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Abstract
Device-level energy monitoring has been increasingly

proposed to understand inefficient energy use and design sys-
tematic processes for efficient building operation. Its sole
use, however, is not sufficient to provide actionable informa-
tion unless we understand the causes and context of energy
use.

Fundamentally, energy consumption in a building is due
to occupants’ various activities. Understanding the causal re-
lationship between occupants and their energy use is thus the
key to an efficient building operation. This usually involves
fine-grained sensing through intensive instrumentation of in-
dividual power outlets and/or extensive user studies that ei-
ther increase the system cost or become too intrusive.

Instead, we advocate that circuit branch level energy mon-
itoring combined with statistical Granger causality analysis
is adequate to automatically understand the causal relation-
ship. We monitor energy consumption of various zones in
an office using a circuit level power monitor. IP traffic from
users’ PCs, obtained from a local firewall, is used to relate
occupants with their energy use in each micro zone. The
output is expressed in the form of causality graphs that illus-
trate how each individual influences energy use in different
zones. We discuss the effectiveness and limitations of this
causal analysis in capturing energy use patterns of the occu-
pants in a lab environment.
Categories and Subject Descriptors
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1 Introduction
The ultimate goal of real-time fine-grained energy moni-

toring is to identify inefficient energy use and propose mech-
anisms or operational guidelines to alleviate it [11, 3, 14, 13].
Understanding the context of energy utilization, in conjunc-
tion with fine grained measurements, provides an insight into
the solution of inefficient energy use. For example, it has
been found that computer servers consume energy regard-
less of computing demands as they are always on. A simple
yet effective fix is to allow the servers to sleep whenever they
are not needed [16, 2]. However, with a majority of electri-
cal appliances or devices, humans need to be involved in the
energy conservation process, to a large extent, because they
actually control and use the devices. Therefore, to motivate
each individual, it is first critical to determine who causes
energy consumption via different appliances.

In this paper, we consider the problem of associating of-
fice workers with energy use in their office. Unlike a residen-
tial space, office workers are much less concerned with their
own energy use mainly for three reasons: (1) They do not
pay the office electricity bill, (2) there’s no visibility of en-
ergy use by individuals, and (3) office workers assume that
they consume only a small portion of the total energy use.
The total consumption information thus does not provide any
stimulus (the tragedy of commons). To motivate the office
workers, one can install outlet (device) level energy mon-
itoring devices at each worker’s desk [11], and the energy
consumption can be further allocated with proximity-based
RFID techniques [12, 10]. However, this heavily instru-
mented environment may increase maintenance and sensing
system cost [15]. Moreover, energy use in shared appliances
such as a water dispenser, or a soldering iron on a work
bench, cannot be simply associated with occupants unless
a proper apportionment rule is applied [10, 12].

Instead, we use a circuit level power monitoring device
to monitor energy consumption in micro zones in an office
(See Figure 1 and 2 for a typical electric circuit breaker and
a power drain map), and associate energy use by each circuit
number with each occupant. Although the circuit level power
monitoring does not give an appliance level energy consump-
tion, it gives a desk level (or micro zone level) energy con-
sumption with a single point sensing. We use IP network
traffic as a proxy for the presence or absence of an individ-
ual on his/her desk, which can be obtained easily from the
existing IP infrastructure. The time series Granger causality

43



(a) Circuit Breaker (b) Veris E-30

Figure 1: (a) A circuit breaker for an approximately 860 sq. feet
office space. (b) Each brach is monitored by an industrial grade
circuit level power monitor, Veris E-30

(G-causality) [9] is used to measure causality between the IP
traffic and energy consumption by various zones. The goal of
this study is to show that this mathematical tool can be used
to capture each occupant’s causal relationship with energy
consumption in different zones. In practice, G-causality can
be used to automatically generate dynamic energy use map
by individuals that relates one’s identity with specific en-
ergy use (either positive or negative). Using this association,
we allow a user to select energy consumption data that per-
tains to his/her usage, thus motivating him/her to take actions
that enable energy efficient operation. Furthermore, we ob-
serve that the analysis captures interesting coincidence such
as identifying shared work spaces and occupants interaction.

