
Efficient Application Integration in IP-Based Sensor Network s

Dogan Yazar, Adam Dunkels
Swedish Institute of Computer Science

{dogan,adam}@sics.se

Abstract
Sensor networks are seen as an important part in emerging

office and building energy management system, but the inte-
gration of sensor networks with future energy management
systems is still an open problem. We present an IP-based
sensor network system where nodes communicate their in-
formation using Web services, allowing direct integration
in modern IT systems. Our system uses two mechanisms
to provide a good performance and low-power operation: a
session-aware power-saving radio protocol and the use of the
HTTP Conditional GET mechanism. We perform an exten-
sive evaluation of our system and show that Web services are
a viable mechanism for use in low-power sensor networks.
Our results show that Web service requests can be completed
well below one second and with a low power consumption,
even in a multi-hop setting.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Applications

General Terms
Design, Experimentation, Measurement, Performance

Keywords
Sensor networks, web services, REST

1 Introduction
Sensor networks are seen as an important part in the

emerging fields of energy management for homes, offices,
and the smart grid. Many existing sensor network deploy-
ments use specialized and highly optimized protocols that
require the presence of a gateway that connects the sensor
network to the outside world. The gateway must be tailored
to the specific protocols used inside the sensor network. To
be able to avoid the use of a specialized gateway, several
recent systems use the IP protocol inside the sensor net-
work [3, 7, 11]. Running IP inside the sensor network has

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
BuildSys’09,November 3, 2009, Berkeley, CA, USA.
Copyright 2009 ACM 978-1-60558-824-7 ...$5.00

Database

Automation Server

Router

: Sensor

: Power Meter

: Radiator

: Actuator

802.15.4 Radio Link

Workstation

IP Network

Figure 1. Sensors, actuators, and other energy manage-
ment devices such as energy meters and radiators are
part of the same IP network as the automation server,
and the database servers that carry the data on which
the automation system operates.

the benefit of interoperability at the network layer. IP does
not, however, automatically enable integration at the higher
layer.

To integrate sensor networks with existing IT systems, the
use of Web services has been proposed [9, 6, 11]. Web ser-
vices are a mechanism that is widely used in general purpose
IT systems, such as business logic systems and data bases.
Web services provide a structured and interoperable mech-
anism for data acquisition, data storage, and data replica-
tion both within and outside of the sensor network. A Web
services-based sensor network can be integrated into office
automation or home energy management systems that are
built on standard IT system components. Unlike specialized
gateway-based approaches, Web services provide an archi-
tecture that is able to evolve as the field grows.

Our overall architecture is shown in Figure 1. Sensors, ac-
tuators, and other devices, are part of the same IP network as
automation manager software as well as the database servers
that hold energy consumption data history. The servers can
communicate directly with the devices using the Web ser-
vices mechanism.

The contribution of this paper is twofold. First, we show
the feasibility of using RESTful Web services on an IP-
based multi-hop low-power sensor networks. Second, we
perform an extensive evaluation where we quantify the per-
formance and power consumption of REST, showing that a
REST transaction over a multi-hop low-power network typ-
ically is completed within fractions of a second, and with a
low power consumption. Furthermore, we quantify the over-

43

head of IPv6 versus an IPv4-based sensor network. To the
best of our knowledge, this is the first time that Web services
for sensor networks have been evaluated in a multi-hop set-
ting.

2 Related Work
For general-purpose computing, Web services are a well-

established mechanism. Web services for general purpose
computing has traditionally been SOAP-based, but RESTful
systems are emerging. Web services have previously been
suggested for use in connecting sensor networks with exter-
nal networks [6, 9, 11]. Existing work has, however, not
investigated the use of Web services extending into the sen-
sor network. Instead, previous efforts have required gateway
servers on the border of the sensor network. In contrast, we
extend the Web services into the sensor network itself.

TinyREST [9], is developed as part of a Home Services
Framework. Its goal is to generate a specific REST based
approach for the framework rather than providing a generic
framework that this work aims for. Other than IP support,
the work also does not include multihop routing and relia-
bility within WSN, both of which are supported in our work,
especially reliability is inherently supported thanks to our ap-
proach of using standard TCP/IP. A gateway connected to a
base station is used to map the set of requests to TinyOS mes-
sages and vice versa, which also performs some other tasks
such as validity checks.

