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ABSTRACT

We present the design, implementation, evaluation, and user
experiences of the CenceMe application, which represents
the first system that combines the inference of the pres-
ence of individuals using off-the-shelf, sensor-enabled mobile
phones with sharing of this information through social net-
working applications such as Facebook and MySpace. We
discuss the system challenges for the development of soft-
ware on the Nokia N95 mobile phone. We present the de-
sign and tradeoffs of split-level classification, whereby per-
sonal sensing presence (e.g., walking, in conversation, at the
gym) is derived from classifiers which execute in part on the
phones and in part on the backend servers to achieve scal-
able inference. We report performance measurements that
characterize the computational requirements of the software
and the energy consumption of the CenceMe phone client.
We validate the system through a user study where twenty
two people, including undergraduates, graduates and fac-
ulty, used CenceMe continuously over a three week period
in a campus town. From this user study we learn how the
system performs in a production environment and what uses
people find for a personal sensing system.

Categories and Subject Descriptors: C.2.1 [Network
Architecture and Design]: Wireless Communications; J.4
[Social and Behavioral Sciences]: Sociology.

General Terms: Design, Experimentation, Performance.

Keywords: Applications, Social Networks, Mobile Phones.

1. INTRODUCTION
One of the most common text messages people send each

other today is “where r u?” followed by “what u doing?”.
With the advent of powerful and programmable mobile phones,
most of which include a variety of sensing components (e.g.,
accelerometers, GPS, proximity sensors, microphone, cam-
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era, etc.) there is a new way to answer these questions. In
essence, mobile phones can create mobile sensor networks
capable of sensing information that is important to people,
namely, where are people and what are they doing?

The sensing of people is driving a new application domain
that goes beyond the sensor networks community’s exist-
ing focus on environmental and infrastructure monitoring,
where people are now the carriers of sensing devices, and
the sources and consumers of sensed events. The expanding
sensing capabilities of mobile phones (e.g., Nokia N95 and
Apple iPhone) combined with the recent interest by the mo-
bile phone vendors and cellular industry in open program-
ming environments and platforms, typified by the recent re-
lease of the Android platform [2] and the Apple iPhone SDK
[1], is accelerating the development of new people-centric
sensing applications and systems [3].

In this paper, we present the design, implementation, eval-
uation, and user experiences of the CenceMe application [4],
a new people-centric sensing application. CenceMe exploits
off-the-shelf sensor-enabled mobile phones to automatically
infer people’s sensing presence (e.g., dancing at a party with
friends) and then shares this presence through social network
portals such as Facebook. We evaluate a number of impor-
tant system performance issues and present the results from
a user study based on an experiment conducted over a three
week period in a campus town. The user study included
twenty two users consisting of undergraduates, graduates
and faculty at Dartmouth College.

We discuss results, experiences, and lessons learnt from
the deployment of CenceMe on off-the-shelf mobile phones.
These phones, while fairly powerful computers, present a
number of limitations in supporting the demands of a con-
tinuous personal sensing application such as CenceMe. We
implement CenceMe on the Nokia N95 phones. Although
the N95 is a top-end device with a great deal of compu-
tation capability, the Symbian operating system and Java
Micro Edition (JME) virtual machine which runs on top of
the N95 are rather limiting due to the fact that they have
both been designed to use small amounts of memory and
computational resources. Additional implementation chal-
lenges arise from the fact that manufacturers and operators
limit the programmability of mobile phones to preserve the
closed nature of their devices and operational networks. For
this reason appropriate certificates purchased from a Cer-
tificate Authority are needed, yet are not sufficient for full
deployment of an application such as CenceMe. We show
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the tradeoffs and discuss the difficulties in implementing an
always-on sensing application on the Symbian/JME plat-
form which more generally is designed to accommodate sim-
ple applications such as gaming and calendar plugins.

The contribution of this paper is as follows:

• The design, implementation, and evaluation of a fully
functional personal mobile sensor system using an un-
modified mobile phone platform.

• The design of lightweight classifiers, running on mo-
bile phones, which realize a split-level classification
paradigm. We show they have a limited impact on
the phone’s functionality.

• Measurements of the RAM, CPU, and energy perfor-
mance of the classifiers and the CenceMe software suite
as a whole, showing the tradeoff between the time fi-
delity of the data and the latency in sharing that data.

• A validation of the CenceMe application through a
user study. This is one of the first user studies that in-
volves a large group of people using a personal sensing
application running on off-the-shelf mobile phones for
a continuous period of time. The study provides useful
insights into how people understand and relate to per-
sonal sensing technology. The study offers some sug-
gestions on the further development of people-centric
sensing applications.

The structure of the paper is as follows. In Section 2, we
present a number of design considerations when building an
always-on sensing application such as CenceMe on mobile
phones. The CenceMe implementation is discussed in Sec-
tion 3, while in Section 4 the phone and backend classifier
algorithms are presented. In Section 5, we show the perfor-
mance of the CenceMe classification algorithms as well as
detailed power, RAM, and CPU measurements. In Section
6, we present the results of our user study and then in Sec-
tion 7 discuss related work. We conclude in Section 8 with
some final remarks.

2. DESIGN CONSIDERATIONS
Before describing the implementation of the CenceMe ap-

plication on the phone and backend servers, we first discuss
the system development challenges encountered when im-
plementing an application such as CenceMe on the phone.
These impact several aspects of the architectural design.

2.1 Mobile Phone Limitations
OS Limitations. Although top-end mobile phones have

good computational capability, often including multiple pro-
cessors, they are limited in terms of the programmability and
resource usage control offered to the developer. For example,
the Nokia N95 is equipped with a 330 MHz ARM processor,
220 MHz DSP, and 128 MB RAM. However, when develop-
ing a non-trivial application on mobile phones a number of
challenges arise. This is due in part because mobile phones
are primarily designed for handling phone calls in a robust
and resilient manner. As a result, third party applications
running on the phone may be denied resource requests and
must be designed to allow interruption at any time so as
not to disrupt regular operation of the phone. This places
a heavy burden on application exception handling and re-
covery software. While programmers may expect exception

handlers to be called rarely, in Symbian they are called of-
ten and are critical to keeping an application and the phone
operational. At the same time, testing exception handlers is
difficult because a voice call can interrupt application code
at any point in its execution; OS induced exceptions are
outside the control of the programmer.

API and Operational Limitations. Additional limi-
tations arise from the APIs provided by the phone manu-
facturers. JME implements a reduced set of the Java Stan-
dard Edition APIs for use on mobile phones. Because each
phone model is different even from the same manufacturer,
the Symbian OS and JME must be ported to each phone
which typically results in missing or malfunctioning APIs
for important new or existing components, such as an ac-
celerometer or GPS. These API limitations may not be re-
solved by the manufacturer because new models replace old
models in quick succession. As a result, the programmer is
forced to come up with creative solutions to API limitations.
Examples of such API limitations and operational problems
encountered with the N95 include a missing JME API to
access the N95 internal accelerometer and JME audio API
that exhibits a memory leak, respectively.