To the best of our knowledge, few attempts have been
made to automatically relate an occupant’s activities with en-
ergy usage in a building. Prior approaches involve intensive
manual system training phase and/or require additional sens-
ing infrastructure [12, 10, 4, 7, 5]. We believe our approach
is the first attempt to automatically select a set of causes and
effects on energy use. We use a simple but intuitive defini-
tion of causality: “The cause occurs before the effect, and
the cause helps predict the effect.” We do not intend to eval-
uate whether or not the causality is accurate. Rather, we
discuss how the G-causality analysis captures one’s energy
usage patterns in terms of space and time.
2 Time Series Granger Causality

The Granger causality is a statistical concept of causal-
ity [9]. Defining causality in a mathematical formulation has
been a fundamental challenge for philosophers for ages. It
is a complex question with many different answers that have
not been able to satisfy everyone. In 1960’s, Clive W. J.
Granger proposed a statistical concept of causality to under-
stand a pair of related stochastic processes. The basic defini-
tion of Granger causality is intuitive. Suppose we have two
stochastic variables Xt and Yt . We first try to forecast Xt+1
using only prior Xts. Then we predict Xt+1 using prior Xts
and Yts. If the latter prediction is more successful, with an
appropriate metric, we can say that the Yts contain some in-
formation that helps predict Xt+1. This definition is based on
the idea that “the cause occurs before the effect”, which is
our basic understanding of causality [9].
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Figure 2: Power Drain Map: This figure illustrates the micro-zones
corresponding to each circuit branch. The number on the floor plan
indicates the branch number and ’P’ shows where the power panel
monitor is installed. Note that a few numbers are shown twice as
electric wires are shared by a few desks. Several numbers are not
shown in this figure as they go to different rooms.

This concept was originally used in the context of econo-
metrics where researchers study causal relation between eco-
nomic variables such as oil price, stock market price, and
so forth. Recently, G-causality was successfully adapted
by researchers in neuroscience. For example, Seth et al.
used this concept to simulate neural systems to understand
the relationship between neuroanatomy, network dynamics,
and behavior [17]. Here, they applied G-causality to un-
derstand the causal relationship among electroencephalog-
raphy (EEG) signals. In addition, G-causality was also used
to study the utility of magnetoencephalography (MEG) sig-
nals in detecting deceptive responses [18]. Compared to the
simple lead/lagged Pearson correlation, Granger causality is
generally more reliable.

Roughly speaking, while our case is in a slightly different
context, electrical energy use and IP traffic in an office have a
similar causal property. For instance, in most cases, IP traffic
from a person’s PC indicates his/her presence at the desk. In
this situation, it’s highly likely that he/she will be using more
than a couple of appliances. Thus, IP traffic from a desktop
indirectly implies energy consumption, to some extent, from
non-computing appliances at the desk as well. In another
scenario, temporary absence of IP traffic and simultaneous
spike in power consumption from another micro-zone indi-
cates that the person left his/her desk to work on some other
appliance in a different zone. We discuss these scenarios in
detail in section 4.

Now, we introduce the formal definition of time series G-
causality. Let Xt and Yt be two time series data (in our case,
Xt : IP network traffic and Yt : power consumption from a
circuit branch). The Granger causal model is defined by

Xt = ∑
m
j=1 a jXt− j +∑

m
j=1 b jYt− j + εt

Yt = ∑
m
j=1 c jXt− j +∑

m
j=1 d jYt− j +νt

(1)

where εt and νt are two uncorrelated white-noise series, and
m is the number of past data points that are used to predict
the current data point at time t. Ideally m can be equal to
infinity, but in practice, due to the finite length of available
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Real−time Power Consumption by Different Zones (Stacked)
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Figure 3: Real-time Power Consumption: Detailed power con-
sumption profile can be easily obtained from the monitoring set-up.
However, it is extremely difficult for general users to get a deeper
insight.
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Figure 4: Diurnal Consumption Change: Average power consump-
tion of each zone changes on a daily basis because each occupant’s
pattern changes. This paper exploits a tool that automatically anno-
tates these causes and effects.

data points, m will be assumed to be finite and shorter than
the given time series data.

This definition of causality implies that Yt causes Xt pro-
vided some b js are non-zero. Similarly, Xt is a cause of Yt
given some a js are non-zero. This is contingent upon our
intuition that the effect is the result of a cause, which de-
notes that the effect can be described by using a set of prior
samples from the cause. The magnitude of G-causality is
measured by the logarithm of the corresponding F-statistics
to the causal model (Eq. 1) [8]. In short, the time-series G-
causality is a measure of the F-statistics given a causal model
for two stochastic processes Xt and Yt . If the F-statistics
value from Yt to Xt+1 is significant, we say Yt Granger causes
Xt .