Priyantha et al [11] have recently showed the feasibility
of SOAP-based Web services. Their work revealed several
important insights into the interactions between Web ser-
vices, the underlying TCP protocol, and power-saving MAC
and link layer protocols. Our work has three major differ-
ences. First, we show that RESTful Web services, a much
simpler mechanism than SOAP-based Web services, provide
benefits in terms of completion time and power consump-
tion. Second, we integrate the Web services mechanism with
an off-the-shelf power-saving MAC protocol (X-MAC) and
provide important insights into optimizing its use for REST-
ful Web services. Third, we provide experimental results
from a multi-hop network. To quantitatively compare our
system with a SOAP-based Web services mechanism, we
have implemented a SOAP-based mechanism and compare
the performance in Section 6.

IP-based sensor networks have seen much work in the re-
cent past [4, 7, 11]. Recent work includes using an IP-based
sensor network to monitor power consumption in build-
ings [8]. Our work differs in that we are using an interop-
erable application layer, RESTful Web services, that can be
directly integrated into other IT systems.

3 Web Services for Sensor Networks
Web services are a common name for a set of techniques

for developing interoperable distributed applications usually
using Web-related standards such as HTTP. Web services are
generally categorized in two classes: SOAP-based Web ser-
vices and RESTful (or REST-based) Web services. SOAP-
based Web services employ Simple Object Access Proto-
col (SOAP) standard. RESTful Web services use Repre-
sentational State Transfer (REST), a much more lightweight

REST data transfer

TCP FIN

TCP FIN, ACK

TCP ACK
TCP connection close

Client Server

HTTP GET

TCP SYN

HTTP reply

TCP SYN,ACK
TCP connection open

Figure 2. A REST transaction consists of three phases:
TCP connection open, REST transaction, and TCP con-
nection closing.

mechanism than SOAP, that provides functionality similar to
SOAP-based Web services.

REST is a software architectural style for distributed sys-
tems, originally defined by Roy Fielding [5], one of the origi-
nal designers of the HTTP protocol. REST allows a software
system to be distributed over a set of clients and servers,
communicating with each other over HTTP. There are sev-
eral systems using REST, such as the Atom Web syndication
protocol used as a news feed protocol by thousands of Web
sites, as well as the Sun CloudAPI.

The main abstraction of REST is the resources. Every
resource has a URI and using these URIs it is possible to
link resources. It is possible to have different representations
for the same resource which is a powerful concept, e.g. a
server can serve HTML content for human consumption and
XML or JSON for machines. REST typically use the stan-
dard HTTP request methods.

The network transactions used by a RESTful Web ser-
vice implementation are simple, as shown in Figure 2. The
transaction consist of three phases: the TCP connection open
phase, the REST transaction phase, and the TCP connection
closing phase. The TCP connection open phase establishes
a TCP connection between the client and the server. In our
scenario, the client is running on a computer outside the sen-
sor network and the server is running on a sensor network
mote. The REST transaction phase, which is initiated only
if the TCP connection succeeds, is when the actual data is
transmitted. Data can be transmitted both from the client to
the server or to the client from the server, depending on why
the REST transaction was initiated. Packet loss during the
REST transaction phase is handled by the normal retrans-
mission mechanism of TCP. When the REST data has been
successfully transmitted, the TCP connection closing phase
is performed.

3.1 Data Formats
The data exchanged in a REST transaction can be for-

matted differently depending on the application. Although
XML-based formats frequently are used, they are only one
of the many available options. The drawback of the XML-
based formats are their size. The XML format is verbose
and therefore is not suitable for low power and low data rate
sensor networks.

The data format we use in our system is JavaScript Ob-
ject Notation, JSON. JSON, defined in RFC4627 [2], is a
lightweight and language independent text format for inter-

44

{ "Sensors": { "item":
[{"name": "Temperature", "value": 26.1},

{"name": "Light", "value": 87}] }
}

Figure 3. A JSON document.

changing data. JSON serializes data structures, such as num-
bers and arrays, as strings formatted according to the JSON
specification. JSON is more compact than XML as it pro-
vides an implicit data structure format. JSON does not re-
quire any XML parsing on the sensor network nodes. An
example JSON document is provided in Figure 3

3.2 Power-saving MAC Protocols
To save power, sensor nodes must switch off their radios

as often as possible [10]. To coordinate the sleep cycles
between nodes, nodes use a power-saving MAC protocol.
X-MAC [1] is a low power MAC protocol that uses a se-
quence of short preambles to wake up the receivers. Radio
transceiver is the most energy consuming component of a
typical sensor node and idle-listening constitutes the main
part of total energy usage. X-MAC addresses this problem;
motes save energy by switching off the radio most of the time
and hence reducing idle radio listening. Nodes wake up for
a short time in regular periods to listen for preambles. When
a node wakes up and receives a preamble addressed to itself,
it replies with an acknowledgement showing that it is awake.
Upon reception of the acknowledgement from the receiver,
sender transmits the whole packet.

