
pTunes: Runtime Parameter Adaptation for
Low-power MAC Protocols

Marco Zimmerling∗, Federico Ferrari∗, Luca Mottola†, Thiemo Voigt†, Lothar Thiele∗
∗Computer Engineering and Networks Laboratory, ETH Zurich, Switzerland

†Swedish Institute of Computer Science (SICS), Kista, Sweden
{zimmerling, ferrari, thiele}@tik.ee.ethz.ch {luca, thiemo}@sics.se

ABSTRACT
We present pTunes, a framework for runtime adaptation of
low-power MAC protocol parameters. The MAC operating
parameters bear great influence on the system performance,
yet their optimal choice is a function of the current network
state. Based on application requirements expressed as net-
work lifetime, end-to-end latency, and end-to-end reliability,
pTunes automatically determines optimized parameter val-
ues to adapt to link, topology, and traffic dynamics. To this
end, we introduce a flexible modeling approach, separat-
ing protocol-dependent from protocol-independent aspects,
which facilitates using pTunes with different MAC proto-
cols, and design an efficient system support that integrates
smoothly with the application. To demonstrate its effective-
ness, we apply pTunes to X-MAC and LPP. In a 44-node
testbed, pTunes achieves up to three-fold lifetime gains over
static MAC parameters optimized for peak traffic, the lat-
ter being current—and almost unavoidable—practice in real
deployments. pTunes promptly reacts to changes in traffic
load and link quality, reducing packet loss by 80 % during pe-
riods of controlled wireless interference. Moreover, pTunes
helps the routing protocol recover quickly from critical net-
work changes, reducing packet loss by 70 % in a scenario
where multiple core routing nodes fail.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols; C.2.1 [Computer-Communication Networks]:
Network Architecture and Design—wireless communication

General Terms
Design, Experimentation, Performance

Keywords
Runtime adaptation, parameter optimization, MAC proto-
col, multi-objective, centralized, end-to-end, sensor network

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSN’12, April 16–20, 2012, Beijing, China.
Copyright 2012 ACM 978-1-4503-1227-1/12/04 ...$10.00.

1. INTRODUCTION
Media access control (MAC) protocols play a key role in

determining the performance and reliability of low-power
wireless networks, but very few of the many proposed solu-
tions have been adopted in real deployments [23,34].

Challenges. There exists a large conceptual gap between
the high-level application requirements and the low-level
MAC protocol operation [23]. In particular, it requires ex-
pert knowledge to find MAC operating parameters whose
performance satisfies given application requirements.

In most deployments today, the choice of MAC parameters
is based on experience and rules of thumb involving a coarse-
grained analysis of expected network load and topology dy-
namics. This can yield a performance far off the application
requirements [24]. Alternatively, system designers perform
several field trials to identify suitable MAC parameters [8].
This time-consuming and deployment-specific practice, how-
ever, is hardly sustainable in the long term.

Even if the MAC parameters are appropriate at one time,
they are likely to perform poorly when the network state
changes. Wireless link quality varies significantly over time,
leading to unpredictable packet loss [41]; harsh environmen-
tal conditions cause nodes to be temporarily disconnected
or to fail [2]; and changes in the routing topology or the
sensing activity result in traffic fluctuations. Statically con-
figured MAC protocols cannot cope with these dynamics.

To perform efficiently, MAC protocols must adapt their
operating parameters at runtime. One way to approach this
problem is to embed adaptivity within the protocol oper-
ation [21]. This, however, hard-codes the adaptation deci-
sions and thus limits their applicability. Instead, separating
adaptivity from the protocol operation enables higher-layer
services to dynamically adjust the operating parameters [32].
Although a few mechanisms utilize such control knobs, they
focus either on a single metric—typically energy [9,22,28]—
or consider only local metrics, such as per-hop latency [5,31].
Real-world applications, however, often require to balance
multiple conflicting needs such as reliability, energy, and la-
tency, expressed on a network-wide scale [7, 36,38].

Contributions and road-map. To tackle the issues above,
we present pTunes, a framework for runtime adaptation
of low-power MAC protocol parameters. In pTunes, users
specify application requirements in terms of network life-
time, end-to-end reliability, and end-to-end latency—key per-
formance metrics in real-world applications [7,8,36–38]. Us-
ing information about the current network state, pTunes
automatically determines optimized MAC parameters whose
performance meets the requirements specification.

173

Base Station

Requirements
Application

Network State

MAC Parameters

pTunes

Network

Optimization
Trigger

Solver

Network-wide

Model
Performance

Figure 1: The pTunes framework.