Given this definition of G-causality, we now define the
G-causality graph.
DEFINITION 1. The G-causality graph is a weighted graph,
G = (V,E) of sets satisfying E ⊆ (V,V,R) where V is a set
of nodes such as IP addresses and electric branches, and E
is a set of edges connecting these nodes with an associated
weight. The edge weight is equal to the F-statistics value for
a pair of nodes given the causality model in Eq. 1.
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Figure 5: IP traffic is a reasonable proxy for an individual’s pres-
ence. This plot shows the IP traffic generated from a user, indicating
that he stayed in the lab from around Noon to 2PM with a temporary
absence in the middle for a meeting.

3 Experimental Set-up
3.1 Fine grained energy monitoring set-up

We used our lab as a testbed where we currently mon-
itor real-time energy consumption of each electrical circuit
branch, and log network traffic through the firewall server.
Figure 1a depicts a circuit breaker that contains 18 active
power lines covering all the wall electric sockets in the lab
which supply power to the server racks, desktop computers,
laptops, soldering irons, table lamps, a water dispenser, and
other appliances and electronic devices 1. A spatial power
drain map of the lab with corresponding electric branch num-
bers is shown in Figure 2. This power drain map is manually
identified to see whether the G-causality analysis is contin-
gent upon our energy use. It is interesting to note that some
branches supply electricity to more than one desks that are
not adjacent. This is for the phase balancing purpose.

Veris E-30 (shown in figure 1b) is a circuit breaker level
power monitoring instrument that is used to monitor voltage,
current, real power, reactive power, and electrical stability of
these 18 active branches. It stores and updates all the mea-
surements in its internal registers every 1.2 second. An ex-
ample data set collected from Veris E-30 is shown in Figure
3. The stacked plot represents real-time power consumption
of each electrical branch, from a weekday, arranged in in-
creasing order of indexes starting from one at the bottom.
Note that a few circuits are indistinguishable because they
consume much less power than other circuits.

3.2 IP Network monitoring
We chose to use network traffic from an individual’s IP

address as a proxy for his/her presence in an office space for
a couple of reasons. First, most work related tasks are done
on a computer either directly or indirectly. Arguably the in-
ternet is the most integral part of an office environment today.
For instance, almost everyone accesses the internet right af-
ter entering the lab. Most lab members periodically check
their e-mail, use messenger services and search engines to
download software and papers, and so forth. It thus provides
a non-intrusive modality for sensing presence or absence of

1While this power panel covers most electric outlets, it does not
power the ceiling lights and the HVAC unit.
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Figure 6: A complete G-causality graph from a week day.

a person.
Second, it is trivial to gather this information from most

commercial or open-source firewall servers. Specifically, our
lab maintains a local firewall with an open source software,
pfSense [1], that provides necessary options through its web
interface to log network traffic through the server. Figure 5
clearly indicates that the IP traffic data is a good indicator of
presence of people in the lab.

4 Graphical G-Causality Analysis
In this section, we analyze the effectiveness and limita-

tions of G-causality in capturing energy use patterns of the
occupants in our lab. We demonstrate that, under certain as-
sumptions, G-causality is able to successfully correlate users
with their direct and indirect effect on energy consumption of
circuits that power both private as well as shared zones. This
is verified from user annotated diaries that were maintained
during the week long experiment.

Figure 6 shows a complete G-causality graph created
from a day’s worth of data. The blue nodes indicate unique
IP addresses corresponding to different occupants of the lab,
while the red nodes denote electric circuit numbers. Edges
with different opacity indicate the level of causality between
connected IPs and electric circuits. Without correct context
associated with the IPs and circuit numbers, it was hard to
analyze the energy consumption map generated by the al-
gorithm. Therefore, we extracted sub-graphs of all subjects
and overlaid each of them on a floorplan of our lab. Figure 7
shows two such sub-graphs correspoding to IP07 and IP18.
The red nodes in the sub-figures denote electric circuits that
have a causal relationship with the corresponding occupant,
while their size indicates the level of causality. The gray
nodes are other circuits that do not have a causal relationship
with the subject. Since the IPs are associated with unique
users, we interchangeably refer to users with their respective
IPs in this section.
4.1 Localized Energy Consumption