4 A RESTful Sensor Network Architecture
We have designed and implemented a RESTful Web ser-

vice architecture for sensor motes. Our architecture makes
use of two main mechanisms to make Web services a vi-
able alternative for wireless sensor networks: a session-
aware power-saving MAC protocol and use of the Condi-
tional HTTP GET mechanism. We now look into each of
these mechanisms in detail.

4.1 A Session-Aware Power-Saving MAC
Protocol

When interacting with wireless sensor networks, getting
good completion times is not enough, energy efficiency is
also important. For that purpose, we use the X-MAC duty-
cycling MAC protocol [1] as MAC layer protocol. Although
X-MAC is being used efficiently in typical WSN applica-
tions for some time, to the best of our knowledge the per-
formance of X-MAC as a lower layer for TCP traffic has not
been previously studied.

In a typical TCP communication, there appears a contin-
uous traffic in both directions until the connection is closed.
This is because TCP is a reliable communication protocol
and ACKs are sent to guarantee it even one of the sides does
not have any data to transmit. This means that both packets
and their corresponding ACKs suffer from the wake-up time
imposed by X-MAC.

To improve the performance, we present a session-
aware X-MAC. Our session-aware X-MAC lets the radio be
switched on during a TCP connection; precisely between the
periods of SYN packet reception and FIN packet transmis-
sion. This solution decreases the delays significantly since

the only packet that suffers from wake-up delay is the first
SYN packet.

4.2 Conditional HTTP GET
Conditional HTTP GET is designed to save time and

bandwidth by employing certain response (Last-Modified
and ETag) and request headers (If-Modified-Since and If-
None-Match). The idea is that if the data is not changed af-
ter the last time client fetched it, the server can notify client
by 304 (Not Modified) status and refrain from sending the
data again, thereby saving bandwidth and time. Every time
a server sends data, it includes Last-Modified (last time the
data was changed) and/or ETag headers (opaque string sym-
bolizing a specific version of data). When the client asks
for the same resource later, it provides this information in
If-Modified-Since and If-None-Match headers, thereby al-
lowing the server to make a decision whether the resource
has changed or not. If it is changed, a response code of 200
(OK) and the new data in the entity-body is served, or else
304 (Not Modified) is returned only, then the client uses its
cached data knowing the fact that the underlying data hasn’t
changed since the first request.

5 Implementation
We have implemented our architecture in the Contiki op-

erating system and with the uIPv4 and uIPv6 IP stacks. We
have implemented both our RESTful system and a prototype
SOAP-based Web service implementation. The SOAP-based
implementation is used as a reference point in the perfor-
mance evaluation and is not intended for general use. It im-
plements only the necessary mechanisms for receiving data
and producing a response.

The implementation is lightweight in terms of memory
footprint: the implementation requires only about 4 kilobytes
bytes of ROM and a few hundred bytes of RAM. The details
of the implementation of modules regarding memory usage
is given in Table 1.

6 Evaluation
We evaluate our RESTful Web service architecture for

sensor networks using two primary metrics: completion time
and power consumption. The completion time is the time
between an application on the PC issues a REST call until
the reply has been received. The completion time metric in-
cludes both the TCP connection open phase, the REST data
transaction phase, and the TCP connection close phase, as
illustrated in Figure 2.

We quantify the effects of six different mechanisms and
scenarios: the effect of the X-MAC power-saving MAC
protocol, the effect of introducing session awareness to the
power-saving MAC protocol, the effect of the Conditional
HTTP GET extension, the effect of multiple network hops,
the effect of using REST instead of SOAP-based Web ser-
vices, and the effect of using IPv6 or IPv4.

Our results show that the use of a power-saving MAC
protocol, which reduces the power consumption, increases
completion time and that session awareness significantly im-
proves completion times. Furthermore, using Conditional
HTTP GET potentially halves the completion time. Multi-
ple hops increase the completion time proportionally to the

45

Module Code Size RAM Footprint
HTTP Server 3976 72
REST Engine 692 4

Module Code Size RAM Footprint
HTTP Server 3976 72
XML Parser 5260 4

SOAP Engine 2354 36
Table 1. Memory footprint of our Web services implementations. The RESTful implementation is on the left and the
SOAP-based implementation on the right. The SOAP-based implementation includes an XML parser, which is required
because XML is mandatory in SOAP.