This paper makes the following contributions:
• We introduce the pTunes framework, targeting data col-

lection systems using tree-shaped routing topologies atop
low-power MAC protocols. As shown in Fig. 1, the base
station collects reports on the network state, such as topol-
ogy and link quality information, required to evaluate the
network-wide metrics we target. The optimization trigger
decides when to carry out the parameter optimization,
based on a periodic timer or a mechanism that uses the
network-wide performance model to check if the applica-
tion requirements are violated under the current network
state. The solver determines a vector of optimized MAC
parameters, which is disseminated in the network and in-
stalled on all nodes. Sec. 2 further characterizes the multi-
objective parameter optimization problem in pTunes.
• We design a well-structured modeling framework to solve

the parameter optimization problem. Our layered model-
ing approach, described in Sec. 3, separates application-
level, protocol-independent, and protocol-dependent quan-
tities. This increases generality and flexibility, as it cleanly
determines what needs to be changed to account for a dif-
ferent MAC protocol. We apply this modeling approach to
two state-of-the-art protocols, X-MAC [5] and LPP [29],
based on their implementations in Contiki. We leverage
these models throughout the rest of the paper, ultimately
demonstrating that they are both practical and accurate.
• We present the design and implementation of an efficient

system support to meet the system-level challenges arising
in pTunes. These include, for instance, the timely collec-
tion of accurate network state with little energy overhead
and minimum disruption for the application operation. As
described in Sec. 4, unlike most approaches in the liter-
ature, we meet these requirements with a novel solution
for collecting network state and disseminating new MAC
parameters independent of other protocols running con-
currently. Our approach utilizes fast and reliable Glossy
network floods [16], allowing pTunes to collect consistent
network state snapshots, taken with microsecond accuracy
at all nodes simultaneously, with very low energy cost.
After illustrating implementation details in Sec. 5, we

evaluate pTunes in Sec. 6 using experiments with X-MAC
and LPP on a 44-node testbed. For instance, we find that
adapting their parameters using pTunes enables up to three-
fold lifetime gains over static MAC parameters optimized for
peak traffic, the latter being current practice in many real
deployments [23]. pTunes promptly reacts to changes in
traffic load and link quality, meeting application-level re-
quirements through an 80 % reduction in packet loss during
periods of controlled wireless interference. Moreover, we find
that pTunes helps the routing protocol recover from crit-
ical network changes, reducing the total number of parent
switches and settling quickly on a stable, high-quality rout-

ing topology. This reduces packet loss by 70% in a scenario
where multiple core routing nodes fail simultaneously.

We discuss design trade-offs of pTunes in Sec. 7, review
related work in Sec. 8, and conclude the paper in Sec. 9.

2. OPTIMIZATION PROBLEM
In pTunes, we simultaneously consider three key perfor-

mance metrics of real-world applications [7, 8, 36–38]: net-
work lifetime T , end-to-end reliability R, and end-to-end
latency L. The MAC parameter optimization problem thus
becomes a multi-objective optimization problem (MOP). This
involves optimizing the objective functions T (c), R(c), and
L(c), where c is a vector of MAC parameters, or MAC con-
figuration for short. There may exist not one unique optimal
solution to this MOP, but rather a set of solutions that are
optimal in the sense that no other solution is superior in all
objectives. These are known as Pareto-optimal solutions and
represent different optimal trade-offs among T , R, and L.

Given the many Pareto-optimal solutions, a natural ques-
tion is which solution best serves the application demands.
pTunes needs to make this decision at runtime in an auto-
mated fashion, without involving the user (e.g., to manually
select a solution from a set of candidates). With this require-
ment in mind, we adopt from among the many MOP solving
techniques an approach inspired by the epsilon-constraint
method [20]. This method treats all but one objective as
constraints, and thus provides a natural interface for specify-
ing typical requirements of low-power wireless systems such
as “batteries should last for at least 6 months.” Using this
approach, pTunes solves the MOP by optimizing one ob-
jective subject to constraints on the remaining objectives

Maximize/Minimize M1(c)
Subject to M2(c) ≥,≤ C1

M3(c) ≥,≤ C2

(1)

where each Mi is one among {T,R,L} and {C1, C2} are soft
requirements to be satisfied in the long run, correspond-
ing to the best-effort operation of many data collection sys-
tems [18]. By varying {C1, C2}, all Pareto-optimal solutions
can be generated. Based on concrete values for {C1, C2} set
by the user on some objectives, pTunes translates the ap-
plication requirements into a solution that optimizes the re-
maining objective. The resulting solution is Pareto-optimal
while representing the trade-off provided by the user.