Our results show that G-causality correctly captures the
causal relationship between an occupant’s desk and the elec-
tric branch that supplies power to it. Moreover, the causal-
ity is high, which indicates that the energy consumption by

individuals is localized to areas where they spend most of
their time. For instance, IP07 is strongly connected to circuit
number 4 (Figure 7b) that supplies electricity to the desk of
corresponding occupant. Similarly, IP18 has a strong con-
nection to circuit number 11. This reinforces our intuition
described in Section 2 that correlates presence of network
traffic to energy consumption from the user’s desk.
4.2 Shared Spaces

G-causality goes beyond localized energy consumption
to capture the causal relationship between individuals and
shared appliances such as a water dispenser (with heat/cool
functions) and soldering irons. This is based on the ab-
sence of network traffic from a user’s desk coinciding with
increased power consumption from shared devices as dis-
cussed in Section 2. Figure 2 shows that IP05 is strongly
connected to circuit number 14 that powers the shared work
bench used for soldering, PCB assembling and testing. This
is confirmed from user annotated diaries where the corre-
sponding occupant frequently used the soldering machine
and hot air gun to fix his PCBs. Similarly, the strong con-
nection between IP18 and circuit 5 in Figure 7a signifies the
user’s frequent need for hot water for her tea.
4.3 User Dynamics

An interesting but not obvious causal relationship also ap-
pears in the G-causality graphs, as is observed in Figure 7b
where IP07 is connected to circuit number 10 and 11. These
edges are due to interaction between IP07, and users of desks
that are powered by circuits 10 and 11 respectively. On this
specific day, IP07 initiated two different meetings in a shared
meeting space, that is distinct from the attendees’ desks, re-
sulting in a drop in energy consumption from circuits 10 and
11. This is a particularly interesting result as it first asso-
ciates IP07 with his indirect effect on circuits 10 and 11, and
second, it captures the absence of energy consumption un-
like prior work in this area.

G-causality is not only able to capture dynamics of mul-
tiple users in a single day, but a single user across multi-
ple days too. Figure 8 illustrates diurnal changes in the G-
causality graphs of a single user. Obviously, no causality
appears on the graphs when user IP07 did not come to the
lab (day 2, 5 and 6). IP07 has a consistent connection to
his local power source, circuit number 4, though the level of
causality changes every day. On day 3 and 4, IP07 is con-
nected to circuit number 13 where a Li-Ion battery charger is
connected. It is interesting to observe that the peripheral con-
nections change slightly each day, indicating different types
of causes in energy use and collaboration.
4.4 Limitations

Application of G-causality in our context is based on the
assumption that the appliances consume (more) power only
when they are being used. Instead, if the devices consume
constant power irrespective of their utilization, the G-causal
algorithm fails to attribute causes to their correct effect re-
sulting in false negatives. For instance, we do not see any
edge connected to circuit numbers 15, 16, and 17 in Fig-
ure 6. These circuits are connected to three uninterruptible
power supplies (UPS) that supply power to the servers which
are not designed to be energy proportional i.e. their network
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(a) Causality Sub-Graph (Subject 1) (b) Causality Sub-Graph (Subject 2)

Figure 7: G-causality Sub-graphs: Blue circles indicate IP address of each occupant. Red and gray circles indicate zone numbers superim-
posed on the floor plan. The size of the red circles represent the level of causality. IP traffic has strong causal relationship with nearby power
sources. By looking at the sub-graph of the causality graph, we can infer the energy use map of each occupant.

load has negligible impact on their overall power consump-
tion. However, we envision that this assumption will be sat-
isfied in future for desktops and servers [2, 16]. For non-
computing appliances directly powered on/off by the users,
application of our system will serve to motivate the individ-
uals to avoid wastage and power on the devices only when
they need them.

