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Abstract. Being able to understand dynamics of human mobility is
essential for urban planning and transportation management. Besides
geographic space, in this paper, we characterize mobility in a profile-
based space (activity-aware map) that describes most probable activity
associated with a specific area of space. This, in turn, allows us to capture
the individual daily activity pattern and analyze the correlations among
different people’s work area’s profile. Based on a large mobile phone data
of nearly one million records of the users in the central Metro-Boston
area, we find a strong correlation in daily activity patterns within the
group of people who share a common work area’s profile. In addition,
within the group itself, the similarity in activity patterns decreases as
their work places become apart.

1 Introduction

For better understanding of the effects of human movement, characterizing hu-
man mobility patterns is crucial. For example, without such characterization,
the impact of inhabit dynamics in the city cannot be understood. As spatio-
temporal and geo-referenced datasets are growing rapidly because of the daily
collection of transaction data through database systems, network traffic con-
trollers, sensor networks, and telecommunication data from mobile phones and
other location-aware devices, the large availability of these forms of data allows
researchers to better characterize human mobility. The additional information of
activities associated with human mobility further provides a unique opportunity
to better understand the context of human movement, and hence better urban
planning and management. In this paper, we develop the activity-aware map,
which provides information about the most probable activity associated with
a specific area in the map. With the activity-aware map and an analysis of a
large mobile phone data of nearly one million records of location traces, we are
able to construct the individual daily activity patterns. This allows us to carry
out a correlation analysis of work area’s profile and similarity in daily activity
patterns.



2 Related Work

A rapidly increasing number of mobile phone users has motivated researchers
from various fields to study its social [1][2][3] and economic [4][5][6] impact. With
the extensive records of mobile phone data such as calling pattern and location
of the mobile phone user, analyses have been performed on numerous aspects
including behavioral routine [7][8][9], social proximity [10][11], call prediction
[12][13], social closeness [14][15], and human mobility [16][17][18][19][20].

Understanding dynamics of social networks is beneficial to urban planning,
public transport design, traffic engineering, disease outbreaks control, and emer-
gency response management. To study dynamics in human mobility, GPS re-
ceiver has been handy for researchers in collecting a large real-life traces. Azevedo
et al. [16] study pedestrian mobility behavior using GPS traces captured at
Quinta da Boa Vista’s Park in Rio de Janeiro (Brazil). Movement elements are
analyzed from data collected from 120 pedestrians. They find that the velocity
and acceleration elements follow a normal distribution while the direction angle
change and the pause time measure fit better to lognornal distribuution. Based
on 226 daily GPS traces of 101 subjects, Lee et al. [17] develop a mobility model
that captures the effect of human mobility patterns characterized by some funda-
mental statistical functions. With analytical and empirical evidence, they show
that human movement can be expressed using gaps among fractal waypoints [21]
(people are more attracted to more popular places).

With a large set of mobile phone data, Candia et al. [18] study spatiotemporal
human dynamics as well as social interactions. They investigate the patterns
in anomalous events, which can be useful in real-time detection of emergency
situation. At the individual level, they find that the interevent time of consecutive
calls can be described by heavy-tailed distribution, which is consistent with the
previous reports on other human related activities. Gonzalez et al. [19] examine
six-month trajectory of 100,000 mobile phone users and find a high regularity
degree in human trajectories contrasting with estimation by Levy flight and
random walk models. People tend to return a few frequent locations and follow
simple repeated patterns despite the diversity of the their travel history. The
most recent study in human mobility based on a large mobile phone data by
Song et al. [20], whose result is consistent with Gonzalez et al.’s [19] that human
mobility is highly predictable. Based on data from 50,000 mobile phone users,
they find that predictability in human mobility is independent of distance that
each individual regularly travel and show that the predictability is stabled at
93% for all regular traveled distances of more than 10km.

In contrast with other work in human mobility, our work is focusing on
human mobility concerning the spatial profile (i.e. type of space or surrounding
area such as dinning, shopping, and entertainment) rather than geographical
location.



3 Methodology

A number of literature have described geographical human mobility pattern con-
cerning movement of people between multiple locations. Here we are interested
in characterizing the mobility not by geographic location but its associated spa-

tial profile. This spatial profile-based mobility pattern, in turn, becomes a human

activity pattern. In addition, our interest expands to investigation of relationship
between this activity pattern and demographic of people. Therefore, in this sec-
tion, we will describe our methodology used in characterizing space, capturing
daily activity pattern, as well as preprocessing our dataset.