As an example, in long-term structural monitoring the
major concern is typically system lifetime, but domain ex-
perts also require a certain reliability in delivering sensed
data [7]. Based on (1), maximizing network lifetime subject
to a minimum end-to-end reliability is specified as

Maximize T (c)
Subject to R(c) ≥ Rmin

(2)

In addition, we may impose a constraint on end-to-end la-
tency, L(c) ≤ Lmax, if timely data delivery is relevant.

3. MODELING FRAMEWORK
To facilitate using pTunes with different low-power MAC

protocols, we break up the modeling into three distinct lay-
ers, as shown in the model frame in Fig. 2. The upper layer
defines application-level metrics (R, L, T) as functions of
link and node-specific metrics (Rl, Ll, Tn). The middle layer
expresses these metrics in a protocol-independent manner,

174

Network State

MAC Parameters

transmission pl

Rl TnLl

Drx ,n

Dtx ,nTftx ,l

Tstx ,l

ps,l Nftx ,lProtocol-

independent
Protocol-

Application-
level

Probability of successful dependent

MAC configuration c

Topology N , M, L

Packet generation rate Fn

Network-wide Performance Model

R TL

Model Output

Figure 2: Modeling framework with inputs, out-
put, and mapping between modeling layers. Only
the protocol-dependent layer must be changed to prepare the
network-wide performance model for another MAC protocol.

and provides the entry point for the modeling of a concrete
MAC protocol by exposing six terms to the lower protocol-
dependent layer. Binding these terms to concrete protocol-
specific expressions is sufficient to adapt the network-wide
performance model in pTunes to a given MAC protocol.

Model inputs are the MAC parameters and the network
state, comprising information about routing topology, traffic
volumes, and link qualities. As a measure of the latter, we
take the probability of successful transmission pl over the
link to the parent in the routing tree. To keep our models
simple and practical, we assume the delivery of individual
packets to be independent of their size, of the delivery of any
other packet, and of the link direction they travel along. As
illustrated in Sec. 4, our runtime evaluation of pl captures
the impact of channel contention on link quality, allowing us
not to consider it explicitly in our models. Testbed experi-
ments in Sec. 6.2 show that this approach results in highly
accurate models for both X-MAC and LPP.

3.1 Application-level Metrics
In a typical data collection scenario with static nodes, a

tree-shaped routing topology provides a unique path from
every sensor node to a sink node. These paths are generally
time-varying, as the routing protocol adapts them according
to link quality estimates among other things [18, 33]. In
the following, we use N to denote the set of all nodes in
the network excluding the sink, and M⊆ N to denote the
set of source nodes generating packets. We also indicate
with L the set of communication links that form the current
routing tree. The path Pn ⊆ L originating at node n ∈ M
includes all intermediate links that connect node n to the
sink. Table 1 lists these and other modeling terms we use to
denote network state and protocol-dependent quantities.

End-to-end reliability and latency. The reliability RPn

of path Pn is the expected fraction of packets delivered from
node n ∈M to the sink along Pn. Thus, RPn is the product
of per-hop reliabilities Rl, l ∈ Pn. We define the end-to-end
reliability R as the average reliability of all paths Pn.

R =
1

|M|
∑
n∈M

RPn =
1

|M|
∑
n∈M

(∏
l∈Pn

Rl

)
(3)

Likewise, the latency LPn of path Pn is the expected time
between the first transmission of a packet at node n ∈ M
and its reception at the sink. Thus, LPn is the sum of per-
hop latencies Ll, l ∈ Pn. Similar to (3), we define the end-
to-end latency L for successfully delivered packets as the
average latency of all paths Pn, and omit the formula.

Term Description
N Set of all nodes in the network excluding the sink
M Set of source nodes generating packets
L Set of all links forming the routing tree
Fn Packet generation rate of node n
pl Probability of successful transmission over link l
ps,l Probability of successful unicast transm. over link l
Nftx ,l No. of failed unicast transm. before success over link l
Tftx ,l Time for a failed unicast transmission over link l
Tstx ,l Time for a successful unicast transmission over link l
Drx ,n Fraction of time radio is in receive mode at node n
Dtx ,n Fraction of time radio is in transmit mode at node n

Table 1: Glossary of modeling terms used to denote
network state and protocol-dependent quantities.

We define R and L as averages of all source-sink paths
since the global, long-term performance is of ultimate inter-
est for most data collection systems [36–38]. Local, short-
term deviations from the requirements are usually tolerated,
provided they are compensated in the long run. In other
scenarios (e.g., industrial settings), it might be more appro-
priate to define R and L as the minimum reliability and the
maximum latency among all source-sink paths, which would
only require modifying the two definitions above.