Security Limitations. To preserve the phone’s integrity
and protect the cellular network from malicious attacks,
phone manufacturers and cellular network operators con-
trol access to critical components, including the APIs for
access to the file system, multimedia features, Bluetooth,
GPS, and communications via GPRS or WiFi, through a
rights management system. Properly signed keys from a
Certificate Authority are needed to remove all restrictions
on using these APIs.

Energy Management Limitations. An important driver
for application designers on mobile phone platforms is power
conservation, in particular, when radio interfaces such as
Bluetooth, GPS, and GPRS are used by the application.
As we show in Section 5, the phone’s Bluetooth, GPS, and
GPRS radios are responsible for draining most of the bat-
tery power when CenceMe is running. As application devel-
opers, we want to build applications that offer good fidelity
and user experience without significantly altering the oper-
ational lifetime of the standard mobile phone. Therefore,
designing efficient duty cycles for the application and its use
of power hungry radios such Bluetooth and GPS radio is nec-
essary to extend the phone’s battery life. In addition to the
power consumed by Bluetooth and GPS, data upload from
the phone via GPRS can also draw a large amount of power,
particularly when the phone is far from a cell base station. A
challenge is therefore to reduce the use of these radios with-
out significantly impacting the application experience. Cur-
rently, the Symbian version of JME does not provide APIs to
power cycle (i.e., toggle on and off) the Bluetooth and GPS
radios to implement an efficient radio duty-cycle strategy.

The sensing and classification algorithms that run on the
phone can also consume a considerable amount of energy
if left unchecked. As discussed in Section 5, sampling the
phone’s microphone and running a discrete Fourier trans-
form on the sound sample uses more power than sampling
the accelerometer and classifying the accelerometer data.
Given this, the only way to reduce energy at the application
layer is to design a sensing duty-cycle that samples sensors
less frequently and avoids the use of the radios for com-
munications or acquisition of satellite signals for location
coordinates.
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2.2 Architectural Design Issues
In response to the observations discussed above we design

the CenceMe application using split-level classification and
power aware duty-cycling. We also develop the application
with software portability in mind.

Split-Level Classification. The task of classifying streams
of sensor data from a large number of mobile phones is com-
putationally intensive, potentially limiting the scalability of
the system. With this in mind we propose the idea of push-
ing some classification to the phone and some to the backend
servers. However, some classifiers require data that is only
available at the server (e.g., for multiple users in the case
of the social context classification discussed in Section 4.2).
We call the output of the classification process on the phone
primitives. When primitives arrive at the backend they are
stored in a database and are ready to be retrieved for a sec-
ond level of more complex classification. The classification
operation on the backend returns facts, which are stored in
a database from where they can be retrieved and published.
With the split-level classification approach some of the clas-
sification can be done on the phone with the support of the
backend, or under certain circumstances done entirely on
the phone.

CenceMe’s split-level design offers a number of important
advantages: i) supports customized tags. A customized tag
is any form of activity, gesture, or classified audio primitive
that the user can bind to a personal meaning. For example,
a customized tag could be created by a user by associating
a certain movement or gesture of the phone (e.g., the phone
being moved along an imaginary circle) with a user supplied
meaning or action, e.g., going to lunch. After associating the
tag “lunch” with the action, the next time the user repeats
the action the user’s presence state “lunch” is recognized,
uploaded, and shared with their social network. This tech-
nique gives the user the freedom to build her own classified
state beyond a set of defaults offered by CenceMe, hence,
it provides extensibility of the application; ii) provides re-
siliency to cellular/WiFi radio dropouts. By pushing the
classification of primitives to the phone, the primitives are
computed and buffered when there is no or intermittent ra-
dio coverage. Primitives are stored and uploaded in batches
when the radio coverage becomes available; iii) minimizes
the sensor data the phone sends to the backend servers im-
proving the system efficiency by only uploading classifica-
tion derived-primitives rather than higher bandwidth raw
sensed data; iv) reduces the energy consumed by the phone
and therefore monetary cost for the data cellular connection
by merging consecutive uploads of primitives; and finally v)
negates the need to send raw sensor data to the backend,
enhancing the user’s privacy and data integrity.

As discussed in Section 4, we design the classifiers that
produce the primitives to be lightweight to match the capa-
bilities of the phone.

Power Aware Duty-Cycle. To extend the battery life-
time of the phone when running the CenceMe application
we apply scheduled sleep techniques to both the data up-
load and the sensing components. This leads to the follow-
ing question: how long can the sensors, Bluetooth, GPS,
and communications upload be in a sleep mode given that
the larger the sleep interval the lower the classification re-
sponsiveness of the system? Typically, a real time sensing
system would supply sensor data using a high rate duty cy-
cle. However, such an approach would conflict with energy

conservation needs. Our approach is based on a duty cy-
cle design point that minimizes sampling while maintaining
the application’s responsiveness, as judged by users. This
design strategy allows CenceMe to operate as near to real-
time as is possible; that is, some system delay is introduced
before a person’s sensing presence is updated on the backend
servers. In the case of the current implementation the intro-
duced delay varies according to the type of presence being
inferred. The introduction of delay to improve the over-
all energy efficiency of the system makes good sense given
the goal of CenceMe to allow buddies in social networks to
casually view each other’s sensing presence. For example,
knowing that a buddy is in a conversation one minute af-
ter the actual conversation began seems reasonable. Other
activities may allow even greater introduced latency; for ex-
ample, people remain at parties for periods typically greater
than five minutes or more, therefore, the delay introduced
by the classifier in this case has little effect on the accuracy
of the system status reports. In Section 5.2 we present the
CenceMe system performance evaluation under varying up-
load and sensing duty cycles to best understand these trade-
offs. In Section 6 we discuss results from the user study that
indicate that even though users view their buddies status via
the CenceMe portal infrequently they expect current infor-
mation when viewed to be accurate and timely. This lends
itself to a design that senses at an even lower duty cycle
on average but temporarily increases the sensing rate when
a buddy’s page is accessed. This results in bandwidth and
storage capacity improvements.

Software Portability. To design for better software
portability we push as much as we can to JME. We fol-
low this design goal to maximize software re-usability given
that the majority of modern mobile phones use a Java vir-
tual machine to support JME programs. However, because
of the API limitations discussed earlier, a number of compo-
nents need to be implemented directly using native Symbian
APIs to support the necessary features offered by the phone
but not available through JME.

3. CENCEME IMPLEMENTATION
In this section, we present the CenceMe implementation

details. The CenceMe application and system support con-
sists of a software suite running on Nokia N95 mobile phones
and backend infrastructure hosted on server machines. The
software installed on the phones performs the following oper-
ations: sensing, classification of the raw sensed data to pro-
duce primitives, presentation of people’s presence directly
on the phone, and the upload of the primitives to the back-
end servers. Primitives are the result of: i) the classifica-
tion of sound samples from the phone’s microphone using a
discrete Fourier transform (DFT) technique and a machine
learning algorithm to classify the nature of the sound; ii)
the classification of on board accelerometer data to deter-
mine the activity, (e.g., sitting, standing, walking, running);
iii) scanned Bluetooth MAC addresses in the phone’s vicin-
ity; iv) GPS readings; and finally, v) random photos, where
a picture is taken randomly when a phone keypad key is
pressed or a call is received. Classification algorithms that
infer more complex forms of sensing presence (i.e., facts) run
on backend machines, as discussed in Section 4.2.