Router

Node 1

Desktop Computer

Sensor Network

Serial Line

802.15.4 Radio Links

Node 4 Node 3 Node 2

Figure 4. The experimental setup consists of a multi-hop
network connected with a serial USB link to a PC work-
station.

number of hops. To provide a baseline to which our perfor-
mance results can be compared, we provide measurements
for our SOAP-based Web service implementation. We pri-
marily use IPv4 in our experiments, but our results show that
IPv6 reduces performance but the performance is still similar
to that of IPv4.

6.1 Experimental Setup
The experimental setup, shown in Figure 4, consists of a

testbed of Tmote Sky motes and a desktop computer running
Ubuntu Linux. One mote is used as a router that connects
the sensor IP network and the desktop computer. The motes
run Contiki. The router mote sends and receives packets to
and from the Linux PC using Serial Line IP (SLIP). We use
the curl command line tool [12] to provide the workload.

The testbed setup is intentionally simple to avoid irrele-
vant network effects. We use pre-configured routing tables
on every node in all experiments to avoid any effects of a
dynamic routing protocol to influence our measurements.

All experiments are repeated 20 times, five times in four
sets each, and the average of the results are reported, along
with the standard deviation of the results. We use Contiki’s
build-in power profiling mechanism to obtain power and en-
ergy measurements.

We use five different Web service calls for our experi-
ments: one Web service call that does not contain any ap-
plication data, called Dummy; one Web service call that
controls the mote by turning on or off an on-board LED,
called LED Control; and three data-acquisition Web service
calls that read the on-board Tmote Sky sensors, called Light,
Temperature, and Sensors. The details of the request and
response sizes of each call are provided in Table 2.

6.2 Session-Aware Power-Saving MAC
Protocol

To measure the effects of the session-aware X-MAC pro-
tocol, we measure completion times and power consump-
tion both for the original X-MAC and the session-aware X-
MAC. We use two different duty cycle configurations of the
X-MAC duty cycling radio protocol. We call the two config-
urations X-MAC and X-MAC2. X-MAC has an off time of

Web Service Request Size Response Size Total
Dummy 84 48 132

LED Control 89 52 141
Light 79 135 214

Temperature 85 141 226
Sensors 81 324 405

Table 2. Details of the five RESTful Web services. Sizes
are given in bytes and do not include TCP/IP and lower
layer headers.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

X-MAC
(Original)

Session-aware X-MAC

T
im

e
(s

ec
on

ds
)

Completion Time

Web Service

Figure 5. The session-aware X-MAC significantly re-
duces completion time.

1/4 seconds, resulting in a duty cycle of 2%. X-MAC2 has a
1/2 second off time, resulting in a duty cycle of 1%. The Sen-
sors Web service, shown in Table 2, and X-MAC2 are used
to obtain completion times comparison shown in Figure 5.

Session-aware X-MAC outperforms original X-MAC in
terms of completion times. This is due to the radio being
switched on in between TCP message exchanges. With nor-
mal X-MAC, the radio needs to be woken up by a series
of strobe packets for every TCP packet and corresponding
ACK.

 0

 0.2

 0.4

 0.6

 0.8

 1

Dummy Sensors

T
im

e
(s

ec
on

ds
)

Completion Time (Node) All MAC

No power-save
X-MAC

X-MAC2

Figure 6. A power-saving MAC protocol significantly re-
duces power consumption at the price of a higher com-
pletion time.. The X-MAC2 configuration (1% radio
duty cycle) result in longer completion times than the X-
MAC1 configuration (2% radio duty cycle).

46

 0
 1
 2
 3
 4
 5
 6
 7
 8

Dum
m

y

Led Control

Light
Tem

perature

Sensors

IdleP
ow

er
 C

on
su

m
pt

io
n

(m
W

) Power Consumption (Node)

Power

Figure 7. The power consumption of the five Web services
calls. Idle power consumption is provided as a reference.

 0

 0.2

 0.4

 0.6

 0.8

 1

Dummy LED Light Temp Sensors

T
im

e
(s

ec
on

ds
)

Completion Time (Node)

Web Service

Figure 8. Completion times of Web services on sensor
node.