Network lifetime. Similar to prior work [27], we define the
network lifetime T as the expected shortest node lifetime Tn,
n ∈ N . We assume the sink has infinite energy supply.

T = min
n∈N

(Tn) (4)

This choice is motivated by the fact that a single node failure
can lead to network partition and service interruption. It is
also possible to express other notions of network lifetime in
pTunes, such as the time until some fraction of nodes fails,
again requiring only to modify the definition in (4).

3.2 Protocol-independent Modeling
The section above expressed the application-level metrics

R, L, and T as functions of per-hop reliability Rl, per-hop
latency Ll, and node lifetime Tn (see Fig. 2). We now define
the latter three in a protocol-independent manner, which in-
creases flexibility and generality by isolating protocol-depen-
dent quantities. We omit a few explicit expressions and refer
to an extended report [42] where applicable.

Per-hop reliability and latency. Several factors influ-
ence these metrics: (i) the MAC operation when transmit-
ting packets, (ii) packet queuing throughout the network
stack due to insufficient bandwidth, and (iii) application-
level buffering (e.g., to perform in-network processing). The
MAC parameters control (i) and may avoid the occurrence
of (ii), provided a MAC configuration exists that provides
sufficient bandwidth. Application-specific in-network func-
tionality akin to (iii) is out of the scope of this work.

We present next expressions for per-hop reliability and
latency due to the MAC operation, corresponding to (i).
Additionally, pTunes includes models to detect situations
akin to (ii) [42]. In fact, as we show in Sec. 6.2, pTunes au-
tomatically adjusts the MAC parameters to provide higher
bandwidth against increased traffic, thus avoiding the oc-
currence of local packet queuing until the network capacity
attainable in our experimental setting is fully exhausted.

We define the per-hop reliability Rl of link l ∈ L, which
connects node n ∈ N to its parent m in the routing tree, as

175

the probability that n successfully transmits a packet to m.

Rl = 1− (1− ps,l)N+1 (5)

Here, ps,l represents the MAC-dependent probability that a
single unicast transmission over link l succeeds, and N is the
maximum number of retransmissions per packet, modeling
automatic repeat request (ARQ) mechanisms used by many
low-power MAC protocols to improve reliability.

Furthermore, we define the per-hop latency Ll of link l as
the time for node n to deliver a message to its parent m.

Ll = Nftx ,l · Tftx ,l + Tstx ,l (6)

Tftx ,l and Tstx ,l are the MAC-dependent times spent for each
failed and the final successful transmission. The expected
number of failed transmissions Nftx ,l depends on ps,l and N ,
and the retransmission policy of the MAC protocol [42].

Node lifetime. Sensor nodes consume energy by commu-
nicating, sensing, processing, and storing data. Adapting
the MAC parameters has no significant impact on the latter
three, but affects energy expenditures on communication to
a large extent, as the radio is typically the major energy
consumer. Given a battery capacity Q, we define the node
lifetime Tn of node n ∈ N as

Tn = Q/(Dtx ,n · Itx +Drx ,n · Irx +Didle,n · Iidle) (7)

where Itx , Irx , and Ii are the current draws of the radio in
transmit, receive, and idle mode. Tn is thus the expected
node lifetime based on the fractions of time in each mode
Dtx ,n, Drx ,n, and Didle,n = 1−Dtx ,n−Drx ,n, which depend
on the MAC protocol and the traffic volume at node n.

The traffic volume is the rate at which nodes send and
receive packets. A node n ∈ N generates packets at rate Fn

and receives packets from its children Cn ⊆ N in the rout-
ing tree, if any. The rate of packet reception depends on
each child’s packet transmission rate Ftx ,c and the individ-
ual per-hop reliabilities Rlc of links lc, c ∈ Cn, connecting
each child c with n. Thus, node n transmits packets at rate

Ftx ,n = (Nrtx ,l + 1) ·

(
Fn +

∑
c∈Cn

Ftx ,c ·Rlc

)
(8)

Nrtx ,l is the expected number of retransmissions per packet
over link l, which is a function of N and the MAC-dependent
probability that a retransmission occurs [42].

We demonstrate next the modeling of a concrete MAC
protocol. This requires to find expressions for six protocol-
specific terms, as shown in Fig. 2 and described in Table 1.

3.3 Protocol-specific Modeling
We use two state-of-the-art MAC protocols to exemplify

the protocol-specific modeling. X-MAC [5] is representative
of many sender-initiated MAC protocols based on low-power
listening (LPL) [32] that proved viable in real-world deploy-
ments [23]. Recent work focuses on receiver-initiated MAC
protocols such as low-power probing (LPP) [29]. In the fol-
lowing, we refer to implementations of X-MAC and LPP in
Contiki 2.3, which we also use in our experiments in Sec. 6.