3.1 Phone Software
Figure 1 shows the CenceMe software architecture for the
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Figure 1: Architecture of the CenceMe phone software.

Nokia N95 phone. The phone architecture comprises the
following software components:
Symbian Servers. The accelerometer sensor, audio sen-
sor, and event detector sensor are Symbian C++ modules
that act as daemons producing data for corresponding JME
client methods. Their function is, respectively: polling the
on board accelerometer sensor, sampling the phone’s micro-
phone, and detecting incoming/outgoing calls and keypad
key presses. The sensed data is sent to the JME methods
through a socket. Events detected by the event detector
daemon are used by the random photo module at the JME
level to generate random pictures, to trigger a photo upon
an incoming phone call or to signal the application that it
has to restart after a phone call for reliability reasons.
Bluetooth Daemon. This component resides at the JME
level and is used to perform an inquiry over the Bluetooth ra-
dio to retrieve the MAC addresses of any neighboring Blue-
tooth nodes. The MAC addresses of the neighboring nodes
are used to determine if there are CenceMe phones in the
area at the time of the inquiry.
Accelerometer Client. This component is written in JME
and connects through a socket to the accelerometer sensor
to retrieve the accelerometer data byte stream. The byte
stream is stored in local storage and retrieved by the activ-
ity classifier to compute the activity primitive, as discussed
in Section 4.1.
Audio Client. This JME client component connects through
a socket to the Symbian audio server to retrieve the audio
byte stream that carries the PCM encoded representation of
the sound sample. The byte stream is stored in local storage
and retrieved by the audio classifier to compute the audio
primitive, as discussed in Section 4.1.
Random Photo. This JME module is designed to trig-
ger the capture of a photo upon detection of incoming calls
or pressed keypad keys. The events are received through a
socket from the event detector daemon. When the picture
is taken it is stored locally until the next upload session.
GPS. The JME GPS implementation supplies a callback
method that is periodically called by the Nokia GPS dae-
mon to provide the geographical location of the phone. The
GPS coordinates are stored locally and then uploaded to the
backend servers.
Sensing Controller. This component is responsible for or-
chestrating the underlying JME sensing components. The
sensing controller starts, stops, and monitors the sensor clients

Figure 2: ClickStatus on the Nokia N95.

and the Bluetooth manager and GPS daemon to guarantee
the proper operation of the system.
Local Storage. This component stores the raw sensed data
records to be processed by the phone classifiers. As the clas-
sification of raw data records is performed, the data records
are discarded, hence none of the sampled data persists on
the phone. This is particularly important to address the in-
tegrity of the data and the privacy of the person carrying the
phone since none of the raw sensed data is ever transferred
to the backend. Primitives, GPS coordinates, and Bluetooth
scanned MAC addresses are stored in local storage as well,
waiting for an upload session to start.
Upload Manager. This component is responsible for es-
tablishing connections to the backend servers in an oppor-
tunistic way, depending on radio link availability which can
be either cellular or WiFi. It also uploads the primitives
from local storage and tears down the connection after the
data is transferred. Details about how the upload manager
interacts with the backend are discussed in Section 3.2.
Privacy Settings GUI. The privacy settings GUI allows
the user to enable and disable the five sensing modalities
supported on the phone, (viz. audio, accelerometer, Blue-
tooth, random photo, and GPS). Users can control the pri-
vacy policy settings from the phone and the CenceMe portal.
By doing so users determine what parts of their presence to
share and who they are willing to share sensing presence
with or not as the case may be.
ClickStatus. To complement the full visualization of cur-
rent and historical sensing presence available via the CenceMe
portal (a screenshot of the portal is shown in [12]), we devel-
oped ClickStatus, a visualization client that runs on the mo-
bile phone. The sensing presence is rendered as both icons
and text on the phone GUI, as shown in Figure 2. The pres-
ence rendered by ClickStatus is subject to the same privacy
policies settings as when viewed using the CenceMe portal.

After a user logs in with their CenceMe credentials, they
are presented with a list of their CenceMe buddies down-
loaded from the CenceMe server. CenceMe buddies are Face-
book friends running CenceMe on their N95. While this is
always done at start up, a user has the ability to refresh
their buddy list at any time via a menu command option.
By highlighting and selecting a buddy from buddy list, a
user triggers ClickStatus to fetch via GPRS or WiFi the lat-
est known sensing presence for the selected buddy from the
CenceMe server. This presence is displayed on a separate
result screen; from there a user can either exit to return to
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Figure 3: Software architecture of the CenceMe backend.

their buddy list or refresh the currently displayed buddy’s
presence.
WatchTasks. The purpose of WatchTasks is to restart
any process that fails. WatchTasks also serves several other
ancillary purposes including: i) launching CenceMe when
the phone is turned on; ii) starting the CenceMe applica-
tion software components in the correct order; iii) restart-
ing the CenceMe midlet after a phone call is complete. This
is detected when the event detector daemon exits, signaling
the end of a call; iv) restarting all support daemons when
CenceMe fails. Such action is necessary when we cannot
reconnect to specific daemons under certain failure condi-
tions; and finally v) restarting all the CenceMe software
components at a preset interval to clear any malfunction-
ing threads.

The CenceMe phone suite uses a threaded architecture where
each JME component shown in Figure 1 is designed to be a
single thread. This ensures that component failure does not
compromise or block other components.

3.2 Backend Software
The CenceMe backend software architecture is shown in

Figure 3. All software components are written in Java and
use Apache 2.2 and Tomcat 5.5 to service primitives from
phones and the application requests from the CenceMe por-
tal, ClickStatus, and Facebook. Communications between
the phone and the backend uses remote procedure calls im-
plemented by the Apache XML-RPC library on the server.
Requests are handled by Java servlets in combination with
a MySQL database for storage.

Phone ⇔ Backend Communications. Data exchange
between the phone and the backend is initiated by the phone
at timed intervals whenever the phone has primitives to up-
load. Primitives are uploaded through XML-RPC requests.
Once primitives are received at the backend they are inserted
into the MySQL database.

Backend-to-phone communications such as in the signifi-
cant places service described in Section 4.2 are piggybacked
on both: i) the return message from XML-RPC requests
initiated by the phone for primitive upload or periodic ping
messages that the phone sends with an ad-hoc XML-RPC
control message; and ii) the XML-RPC acknowledgment
sent to the phone in response to a primitive upload.