6.3 Completion Time and Power Consump-
tion

We evaluate serving RESTful Web services on Tmote Sky
motes in terms of power consumption and completion time.
Our evaluation confirms that it is reasonable to realize REST-
ful Web services on wireless sensor networks and that the
overheads are reasonable, even with the overhead resulting
from TCP/IP and the somewhat verbose nature of HTTP.

Completion times are measured on the desktop PC, us-
ing the built-intime command of bash shell. The command
measures the interval between issuing the Web service call
via curl tool [12] and getting the response. Figure 8 shows
the results of the measurements of the single-hop who com-
municates with the router using radio communication. The
results show that requests can be fulfilled within a second
using a power conserving MAC protocol.
6.4 The Effect of the Conditional HTTP GET

We evaluate the effect in terms of response time and
power consumption of the use of the Conditional HTTP
GET mechanism. Conditional GET is a caching technique
in which the client gets the content from its cache if data is
not changed. Two Web service calls, Sensors and Tempera-
ture from Table 2, are analyzed using Conditional GET and
compared with the original results. The results are given in
Table 3.

Cached version have a little bit bigger request data size
because of the extra ETag header they transmit, whereas they

Web Data Size Power Completion Time
Service Reduction Saving Reduction

Temperature 35.4% 24.0% 31.8%
Sensors 64.9% 33.1% 53.3%

Table 3. Performance improvement provided by Condi-
tional GET.

 0

 0.5

 1

 1.5

 2

1 2 3 4

T
im

e
(s

ec
on

ds
)

Hops

Completion Time (Multihop)

Dummy
Temperature

Sensors

Figure 9. Completion times of Web services over multiple
hops.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Bystander Endpoint Relay

P
ow

er
 C

on
su

m
pt

io
n

(m
W

)

Power Consumption (Multihop)

Power

Figure 10. Power consumption of a bystander node, an
endpoint node, and a relay node in a multihop network.

have significantly smaller response data sizes since they do
not include any data content. As it is seen, the response sizes
for the cached version are same for both services since the
same data is transfered, namely only the headers which hap-
pens to be the same for these examples. This also explains
why the completion times are roughly same. Also, as ex-
pected, cached Sensors Web service performs better in power
saving as well as completion time decrease than Temperature
service which is consistent to the bandwidth saves.

6.5 Results in a Multi-hop Network
In order to evaluate the effect of multi-hop communica-

tion for sensor network Web services, we measure comple-
tion times of a set of Web services over a multi-hop network.
We use the session-aware X-MAC on every hop of the net-
work. Figure 9 shows the measured completion times, with
a varied number of hops. The results show that delay caused
by relaying RESTful requests in a wireless sensor network is
quite reasonable even in a multi-hop network.

Figure 10 shows the power consumption of three nodes
in the multi-hop network. The figure shows the power con-
sumption of a bystander node (not serving any Web service
nor relaying it), an endpoint node (actually serving the Web
service), and a relayer node (Web service is served by the
next hop node). The Sensors Web service is used for all
measurements. The results show that the power consumption
increases for nodes that are either endpoints or relay nodes.
Relay nodes have a slightly higher power consumption be-
cause the session-aware MAC protocol enables duty cycling
some time after the session has been closed by the endpoint
node.

6.6 RESTful versus SOAP-Based
Web Services

We quantify the overhead of SOAP-based Web services
over that of REST by comparing the RESTFul LED control

47

Web Service Request Size Response Size Total
LED Control 576 498 1074

Table 4. The request and response sizes, measured in
bytes, for the SOAP-based LED control Web service.

 0

 0.5

 1

 1.5

 2

REST SOAP

T
im

e
(s

ec
on

ds
)

Completion Time

 0
 2
 4
 6
 8

 10

REST SOAP

P
ow

er
 C

on
su

m
pt

io
n

(m
W

)

Power Consumption

Figure 11. A RESTful Web service outperforms the
equivalent SOAP-based Web service in power consump-
tion as well as completion time.

Web service and the SOAP-based equivalent.
The request and response size of the SOAP-based LED

control Web service is given in Table 4. The resulting power
consumption and completion time are given in Figure 11.
The SOAP-based Web service consumes almost twice the
power as the RESTful approach. The SOAP-based Web ser-
vice has nearly four times longer completion times.
6.7 IPv4 versus IPv6

In recent work on IP-based sensor networks and Web
services for sensor networks, both IPv4 and IPv6 has been
used [4, 7, 8, 11]. No one has previously provided a quanti-
tative comparison between IPv4 and IPv6, however.