In some other scenarios, a few false positives were re-
ported due to comparable network activities from multiple
IPs coinciding with power consumption in shared spaces.
For instance, on days 3, 4 and 7 in Figure 8, IP07 is falsely
connected to circuit number 6 that powers an air-pump, three
test equipments and a DC power supply, despite the fact that
neither IP07, nor his frequent collaborators, use these de-
vices. Similarly, in Figure 6, IP08 is falsely connected to cir-
cuit number 7 where a television is connected. These false
positives resulted in corresponding false negatives where
users were not correctly attributed for their energy consump-
tion. Since G-causality is a statistical tool, addition of learn-
ing capabilities, or supplementary information from other
sensors such as infrared motion sensors and door sensors,
may help address this limitation. However, we have left this
as future work.

Finally, the current implementation of our system does
not account for remote access to user PCs that may cause
false positives when the user is not present in the lab. This
gains importance in light of recent work [16, 2] that focuses
on enabling remote access to computing devices while allow-
ing them to sleep when unused. However, we believe that it
is very straightforward to fix this by detecting VPN and SSH
packets at the firewall and ignoring their effect on power con-
sumption from circuits that are not directly connected to the
respective PCs.

5 Related Work
The idea of motivating individuals with the right infor-

mation has a positive impact on improved efficiency. Simple
plots or plain consumption data alone are not effective and
careful feedback design is necessary [6]. The challenge in
designing an efficient eco-feedback system lies in its huge

scale of data. It is evident that the scale of monitoring will
become bigger and incorporate finer device-level informa-
tion [11]. It will become almost impossible to manually an-
notate and understand implications of energy use. Unless
there’s a system that can automatically annotate causes and
effects, associate consumption with end-users, and provide
a feasible set of starting points for improved efficiency, the
utility of the fine grained monitoring cannot be maximized
[6].

Motivated by this, our prior work presented a prototype
system that can monitor energy consumption by individuals
using a proximity sensor [12]. The basic idea is that an occu-
pant carries an active RFID tag, which is used for detecting
proximity between a user and each appliance. This proxim-
ity information is then used for energy apportionment. Hay
et al. also presented a case study for energy allocation where
a user’s occupancy information is used to assign an individ-
ual’s energy footprint in a building [10]. While the authors
tackle the right challenge, the system either requires users to
carry active RFID tags [12] or to explicitly tap tags on RFID
readers, which is cumbersome. Our preliminary G-causal
analysis uses IP traffic that neither requires users to carry ad-
ditional devices [10] nor depends on additional infrastructure
[12].

6 Discussion and Future Work
We conducted a preliminary G-causality analysis between

IP traffic and energy consumption by different zones in an
office setting. Our analysis shows that it is feasible to use
G-causality to start investigating personalized level energy
consumption. It is evident that the analysis gives a good
understanding of an individual’s energy drain map as well
as diurnal patterns in his/her energy consumption. The key
value of our approach is that it captures an individual’s en-
ergy consumption map without manual intervention or inten-
sive instrumentation of a space and users. While device-level
energy monitoring pinpoints specific energy consumption, it
alone lacks the ability to capture user dynamics in energy
consumption patterns. This causality analysis, on the other
hand, provides personalized insights making it complemen-
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(a) Day 1 (Tue) (b) Day 2 (Wed) (c) Day 3 (Thr) (d) Day 4 (Fri)

(e) Day 5 (Sat) (f) Day 6 (Sun) (g) Day 7 (Mon) (h) Day 8 (Tue)

Figure 8: Causality graphs of the subject 2 for 8 days. Black solid edges indicate strong causality and dotted lines indicate weak causality.
For days when he worked from home, causality does not appear. Interestingly, the causality graph links the user to other places where his
frequent collaborators sit.

tary to device-level fine grained monitoring as well (besides
coarse-grained circuit-level monitoring as investigated in this
text).

Although we have discussed its feasibility, this study is a
first cut analysis. Further investigation is therefore required
to make the analysis more insightful and usable. (1) G-
causality enables an understanding of one’s energy consump-
tion. But, it neither gives 100% accurate estimate of how
one is consuming energy, nor provides detailed consumption.
Further analysis is required to determine if this can be used
to apportion energy use by end-users. Nonetheless, it gives
a set of causes (users) and effects (electric branches) that is
much smaller than the whole set of occupants and zones. (2)
Extending this simple causality analysis to understand con-
sumption patterns and automatically propose remedies is a
natural next step to help occupants understand implications
of their energy use model. (3) Investigating the edges repre-
senting social interaction in an office could bring an interest-
ing perspective and create a positive impact on conservation.
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