Presence Representation and Publishing. CenceMe

presence is represented through a set of icons that capture
the actual presence of a person in an intuitive way. For ex-
ample, if a person is driving a car they are represented by
the car icon; if a person is engaged in a conversation, an
icon of two people talking represents the state. CenceMe
publishes presence by means of either a “pull” or “push” ap-
proach. Popular applications such as Facebook and MyS-
pace require a push approach. This allows content to be
inserted via some variant of a HTTP transported markup
language (e.g., FBML, XML). Other applications such as
Skype, Pidgin, and iGoogle require a pull mechanism to
make content available. The CenceMe backend supports
pull-based data publishing by exposing a standard web ser-
vice based API. This API is also used to support the data
needs of CenceMe components such as ClickStatus and the
CenceMe portal. Push-based publishing is supported by the
PushConnector component shown in Figure 3. This com-
ponent handles the generic operation of pushing CenceMe
presence based on user preferences to a number of appli-
cations. For the Facebook implementation, three Facebook
widgets are offered to expose a subset of the functionality
available on the portal, namely, BuddySP, Sensor Status,
and Sensor Presence. Buddy SP is a buddy list replacement
widget that lists CenceMe friends for user navigation. It
is the same as the standard widget that lists friends within
Facebook but augments this list with a mini-sensor presence
icon view. Sensor Status provides automated textual status
message updates such as “Joe is at work, in a conversation,
standing”. Finally, Sensor Presence provides a simplified
version of the user’s current status through an iconized rep-
resentation of the user’s presence.

4. CENCEME CLASSIFIERS
In this section, we discuss the algorithms used by the

CenceMe classifiers running on the phone and the backend
according to the split-level classification design discussed
earlier.

4.1 Phone Classifiers
Audio classifier. The audio classifier retrieves the PCM

sound byte stream from the phone’s local storage and out-
puts the audio primitive resulting from the classification.
The primitive is stored back in local storage (see Figure 1).
This audio primitive indicates whether the audio sample rep-
resents human voice and is used by backend classifiers such
as the conversation classifier, as discussed in Section 4.2.

The audio classification on the phone involves two steps:
feature extraction from the audio sample and classification.
The feature extraction is performed by running a 4096 bin
size discrete Fourier transform (DFT) algorithm. A fast
Fourier transform (FFT) algorithm is under development.

An extensive a-priori analysis of several sound samples
from different people speaking indicated that Nokia N95
sound streams associated with human voice present most of
their energy within a narrow portion of the 0-4 KHz spec-
trum. Figures 4(a) and 4(b) show the DFT output from two
sound samples collected using the Nokia N95. The plots
show the capture of a human voice, and the sound of an
environment where there is not any active conversation on-
going, respectively. It is evident that in the voice case most
of the power concentrates in the portion of spectrum be-
tween ∼250 Hz and ∼600 Hz. This observation enables us to
optimize the DFT algorithm to be efficient and lightweight
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Figure 4
by operating in the ∼250 Hz to ∼600 Hz frequency range.
Classification follows feature extraction based on a machine
learning algorithm using the supervised learning technique
of discriminant analysis. As part of the training set for the
learning algorithm we collected a large set of human voice
samples from over twenty people, and a set of audio sam-
ples for various environmental conditions including quiet and
noisy settings.

The classifier’s feature vector is composed of the mean
and standard deviation of the DFT power. The mean is
used because the absence of talking shifts the mean lower.
The standard deviation is used because the variation of the
power in the spectrum under analysis is larger when talking
is present, as shown in Figure 4. Figure 5 shows the clus-
tering that results from the discriminant analysis algorithm
using the mean and standard deviation of the DFT power
of the sound samples collected during the training phase.
The equation of the dashed line in Figure 5 is used by the
audio classifier running on the phone to discern whether the
sound samples comes from human voice or a noisy/quite en-
vironment with 22% mis-classification rate. Audio samples
misclassified as voice are filtered out by a rolling window
technique used by the conversation classifier that runs on
the backend, as discussed in Section 4.2. This boosts the
performance fidelity of the system for conversation recogni-
tion.
Activity classifier. The activity classifier fetches the raw
accelerometer data from the phone’s local storage (see Fig-
ure 1), and classifies this data in order to return the current
activity, namely, sitting, standing, walking, and running.
The activity classifier consists of two components: the pre-
processor and the classifier itself.

The preprocessor fetches the raw data from the local stor-
age component and extracts features (i.e., attributes). Given
the computational and memory constraints of mobile phones,
we use a simple features extraction technique which prove
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Figure 5: Discriminant analysis clustering. The dashed line
is determined by the discriminant analysis algorithm and
represents the threshold between talking and not talking.

to be sufficiently effective, rather than more computationally
demanding operations such as FFT. The preprocessor cal-
culates the mean, standard deviation, and number of peaks
of the accelerometer readings along the three axes of the
accelerometer.

Figure 6 shows the raw N95 accelerometer readings along
the three axes for sitting, standing, walking, and running for
one person carrying the phone. As expected, the sitting and
standing traces are flatter than when the person is walking
and running. When standing, the deviation from the mean
is slightly larger because typically people tend to rock a bit
while standing. The peaks in the walking and running traces
are a good indicator of footstep frequency. When the person
runs a larger number of peaks per second is registered than
when people walk. The standard deviation is larger for the
running case than walking. Given these observations, we
find that the mean, standard deviation, and the number of
peaks per unit time are accurate feature vector components,
providing high classification accuracy. Because of lack of
space, we do not report similar results to those shown in
Figure 6 for other people. However, we observe strong sim-
ilarities in the behavior of the mean, standard deviation,
and the number of peaks for the accelerometer data across
different individuals.

Our classification algorithm is based on a decision tree
technique [32][33]. The training process of the classifier is
run off-line on desktop machines because it is computation-
ally costly. In order to maximize the positive inference of
an individual’s activity, prior work suggests that the best
place on the body to carry a phone is the hip [34]. After
interviewing the participants in our user study, we conjec-
ture that most of people carry their phones in their pants
pockets, clipped to a belt or in a bag. We collected training
data from ten people that randomly placed the mobile phone
inside the front and back pockets of their pants for several
days. We plan to consider other usage cases in future work.

At the end of the training phase, we feed the training
set to the J48 decision tree algorithm, which is part of the
WEKA workbench [28]. The output of the decision tree al-
gorithm is a small tree with depth three. Such an algorithm
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Figure 6: Accelerometer data collected by the N95 on board
accelerometer when the person carrying the phone performs
different activities: sitting, standing, walking, and running.

is lightweight and efficient. The time needed by the prepro-
cessor and the classifier to complete the classification process
is less than 1 second on average running on the Nokia N95.

4.2 Backend Classifiers
Backend classifiers follow the split-level classification de-

sign and generate facts based on primitives provided by the
phone or facts produced by other backend classifiers. Facts
represent higher level forms of classification including social
context (meeting, partying, dancing), social neighborhood,
significant places, and statistics over a large group of data
(e.g., does a person party more than others, or, go to the gym
more than others?). However, some of the classifiers (e.g.,
conversation and CenceMe neighborhood) will eventually be
pushed down to the phone to increase the system classifica-
tion responsiveness. In this case, the primitives would still
be uploaded to the backend in order to make them available
to other backend classifiers.

Backend classifier processing is invoked in two ways: ei-
ther event triggered or periodic. An example of an event
triggered classifier is the “party” classifier: it receives as in-
put the primitives from the phone that contain the volume
of an audio sample and the activity of the user and returns
whether the person is at a party and dancing. Along with
trigger based classifiers there is a collection of periodically
executed classifiers. An example of such classifiers is the
“Am I Hot” classifier that runs periodically according to the
availability of data in a window of time, (i.e., day long data
chunk sizes).