To quantify the effect of IPv4 versus IPv6, we run the
completion time experiment with the Dummy Web services
call and the Sensors call, using both IPv4 and IPv6. We use
the uIPv6 implementation in Contiki and 6lowpan header
compression [4]. To avoid inadvertently measuring effects
caused by a power-saving MAC protocol, for this experiment
we do not use a power-saving MAC protocol.

The results of the IPv6-based experiment are shown in
Figure 12. Although IPv6 increases the completion times
over that of IPv4, the completion times is still below one
second.
6.8 Battery Lifetime

Armed with the data from the above experiments, we can
use the information to compute an estimate of the battery
lifetime. We estimate battery lifetime of a sensor node serv-
ing a typical sensor monitoring service: temperature service
in Table 2. We assume two AA batteries offering 2500 mAh
each. With this data, the estimated battery life of the sensor
node over the number of calls is as in Figure 13.

 0

 0.2

 0.4

 0.6

 0.8

 1

Dummy Sensors

T
im

e
(s

ec
on

ds
)

Completion Times for IPv4 versus IPv6

IPv4
IPv6

Figure 12. The completion time increases with IPv6 ver-
sus IPv4 due to header overhead.

 0

 50

 100

 150

 200

 250

 300

0 5 10 15 20 25 30

Li
fe

tim
e

(d
ay

s)

Calls/hour

Battery Lifetime

Figure 13. Estimated battery lifetime of two 2500 mAh
batteries over the number of Web service calls

7 Conclusions
Sensor networks are seen as an important technology for

emerging energy management systems for buildings, offices,
and the smart grid, but their integration into existing IT sys-
tems are still an open question. We present a RESTful Web
service architecture for sensor networks that allow direct
integration between Web service-based IT systems and IP-
based sensor networks. Our results show sub-second com-
pletion time of Web service requests to low-power nodes in
both single-hop and multi-hop networks.

8 Acknowledgments
This work was supported by SSF, VINNOVA, and

CONET.

9 References
[1] M. Buettner, V. Yee, E. Anderson, and R. Han. X-MAC: a short

preamble MAC protocol for duty-cycled wireless sensor networks. In
SenSys 2006.

[2] D. Crockford. The application/json media type for javascript object
notation (json). Internet RFC 4627, July 2006.

[3] A. Dunkels and J-P Vasseur. IP for Smart Objects, September 2008.
IPSO Alliance White Paper 1, available from www.ipso-alliance.org.

[4] M. Durvy, J. Abeillé, P. Wetterwald, C. O’Flynn, B. Leverett,
E. Gnoske, M. Vidales, G. Mulligan, N. Tsiftes, N. Finne, and
A. Dunkels. Making Sensor Networks IPv6 Ready. InSenSys 2008.

[5] R. Fielding.Architectural styles and the design of network-based soft-
ware architectures. PhD thesis, University of California, Irvine, 2000.

[6] D. Guinard and V Trifa. Towards the web of things: Web mashups
for embedded devices. InProceedings of WWW (International World
Wide Web Conferences), Madrid, Spain, 2009.

[7] J. Hui and D. Culler. IP is Dead, Long Live IP for Wireless Sen-
sor Networks. InProceedings of the 6th international Conference on
Embedded Networked Sensor Systems, Raleigh, North Carolina, USA,
November 2008.

[8] X. Jiang, S. Dawson-Haggerty, P. Dutta, and D. Culler. Design and
implementation of a high-fidelity ac metering network. InProceedings
of IPSN 2009, April 2009.

[9] T. Luckenbach, P. Gober, S. Arbanowski, A. Kotsopoulos, and
K. Kim. TinyREST - a protocol for integrating sensor networks into
the internet.in Proc. of REALWSN, 2005.

[10] J. Polastre, R. Szewczyk, and D. Culler. Telos: Enabling ultra-low
power wireless research. InProc. IPSN/SPOTS’05, Los Angeles, CA,
USA, April 2005.

[11] B. Priyantha, A. Kansal, M. Goraczko, and F. Zhao. Tiny web ser-
vices: design and implementation of interoperable and evolvable sen-
sor networks. InProceedings of SenSys 2008, 2008.

[12] D. Stenberg. Curl web site. http://curl.haxx.se/. Accessed on May 8,
2009.

48