3.1 Data Preparation

In this research, we use anonymous mobile phone data collected during the pe-
riod from July 30th, 2009 to September 12th, 2009 by Airsage[22] of about one
million users in the state of Massachusetts, which account for approximately 20%
of population, equally spread over space. This includes 130 million anonymous lo-
cation estimations in (latitude,longitude)-coordinates, which are recorded when
the users are engaged in communication via the cellular network. Specifically,
the locations are estimated at the beginning and the end of each voice call placed
or received, when a short message is sent or received, and while internet is con-
nected. Note that these location estimations have an average uncertainty of 320
meters and median of 220 meters as reported by Airsage[22] based on inter-
nal and independent tests. For our analysis, we consider the mobile phone data
within an area of 33x42km2, which includes 52 cities (Boston, Cambridge, and
others) in the county of Essex, Middlesex, Suffolk, and Norfolk as shown in Fig.
1. The list of the counties and their corresponding area covered (in km2) by this
study are shown in Table 1.

Table 1. List of the counties and their area covered by this study

County Area covered (km2)

Essex 110.30

Middlesex 452.52

Suffolk 154.39

Norfolk 26.12

Within this area in the map, we need to extract mobility traces of each user
from the mobile phone data. As the estimation of the user’s location is aggregated
only when network connection is established, mobility thus can be derived as a
temporal sequence of locations. To segment these traces into trajectories so that
daily mobility pattern of each individual can be identified, we describe here some
basic algorithms to extract trajectory and stop [23].

LetXk denote a set of sequential traces of user k such thatXk = {xk(1), xk(2),
xk(3), ...} where xk(i) is a position i of user k. A trajectory can then be obtained



Fig. 1. Area of study in this research, cropped by yellow line.

by segmenting Xk with the spatial threshold △S. If a distance between adjacent
positions is greater than the threshold (distance(xk(i), xk(i + 1)) > △S), then
the early position xk(i) becomes the end position of the last trajectory while the
later position xk(i+1) becomes the starting position of the next trajectory. Once
the trajectories are detected, a stop can be identified as an event during which
the user stays in a specific location for a sufficiently long period of time. As each
position i contains location and timestamp, i.e. xk(i) = (lat(i), long(i), t(i)),
extraction of a stop depends on time and space. A stop is thus regarded as
a sequence of positions {x(j), x(j + 1), x(j + 3), ..., x(j + m)} where the dis-
tance between any adjacent positions is less than a spatial threshold Sth i.e.,
distance(x(j), x(j + 1)) < Sth, and time spent within the location is greater
than a time threshold Tth i.e., t(m)− t(j) > Tth.

After stops have been identified, work location of each user is then estimated
as a most frequent stop during the day hours. The information about work
location allows us to derive the mobility choices of the users, and detect activity
patterns throughout the day.

3.2 Spatial Profiling

To model the space, we construct a virtual grid reference by dividing the map
into square cells of size 500 by 500 meters (to compensate location estimation
uncertainty). Since our interest is in the activities associated with the space, we
thus characterize space based on the type of activities expected to be performed
within given space. For example, if restaurants were clustered within a particular
area, then this area would be associated with eating activity.

In this study, we consider four different human activities in which people typ-
ically spend time engaging on daily basis. These activities are concerning eating,



shopping, entertainment, and recreational. Profiling the map according to these
activities requires information about the types of places within each cell. To ac-
quire the information regarding these activities, we search for Points of Interest
(POIs) for each cell location. We use pYsearch (Python APIs for Y! search ser-
vices) version 3.1 [24] for POI search service, and Reverse Geocoding with Geopy

(A Geocoding Toolbox for Python) [25] for translating (latitude, longitude)-
coordinate into a physical address. For each activity category of each cell, we
make three search attempts using different keywords. The keywords used for each
activity category are listed in Table 2. With the limit of 5,000 queries per day
restricted by Yahoo, an extensive amount of search time is required inevitably.

Table 2. Considered activities and keywords used for POIs search

Activity Keywords used

Eating Restaurant, Bakery, Coffee shop

Shopping Mall, Store, Market

Entertainment Theater, Bowling, Night club

Recreational Park, Gym, Fitness

Once POI searches are completed, the number of POIs associated with each
activity category is recorded for each cell. The raw activity distribution map is
then composed of 500x500m2 cells where each cell contains distribution of each
activity. Each cell Ci contains normalized portion of each activity:

Ci = [αi(1), αi(2), αi(3), αi(4)], (1)

where i = 1, 2, 3, ..., N , N is the total number of cells, and normalized portion
of each activity αi(a) in cell i is computed as

αi(a) =
nαi(a)∑N

i=1 nαi(a)

, (2)

where nαi(a) denotes the number of POIs associated with activity a within the
cell i and a = 1, 2, 3, 4 corresponds to eating, shopping, entertainment, and
recreational activity, respectively.