In what follows, we describe the backend classifiers and
their implementation in more detail.
Conversation Classifier. This classifier’s purpose is to
determine whether a person is in a conversation or not, tak-
ing as input the audio primitives from the phone. However,
given the nature of a conversation, which represents a com-
bination of speech and silences, and the timing of sampling,
the audio primitive on the phone could represent a silence
during a conversation. Thus, the phone’s audio primitives

are not accurate enough to determine if a person is in the
middle of a conversation. To address this the backend con-
versation classifier uses a rolling window of N phone au-
dio primitives. The current implementation uses N=5 to
achieve classification responsiveness, as discussed in Section
5.1.

The rolling window filters out pauses during a conversa-
tion to remain latched in the conversation state. The classi-
fier triggers the “conversation” state if two out of five audio
primitives indicate voice. The “no conversation” state is re-
turned if four out of five audio primitives indicate a “no
voice”. We determined experimentally that fewer samples
are needed to trigger the conversation state than no conver-
sation state. We therefore design the conversation classifier
following an asymmetric strategy that quickly latches into
the conversation state but moves more conservatively out of
that state. We made this choice because if the conversation
classifier can be used as a hint to determine if a person can
be interrupted (for instance with a phone call), then we only
want to drop out of conversation state when the conversation
has definitely ended.

The accuracy of the conversation classifier is discussed in
Section 5.1.
Social Context. The output of this classifier is the so-
cial context fact, which is derived from multiple primitives
and facts provided by the phone and other backend clas-
sifiers, respectively. The social context of a person consists
of: i) neighborhood conditions, which determines if there are
any CenceMe buddies in a person’s surrounding area or not.
The classifier checks whether the Bluetooth MAC addresses
scanned by the phone, and transmitted to the backend as
a primitive are from devices belonging to CenceMe buddies
(i.e., the system stores the Bluetooth MAC addresses of the
phones when CenceMe is installed); ii) social status, which
builds on the output of the conversation and activity classi-
fiers, and detected neighboring CenceMe buddies to deter-
mine if a person is gathered with CenceMe buddies, talking
(for example at a meeting or restaurant), alone, or at a party.
For example, by combining the output of the conversation
classifier, the activity primitive, and neighboring Bluetooth
MAC addresses a person might be classified as sitting in con-
versation with CenceMe friends. Social status also includes
the classification of partying and dancing. In this case a
combination of sound volume and activity is used. We use
a simple approach that uses an audio volume threshold to
infer that a person is at a party or not. Training for this is
based on a few hours of sound clips from live parties using
the N95 microphone. We also take a simple approach to the
classification of dancing. We determine a person is dancing
if the person is in the “party” state and the activity level is
close to running, given that the accelerometer data trace for
running is close to dancing. Although we realize the defini-
tion of social context is somewhat simplistic and could be
improved, this is a first step toward the representation of
people’s status and surroundings in an automated way.
Mobility Mode Detector. We employ GPS location es-
timates as input to a mobility mode classifier [22][23]. This
classification is currently only binary in its output, classify-
ing the mobility pattern as being either traveling in a ve-
hicle or not (i.e., being stationary, walking, running). We
use a simple feature vector based on multiple measures of
speed; that is, using multiple distance/time measurements
for variable sizes of windowed GPS samples and the built-in
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speed estimation of the GPS device itself. The classifier is
built with the JRIP rule learning algorithm, as implemented
in WEKA [28], based upon manually labeled traces of GPS
samples. We compensate for any inaccuracy in GPS samples
by filtering based on the quality measures (i.e., horizontal di-
lution of precision and satellite counts) and outlier rejection
relative to the estimates of previous and subsequent GPS
samples.
Location Classifier. The function of this component is
to classify the location estimates of users for use by other
backend classifiers. GPS samples are filtered based on qual-
ity (as discussed above) to produce a final location estimate.
Classification is driven based on bindings maintained be-
tween a physical location and a tuple containing: i) a short
textual description; ii) an appropriate icon representation;
and iii) a generic class of location type (i.e., restaurant, li-
brary, etc.). Bindings are sourced from GIS databases and
CenceMe users. We use the Wikimapia [27] for GIS data in
our implementation. Relying solely on GIS information lim-
its the richness of shared presence. Typically, people tend
to spend a larger proportion of their time in relatively few
locations. This motivates the idea of user-created bindings.
CenceMe allows users to insert their own bindings via either
the portal or the phone. Using the phone, users can manu-
ally bind a location when they visit it. Similarly, users can
use the portal to also add, edit or delete bindings manually.
CenceMe also provides the ability to learn significant places
in an automated manner in contrast to the manual bind-
ings discussed above. New bindings learned by the system
are based on the mobility pattern of the user. This aspect
of CenceMe directly builds on the existing work in location
trace analysis referred to as significant places [25] [31]. In
CenceMe we perform k-means clustering using WEKA [28]
where the parameters of the clustering algorithm are deter-
mined experimentally. Once a potential significant place is
discovered the next time the person enters that location the
phone prompts the person’s mobile phone to confirm or edit
the details of the location. Default labels and icons are ini-
tially based upon the most popular nearest known existing
binding defined by the user or CenceMe buddies. To reduce
the burden on the users to train the classifier with their own
bindings we structure the classifier to initially borrow exist-
ing bindings from their CenceMe buddies [24].
Am I Hot. Making the large volumes of data collected by
CenceMe easily digestible to users is a challenge. We address
this challenge using a series of simple and meaningful met-
rics that relate historical trends in user data to either recog-
nizable social stereotypes or desirable behavioral patterns.
These metrics are calculated on a daily basis and users view
patterns in their own data and compare themselves with
their buddies. The metrics include the following: i) nerdy,
which is based on individuals with behavioral trends such as
being alone (from the Bluetooth activity registered by the
person’s phone), spending large fractions of time in certain
locations (e.g., libraries) and only infrequently engaging in
conversation; ii) party animal, which is based on the fre-
quency and duration with which people attend parties and
also takes into account the level of social interaction; iii) cul-
tured, which is largely location based, being driven by the
frequency and duration of visits to locations such as theaters
and museums; iv) healthy, which is based upon physical ac-
tivities of the user (e.g., walking, jogging, cycling, going to
the gym); and finally, v) greeny, which identifies users having

Table 1: Activity classifier confusion matrix
Sitting Standing Walking Running

Sitting 0.6818 0.2818 0.0364 0.0000
Standing 0.2096 0.7844 0.0060 0.0000
Walking 0.0025 0.0455 0.9444 0.0076
Running 0.0084 0.0700 0.1765 0.7451

Table 2: Conversation classifier confusion matrix
Conversation Non-Conversation

Conversation 0.8382 0.1618
Non-Conversation 0.3678 0.6322

low environmental impact, penalizing those who drive their
cars regularly while rewarding those who regularly walk, cy-
cle or run.

5. SYSTEM PERFORMANCE
In this section, we present an evaluation of the CenceMe

application and system support. We start by discussing the
performance of the CenceMe classifiers and then present a
set of detailed power, memory, and CPU benchmarks. Fi-
nally, we present the results from a detailed user study.

