceptions, respectively.

 Rethrowing an exception

 Exception Specifications

 Processing unexpected and uncaught exceptions

 Stack unwinding

 enables exceptions not caught in one scope to be caught
in another

Exception Handling

 Constructors, destructors & exception handling

 Processing new failures

 Dynamic memory allocation

 Use unique_ptr to prevent memory leak

 Exception & Inheritance

 Understand the exception inheritance hierarchy

Tentative Midterm Exam#2 Structure

 Part I: Conceptual Questions
 Short answer, Fill-in-the-blank, and True/False (30 pts)

 Go though the self-review exercises at the end of each
chapter

 Part II: Programming Questions
 Write C++ code (70 pts)

 Programming questions

 Retake Quiz 3 and Quiz 4

 Inheritance, Operator overloading, Polymorphism, and
Templates

Good Luck !

 Special office hours on Monday (11/05) morning for
the exam

 From 9 am to 12:00 pm, EME 127