Based on our POI search, Fig. 2 shows a map with the visual grids and POIs
found by 12 different keywords (described in Table 2) in different colors.

To further classify these cells into a more crisp distribution map, we apply
k-means algorithm with k=4. The resulting crisp activity distribution map is de-
picted in Fig. 3 where each cell is classified to one of the four activities according
to Bayes theorem:

P (a|nαi(a)) =
P (nαi(a)|a)P (a)

nαi(a)
. (3)

The interest here is to find the most probable activity category a for each of
the k clusters. Therefore, for each cluster, we find a that maximizes a posteri-

ori (MAP method). So we use Bayes theorem above to compute the posterior



Fig. 2. POI search results on the map with 500x500m2 visual grids.

probability of each activity category as follows:

aMAP ≡ argmax
a

P (a|nαi(a))

= argmax
a

P (nαi(a)|a)P (a)

nαi(a)

= argmax
a

P (nαi(a)|a)P (a). (4)

3.3 Daily Activity Patterns

Generally, people perform different activities throughout the day. A lot of these
activities are repeated on daily basis, e.g. eating around 12pm (noon), jogging in
the evening, and hence producing recognizable patterns. With our mobile phone
data, each user is more likely to engage in an activity during “stop” rather than
on the move. Therefore, for each stop, activity is identified according to the crisp
activity distribution map.

To infer a daily activity pattern for each user, we divide 24-hour time scale
into eight 3-hour segments starting at 5AM as shown in Fig. 4. So daily activity
pattern is simply a sequence of activities performed by the user during each stop
throughout the day. For each user, daily activity patterns are collected over the
course of the data collection period. Note that, in this study, we consider only
weekdays (Monday, Tuesday, Wednesday, Thursday, Friday) as our speculation
is that weekday pattern is different from weekend pattern due to typical work



Fig. 3. Crisp activity distribution map.

schedule and hence different daily activity sequences – this will be addressed and
further discussed in our future work.

5AM 8AM 11AM 2PM 5PM 8PM 11PM 2AM2AM 5AM

  1           2           3          4           5           6          7          8

Fig. 4. The eight 3-hour temporal windows are used to frame the daily activity pattern.

To derive the representative daily activity pattern of each user, we simply
assign each segment with the most frequent activity during that time interval
over the period of data collection. Precisely, if λd

a(t) represents the count of
activity a on d-th day during time segment t (where t = 1, 2, 3.., 8), then

z(t) = argmax
a

M∑

d=1

λd
a(t) (5)

where z(t) is the assigned activity for time segment t and M is the total number
of days.



4 Work Area’s Profile and Similarity in Daily Activity

Patterns

The activity map and individual daily activity patterns developed in the previous
section allows us to conduct a number of studies that can be useful for better
understanding of human behavior in the city. In this present research, we are
particularly interested in relationship between people’s daily activity patterns
and the characteristic of their work area. Do people who work in the same area’s
category (e.g. eating, shopping, etc.) also have similar daily activity patterns?
With the same type of work area, how does distance impact the similarity in
their daily activity patterns (e.g. do people who work in an urban shopping area
have similar activity pattern with people who work in a distant shopping area)?
In this current study, we are attempting to answer these two questions.

As a first step, we classify the users into four groups based on their work cell’s
profiles. Each group then consists of a number of different individual daily ac-
tivity patterns who have a common work cell’s profile. To represent each group’s
activity pattern, we need to find a group signature for further correlation anal-
yses. The representative daily activity pattern or signature of each group can
be obtained in a similar fashion with the individual patterns described in the
previous section (using Eq. (5)). The derived signatures are shown in Table 3.

Table 3. Signature of each group based on work cell’s profile. Note: Eat. = Eating,
Sho. = Shopping, Ent. = Entertainment, Rec. = Recreational, W = Work cell.

Group Group’s daily activity pattern

Eating W–W–W–W–Sho.–Rec.–Rec.–Sho.

Shopping W–W–W–W–Rec.–Rec.–W–W

Entertainment Sho.–W–W–W–W–Rec.–Sho.–Sho.

Recreational W–W–W–W–W–Sho.–Sho.–Sho.