5.1 Classifiers Performance
We examine the classifiers performance based on a small-

scale supervised experiments. We discuss classifier accuracy,
and the impact of mobile phone placement on the body, en-
vironmental conditions, and sensing duty cycle. The results
are based on eight users who annotate their actions over
a one week period at intervals of approximately 15 to 30
minutes, unless otherwise stated. Annotations act as the
ground truth for comparison with classifier outputs. The
ground truth data is correlated to the inference made by
the CenceMe classifiers. This data is collected at different
locations and by carrying the mobile phone in various po-
sitions on the body. Tables 1, 2 and 3 show the confusion
matrices for the activity, conversation, and mobility classi-
fiers, respectively, over a one week period. These reported
values represent good approximations; the human annota-
tions may be inaccurate or incomplete at times.

5.1.1 General Results

While the activity inference accuracy reported in Table 1
is up to 20% lower than that reported using custom hardware
[14], we achieve our results using only the accelerometer on a
Nokia N95 and engineering the system to be power efficient
and work around the resource limitations discussed earlier.
We find that our classifier has difficulty differentiating sitting
and standing given the similarity in the raw accelerometer
traces, as shown in Figure 6. We observe that variations in
locale (e.g., office, restaurant) and people (e.g., body type,
weight) do not significantly impact the activity classification
performance.

The conversation classification accuracy reported in Ta-
ble 2 is high, but the classifier also suffers from a relatively
high rate of false positives. This is due to a combination of
classifier design and “mis-annotation” by participants. The
classifier reports conversation even if the person carrying the
phone is silent but someone is talking nearby. Naturally, par-
ticipants often did not account for this fact. Furthermore,
due to the asymmetric state latching for the conversation
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Table 3: Mobility mode classifier confusion matrix
Vehicle No Vehicle

Vehicle 0.6824 0.3176
No Vehicle 0.0327 0.9673
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Figure 7: Activity classification vs. body position.

classifier discussed in Section 4.2, the classifier remains in
the conversation state for a longer time than the real con-
versation duration, generating false positives.

5.1.2 Impact of Phone Placement on the Body

While mobile phone placement on the body is a personal
choice, prior work has shown body placement to affect the
accuracy of activity inference [34]. We assess the impact
on classification when the Nokia N95 is placed at different
places on the body, namely, in a pocket, on a lanyard, and
clipped to a belt. Classification accuracy derived from the
ground truth annotated data is shown in Figure 7. The
pocket and belt positions produce similar results for all clas-
sified activities, while the lanyard position yields poor accu-
racy when classifying sitting, and a relatively lower accuracy
for running. In follow-up laboratory experiments, we find
that the length of the lanyard cord and the type of lanyard
we provided to participants affect the results. If the lanyard
is long the phone rests frequently on the body, particularly
while walking and standing, allowing for accurate classifica-
tion. However, even when seated a lanyard-mounted phone
may swing from side to side with incidental torso move-

ments, causing a mis-classification as standing or walking.
Furthermore, running is sometimes classified as walking be-
cause the lanyard damps the accelerometer signatures that
indicate running, compared to other body positions (e.g.,
belt, pocket) where the phone is more rigidly affixed to the
body.

We find that conversation classification accuracy is much
less sensitive to the body placement of the phone. When the
phone is worn as a lanyard, conversation and no conversa-
tion are detected with 88% and 72% accuracy, respectively.
The same test repeated with the phone in a pocket yields a
classification accuracy of 82% for conversation and 71% for
no conversation, despite the muffling effect of clothing.

5.1.3 Impact of Environment

We find activity classification accuracy to be independent
of environment. Mobility classification is inherently not tied
to a particular location but rather on transitions between
locations. However, we do see an impact from the environ-
ment on conversation classification accuracy. Figure 8(a)
shows the classification accuracy categorized by location,
where the different locations are: outdoors, indoor noisy
(i.e., an indoor location with background noise such as in
a cafe or restaurant), and indoor quiet (i.e., with very low
background noise such as at the library or office). The clas-
sifier detects conversation with more than an 85% success
rate when in an indoor noisy environment. In outdoor sce-
narios there is an increase in false positives but the accuracy
of detection of conversation, a design focus, remains high.
Lower conversation detection accuracy in very quiet indoor
environments occurs because the classifier is trained with
the average case background noise. In a noisy environment
there is an increase in power across all of the frequencies so
a threshold set for this environment in mind will be larger
than if a very quiet environment is assumed. As a result,
in very quiet environments fewer conversations are detected
since the contribution of background noise is lower. These
performance characteristics are a direct result of the audio
classifier design, which attempts to reduce the use of the
phone’s resources.

5.1.4 Impact of Duty Cycle

Applying a sleep scheduling strategy to the sensing rou-
tine is needed in order to increase the battery lifetime of the
phone. Note that in Section 5.2 we discuss lifetime gains
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with a ten minute inter-sample time. However, this has a
negative impact on the performance of the classifiers, par-
ticularly in detecting short-term (i.e., duration) events that
occur between samples. For example, in Table 3, the vehicle
state is only correctly detected 68% of the time. This lower
accuracy is a product of shorter car journeys around town for
durations less than the inter-sampling rate. This problem is
aggravated by other factors such as the delay in acquiring
good GPS-based positioning data. To investigate the impact
of duty cycling on conversation classification, we set up an
experiment with eight users that periodically reprogrammed
their phones with different duty cycles while keeping a diary.
Figure 8(b) shows the performance of the phone’s conversa-
tion classifier as the microphone sensing duty cycle varies.
Each value represents the average of five trials. We see that
there is little benefit in adopting a sleeping time smaller
than 10 seconds. However, longer duty cycles impact per-
formance. We observe only a 40% accuracy using the con-
versation classification for a 60 second duty-cycle, which is
the longest duty-cycle we considered experimentally.

A longer sensing duty cycle also implies a reduction of
the conversation classifier rolling window size to maintain
the high responsiveness of the classifier. A smaller conver-
sation classifier rolling window size leads to a higher mis-
classification rate. This becomes apparent if we look at the
Receiver Operating Characteristic (ROC) curves of the con-
versation classifier as shown in Figure 8(c). The ROC curves
show the impact of the window size and threshold that trig-
gers conversation (reflected in the curve shape) on the clas-
sifiers true positive and false positive rates. We use offline
analysis to determine the output of the conversation classi-
fier as we alter the window size and threshold value. We ob-
serve that the larger the window (i.e., N=10,30), the larger
the true positives to false positives ratio becomes. In our
current implementation, we adopt N=5 and an audio sens-
ing rate of 30 seconds (our default operating point is labeled
in the figure). With these parameters the worst-case conver-
sation classification delay omitting communication delays is
1.5 minutes. On the other hand, if we used a window where
N=30, which would give higher accuracy, we would get a
delay of 9 minutes on average. This illustrates the trade off
between sampling rate and classification speed. However,
we choose to operate at a point in the design space that
increases the true positive rate at the expense of being less
accurate in the detection of non-conversation because the
cost, from a user’s perspective, of being wrong when detect-
ing a conversation is larger than the cost of being wrong
when detecting non-conversation.

5.2 Power Benchmarks
Power measurements of CenceMe are made using the Nokia

Energy Profiler, a standard software tool provided by Nokia
specifically for measuring energy use of applications running
on Nokia hardware. The profiler measures battery voltage,
current, and temperature approximately every third of a sec-
ond, storing the results in RAM.

Figure 9 shows the typical contribution of various sen-
sors and classifiers to the overall energy budget during a
ten minute sensing cycle. Bluetooth proximity detection
requires a 120 second scan period to capture neighboring
MAC addresses due to the cache flushing limitations of the
Bluetooth API in JME. GPS location detection is inherently
power hungry and takes time to acquire“a lock”when turned

Figure 9: Details of the power consumption during a sam-
pling/upload interval.

Figure 10: The tradeoff between energy consumption and
data latency in CenceMe.

on. CenceMe allows 120 seconds for a lock to be acquired
and then the N95 keeps the GPS activated for another 30
seconds (which is out of our control). The highest spikes
shown on the plot are due to the upload of data which uses
the cellular radio. The next highest spikes are due to sam-
pling of audio data. The period of several seconds following
the audio sample is where the audio classifier runs, using a
relatively high amount of energy to compute a DFT. The ac-
celerometer sampling and activity classification are fast and
use little power. While this is a typical pattern of energy
consumption there are other factors which can cause varia-
tions, including: distance to cell tower, environmental radio
characteristics, the amount of data to upload, the number
of Bluetooth neighbors, denial of resources due to the phone
being in use for other purposes, network disconnections, sen-
sor sample intervals, sample durations, upload interval, GPS
lock time, and temperature.

Figure 10 shows the energy consumption measured with
the profiler for sampling intervals ranging from 10 seconds
to 60 seconds with power in Watts on the vertical axis. The
second line and axis in the graph shows the latency in getting
the facts to the backend as a function of the sample inter-
val including the sample interval itself, classifier latency, and
network delay. The audio classifier latency is actually a mul-
tiple of three times the values on this line since the classifier
needs at least three facts from the phone in order to detect
conversation and social setting. The horizontal axis shows
the sampling interval for the accelerometer and audio. The
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proximity and GPS sensors are sampled at ten times the x-
axis value (e.g., a 60 second interval means Bluetooth and
GPS are sampled at 600 seconds, or ten minute intervals).

The combination of the two lines show the tradeoff be-
tween energy use and data latency for any particular sam-
pling interval. There is no optimal sampling interval since
users will have different requirements at different times. For
example, users may want a short sample interval when they
are active, a slow interval when they are inactive, and a
very slow interval when their phone is running out of en-
ergy. We are currently considering several methods of auto-
matic adaptation of the sample rate based on sensor input
and battery state, combined with a user preference selector
that lets the user shift the emphasis between long battery
life and greater data fidelity.

Overall battery lifetime running the entire CenceMe soft-
ware suite on a fully charged N95 is measured five times by
running the battery to depletion under normal use condi-
tions while using no other applications on the phone. This
results in 6.22 +/- 0.59 hours of usage. The reason for the
large standard deviation is that there are many factors im-
pacting battery life such as temperature, the number of calls
and duration, the number of ClickStatus queries, range from
cell towers when used, and the environmental and atmo-
spheric conditions. Without the CenceMe software running,
and the phone in a completely idle state, low power state
power consumption is 0.08 +/- 0.01 Watt-Hours per hour.
The CenceMe suite consumes 0.9 +/- 0.3 Watt-Hours per
hour when running with no user interaction. The conversa-
tion and social setting classifier consumes 0.8 +/- 0.3 Watt-
Hours per hour with all other parts of the CenceMe system
idle. The activity classifier consumes 0.16 +/- 0.04 Watt-
Hours per hour with all other parts of the CenceMe system
idle. Any use of the phone to make calls, play videos or listen
to music will reduce the runtime. While the approximately
6 hour lifetime is far below the idle lifetime of the Nokia
N95, we have identified several areas where we believe we
can significantly reduce power usage while also decreasing
data latency, as discussed in Section 2.2.

5.3 Memory and CPU Benchmarks
We also carried out benchmark experiments to quantify

the RAM and CPU usage of the CenceMe software running
on the N95 using the Nokia Energy Profiler tool. For all
measurements we enable the screen saver to decouple the
resource occupation due to the CenceMe modules from that
needed to power up the N95 LCD.

We start by measuring the amount of RAM and CPU us-
age when the phone is idle with none of the CenceMe com-
ponents running. We then repeat the measurement when
either the accelerometer sampling and activity classification
or audio sampling and classification are active. Then we add
each of the remaining CenceMe modules until the whole soft-
ware suite is running. The results are shown in Table 4. As
expected, audio sampling and feature vector extraction re-
quire more computation than the other components. This
is in line with the power measurements result shown in Fig-
ure 9 where audio sampling and processing are shown to use
a relatively high amount of energy. We also note that the
memory foot print does not grow much as components are
added. Together CenceMe and ClickStatus occupy 5.48MB
of RAM.

Table 4: RAM and CPU usage
CPU RAM (MB)

Phone idle 2% (+/- 0.5%) 34.08
Accel. and activity classif. 33% (+/- 3%) 34.18
Audio sampling and classif. 60% (+/- 5%) 34.59
Activity, audio, Bluetooth 60% (+/- 5%) 36.10
CenceMe 60% (+/- 5%) 36.90
CenceMe and ClickStatus 60% (+/- 5%) 39.56

6. USER STUDY
Because CenceMe is designed to be a social network we

need to go beyond simple measures of system performance to
best understand the utility of people-centric sensing appli-
cations such as CenceMe. Our goal is to bring CenceMe to
the attention of potential users, ask them to use CenceMe
and provide detailed feedback about their user experience
by means of a survey. For this reason we conducted an
“operational” experiment. The experiment conducted over
a three week period involved 22 people. Participants were
each given a Nokia N95 with the CenceMe software (includ-
ing ClickStatus) and a free voice/data plan. Users had server
side accounts and access to the CenceMe portal. While some
of the users were friends we placed all users in the same
buddy list as a means to create some community.

The pool of candidates picked within the population of
students and staff at our university was composed of 12 un-
dergraduate students, 1 research assistant, 1 staff engineer,
7 graduate students, and 1 professor. The research assis-
tant and four undergraduates have little computer science
background. Sixteen participants are active Facebook users.
Before discussing the detailed experience of users, we sum-
marize some results from the user study:

• Almost all of the participants liked using CenceMe and
its features. One user wrote: “it’s a new way to be part
of a social network”.

• Facebook users are particularly active in terms of will-
ingness to share detailed status and presence informa-
tion with their friends.

• Privacy could be a concern but users are fine with shar-
ing their presence status as long as they have the means
to easily and efficiently control their privacy settings.

• CenceMe stimulates curiosity among users. Users want
to know what other people are doing while on the
move.

• CenceMe can aid people in learning their own activity
patterns and social status.