It can be noticed that there is no Eating element appears in any of other
group signatures beside its own group (showing in form of a working activity,
W). Our speculation is that it could be caused by first, people normally eat at
home (breakfasts) and at work or somewhere nearby workplace (lunches), and
second, people are not frequently involved in a phone communication while at
eating area. Note also that the patterns are derived from weekdays activities so
if weekends-only activities are considered, Eating elements could emerge in the
group patterns.

To answer the first question, we need to measure similarity in daily activity
patterns among individuals within the same group as well as among other groups.
To measure distance (dissimilarity) between two daily activity patterns, we use
Hamming distance, which is normally used to measure distance between two
strings of equal length. The distance is essentially the number of positions at
which the corresponding symbols are different, which is quite suitable for our



case as a series of activities can be considered as symbols. The result of the
average Hamming distance within the group is shown in Table 4.

Table 4. Average within-group distance.

Work cell’s profile Average distance

Eating 4.78

Shopping 2.58

Entertainment 4.67

Recreational 3.61

Using group signatures obtained earlier, we then measure dissimilarity be-
tween each group signature and other group’s individual patterns. The result of
this between-group distance is shown in Table 5 in forms of average Hamming
distance.

Table 5. Average between-group distance.

Eating Shopping Entertainment Recreational

Eating – 6.53 6.60 6.96

Shopping 4.90 – 4.92 5.05

Entertainment 6.43 6.88 – 7.00

Recreational 5.04 4.81 5.13 –

As the result of our first investigation, Fig. 5 illustrates a bar plot intended
to make a comparison between within-group and between-group distances where
red bars represent within-group distance while blue bars represent between-group
distance. Clearly, it shows that within-group distances are less than between-
group distances. This implies that people who have a common work cell’s profile
tend to exhibit more similar daily activity patterns than people who have dif-
ferent work cell’s profile.

For the second investigation about the impact of physical distance on the
similarity in activity patterns, we decide to proceed by placing a growing spatial
window (a circle of an arbitrary radius) onto the map then measure similarity
between between the users’ activity pattern whose work cell located at the cen-
ter of the window and other users whose work cells are within the vicinity of
the spatial window. The similarity is being measured while the radius of the
window grows from a small to larger value. The process is repeated for each
activity category. This way, we can see the change(if any) in similarity for each
work profile as we move away from the center area. Precisely, we choose to grow
the spatial window from the center of Boston area with the radius varying from
0.5km to 30km. The result for each work category is shown in Fig. 6. We can
observe that, overall, the similarity in activity patterns decreases as radius in-



Eating Shopping Entertainment Recreational
0

1

2

3

4

5

6

7

8

Work cell’s profile

A
vg

. H
am

m
in

g 
di

st
an

ce

Fig. 5. When users are grouped together based on their work cell’s profiles, within-
group and between-group distances are illustrated with red and blue bars respectively.
This shows higher degree in similarity within the group than between groups.

creases, which implies that physical distance has an impact on similarity in daily
activity patterns. People whose work area’s profile are although the same, their
activity patterns tend to deviate more as they work areas become further apart.

In summary, we have observed a strong correlation in daily activity patterns
within the group of people who share a common work area’s profile. Addition,
within the group itself, the similarity in activity patterns decreases as the dis-
tance between them increases.

5 Limitations of the Study

There are a number of limitations of this study. First and foremost, the lack
of continuity of mobility traces due to the fact that the location is estimated
from mobile phone data only when connection with a cellular network is made
through either voice, text, or data communication, which constricts us to a
smaller number of users that can be analyzed. Secondly, our POI search is con-
strained by Yahoo’s search limit and capability. Lastly, home and work locations
are estimated intuitively according to the data provided. Although ground-truth
validation is desired, it would be very difficult to perform due to the privacy
issue.

6 Conclusions

In this paper, we have developed an activity-aware map that contains most
probable activity associated with a specific area in the map based on POIs
information. With activity-aware map, we are able to extract individual daily
activity patterns from analyzing a large mobile phone data of nearly one million
records. Results from our correlation analysis show a strong correlation in daily
activity patterns within the group of people who share a common work area’s
profile. In addition, within the group itself, the similarity in activity patterns
decreases as the distance between them increases. This study is the first report
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Fig. 6. Dissimilarity in daily activity patterns is measured by average Hamming dis-
tance as the radius varies from 0.5km to 30km for each work cell’s profile. The center
of the growing radius is near the center of city of Boston. Dissimilarity is between the
users whose work cells are within the 0.5km radius and other users covered by growing
radius.

of many more to come in using activity-aware map to study inhabitant behavior.
So as our future direction, we will continue to investigate on daily activity pattern
and its dynamics for better understanding of human dynamics, which in turn
benefits urban planning and management.
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