A new way to connect people. Almost all the par-
ticipants find the idea of providing and viewing detailed in-
formation about people they are close to compelling, useful,
and fun. In particular, location, activity/conversation, the
historical log of the person’s presence, random images, and
social context are the features that people like the most.
This pattern is confirmed in Figure 11(a), where the cumu-
lative participants’ feature utilization for different hours of
the day derived from the analysis of system logs on the back-
end is shown. It is evident that location information which
reveals where friends are is the feature most used by the
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Figure 11

participants. The random photos was also found to be of
interest because it can be used as a way to tag the person’s
day as in a diary: “oh yeah... that chair... I was in classroom
112 at 2PM”. The photos are often blurred, since they are
taken outside the control of the person, but they still serve
the diary tagging purpose. Some of the participants did not
particularly like the fact that the system takes pictures out-
side their control, so they opted to turn that feature off by
customizing their privacy policy on the phone.

What is the potential CenceMe demographic? We
believe that people-centric sensing applications such as CenceMe
could become popular among social networking application
users, for whom sharing context and information is popular.
For many of these users, privacy is less of a concern than for
others, as shown by their interest in publicly publishing per-
sonal history in detail in blogs and on social networks. This
tendency is also highlighted in Figure 11(b) which shows a
comparison between the cumulative number of random pho-
tos inserted into the database versus the total number of
photos deleted for different hours of the day. Once photos
are uploaded users are given the opportunity to selectively
delete them from the system. Few participants (4 out of
22) disabled the random photo for the entire duration of the
experiment and others disabled it at different times of the
day to meet their privacy needs or the needs of the peo-
ple around them. In general, as shown in Figure 11(b), the
number of non-deleted photos available for sharing is much
greater than the number of deleted photos. Most partici-
pants did not mind having pictures taken at any time of the
day and in random settings and then being shared with all
the other participants. Many of them were excited by the
idea of guessing what their friends were doing through the
hint provided by random photos. Moreover, no CenceMe
presence sharing restriction was applied by the participants,
who allowed their sensing presence to be accessible by ev-
eryone in the group. Although some users stated that they
could foresee wanting to apply a presence sharing restriction
policy under certain conditions (e.g., if their parents had ac-
cess), they felt comfortable with the idea of others seeing
their presence most of the time.

Learn about yourself and your friends. “CenceMe
made me realize I’m lazier than I thought and encouraged
me to exercise a bit more”. This quote is taken from one
participant’s survey. Other users expressed similar thoughts.
Users view CenceMe as an application that potentially could

tell them things that might be intuitively obvious, but are
often invisible in their lives due to familiarity and repetition.
Some examples are lack of physical activity and spending a
lot of time in front of a computer. Near-real time presence
sharing and historical presence representation are ways to
capture peoples’ lifestyle and trends about activity, social
context (am I often alone? do I party too much?), and
location.

My friends always with me. The study highlights
that the participants enjoyed retrieving their friends’ pres-
ence on the mobile phone with ClickStatus in addition to
checking the portal. The average number of times per day
they checked presence was 4 ± 3 times, where 3 is the stan-
dard deviation. Figure 11(c) shows a comparison between
the total number of times presence is accessed through the
portal or via ClickStatus distributed throughout the day.
Although the number of times the participants access the
portal is larger than their use of ClickStatus on the N95,
ClickStatus is actively used. This is clear from Figure 11(c),
where the use of ClickStatus rises during the time of day
when people are presumably most likely on the move be-
cause they are going to class (between noon and 6PM) or
hanging out with friends (between 8PM and 11PM).

Overall, the user experience is positive. Because many of
them enjoyed using CenceMe, they kept the CenceMe phone
for a while after the end of the experiment. We are currently
working on revising some of the components and improving
a few architectural elements in order to reflect some of the
valuable feedback from the participants. Specifically, future
revisions of the CenceMe system will include:

• An improved CenceMe software module on the phone
that prolongs the battery life. Our goal is to achieve a
48 hour duration without recharging the device.

• An enhanced version of the portal to provide finer
grained privacy policy settings as well as an enhanced
ClickStatus user interface to provide the user with
more powerful ways to browse their friend’s presence.

• A shorter classification time for primitives and facts
because many of the participants believe that real time
access to buddies’ sensing presence should be one of
the features of the system. System architectural re-
visions are currently under consideration to meet this
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requirement. A burst mode for sensing may prove to
be useful.

7. RELATED WORK
There is growing interest in the use of sensor-enabled mo-

bile phones for people-centric sensing [20][21][15][26][29]. A
number of diverse applications are emerging. In [5], the au-
thors describe an application that determines pollution ex-
posure indexes for people carrying mobile devices. A micro-
blogging service is discussed in [8] that uses mobile devices to
record multimedia content in-situ and shares this content in
a real-time. In [9], we discuss the integration of the CenceMe
application with Second Life [10]. The use of personal sen-
sor streams in virtual worlds is a new and interesting area
of research. The work presented in this paper significantly
extends our initial work on CenceMe [4], where we discussed
the basic idea and the results of some isolated experiments.

Cellphones have been used to learn about social connec-
tions [17][18] and provide context-aware communications us-
ing location information from cellular towers and manu-
ally configured preferences in the iCAMS system [11]. The
iCAMS system allows users to pick the preferred method of
communication according to a person’s status and location
(e.g., in person, email, home/work phone). WatchMe [13]
is a similar system that aims at choosing the best way to
communicate with buddies. WatchMe relies on GPS trace
analysis to determine whether a person is walking or driv-
ing, and uses the phone’s microphone to infer talking and
silent states. CenceMe differs from iCAMS and WatchMe
because of the rich context it provides about a person in an
automated and transparent way. In the same way CenceMe
also differs from Twitter [19], an application to publish text-
based status messages generated by users.

There is a large body of work on activity inference and
modeling using customized sensors worn by people [35][7]
[36][6][37]. CenceMe differs from this work because it imple-
ments the activity inference algorithms on commercial mo-
bile phones. As discussed in this paper there are a number
of important design tradeoffs that need to be taken into ac-
count when implementing always-on people-centric sensing
applications like CenceMe on off-the-shelf mobile phones.
Systems such as SATIRE [16] also assume sensing devices
with great capabilities being embedded into “smart cloth-
ing”. An interactive dancing project [30] requires people to
wear customized sensors mounted on shoes to track dancing
activity. In [7] the authors discuss their experience building
efficient classification techniques on the Intel Mobile Sens-
ing Platform (MSP), a small form factor wearable device for
embedded activity recognition. The MSP platform is quite
powerful compared to many cellular devices. The CenceMe
classifiers have been tailored to operate on less capable de-
vices than the MSP while remaining effective.

8. CONCLUSION
We presented the implementation, evaluation, and user

experiences of the CenceMe application, which represents
one of the first applications to automatically retrieve and
publish sensing presence to social networks using Nokia N95
mobile phones. We described a full system implementation
of CenceMe with its performance evaluation. We discussed
a number of important design decisions needed to resolve
various limitations that are present when trying to deploy

an always-on sensing application on a commercial mobile
phone. We also presented the results from a long-lived ex-
periment where CenceMe was used by 22 users for a three
week period. We discussed the user study and lessons learnt
from the deployment of the application and highlighted how
we could improve the application moving forward.
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