3.3.1 Sender-initiated: X-MAC
Fig. 3 shows a successful unicast transmission in X-MAC.

Nodes wake up periodically for Ton to poll the channel 〈1〉,
where Toff is the time between two channel polls. To send
a packet, a node transmits a sequence of strobes 〈2〉, short

Tstr Tsl Td

tTsaToff Tda

Tx mode

Rx mode

Ton

〈1〉

〈2〉

〈3〉

〈6〉

〈4〉 〈5〉 〈7〉

t

s-ack d-ackstrobe data

Receiver

Sender

Figure 3: Unicast transmission in X-MAC.

packets containing the identifier of the receiver. Strobing
continues for a period sufficient to make at least one strobe
overlap with a receiver wake-up 〈3〉. The receiver replies
with a strobe acknowledgment (s-ack) 〈4〉 and keeps the radio
on awaiting the transmission of the data packet 〈5〉. The
sender transmits the data packet upon receiving the s-ack 〈6〉
and waits for the data acknowledgment (d-ack) 〈7〉 from the
receiver. Afterward, both nodes turn off their radios.

Failed s-ack, d-ack, and data packet transmissions are
handled by timeouts. When a timeout occurs, the sender
backs off for a random period and retries beginning with the
strobing phase, for at most N times. Broadcasts proceed
similarly to unicast transmissions, but the strobing phase
lasts for Tm = 2 · Ton + Toff to make a strobe overlap with
the wake-up of all neighboring nodes. Nodes receiving a
broadcast strobe keep their radio on until they receive the
data packet at the end of the sender’s strobing phase.

Several variables are adjustable in the X-MAC implemen-
tation we consider. However, three specific parameters affect
its performance to a major extent.

c = [Ton , Toff , N] (9)

We let pTunes adapt these parameters at runtime, using
the X-MAC-specific models presented next.

Per-hop reliability. We determine ps,l in (5), the prob-
ability that a single unicast from node n to its parent m
succeeds. This is the case if m hears a strobe (with prob-
ability pstr,l), the s-ack reaches n, and m receives the data
packet. Each of the latter two succeeds with probability pl,
collected at runtime as part of the network state (see Sec. 4).

ps,l = pstr,l · p2l (10)

The probability of receiving at least one strobe is

pstr,l = 1− (1− pl)(Ton−Tstr)/Tit (11)

where Tit = Tstr + Tsl is the duration of a strobe iteration
at the sender, which includes the length of a strobe trans-
mission Tstr and listening Tsl for an s-ack.

Per-hop latency. We determine Tftx ,l and Tstx ,l in (6), the
times spent for failed and successful transmissions. Tftx ,l

depends on whether node n receives an s-ack. If so, n stops
strobing, sends the data packet, and times out after Tout .
Otherwise, n sends strobes for Tm . In either case, node n
backs off for Tb before retransmitting.

Tftx ,l = (NitTit + Td + Tout)pstr,l + Tm(1− pstr,l) + Tb (12)

Here, Nit = (Ton + Toff)/(2 · Tit) is the average number of
strobe iterations before m possibly replies with an s-ack.

The time for a successful transmission Tstx ,l includes the
time to wait for the s-ack and to send the data packet.

Tstx ,l = Nit · Tit + Td (13)

176

Tl

t

Tpr TdaToff

Td

〈1〉

〈4〉〈3〉 〈6〉

〈5〉 〈7〉

〈2〉

probe d-ackdata

t

Tx mode

Rx mode
Sender

Receiver

Figure 4: Unicast transmission in LPP.

Node lifetime. We determine Dtx ,n and Drx ,n in (7), the
fractions of time spent by the radio in transmit and receive
mode. Both quantities depend on the rate Farx ,lc at which
node n attempts to receive a packet from child c over link lc

Farx ,lc = (Nrtx ,lc + 1) · Ftx ,c · pstr,lc (14)

where Ftx ,c and pstr,lc are given by (8) and (11).
We first consider Dtx ,n. Node n transmits during packet

receptions from child c (to send s-ack and d-ack) and during
packet transmissions to its parent m (to send strobes and
data packet). We define Trxt,lc and Ttxt,l as the average times
spent by the radio in transmission mode during receptions
over link lc and transmissions over link l [42].

Dtx ,n = Ftx ,n · Ttxt,l +
∑
c∈Cn

Farx ,lc · Trxt,lc (15)

Next we consider Drx ,n. Node n is in receive mode during
packet transmissions to its parent m (to receive s-ack and
d-ack) and packet receptions from child c (to receive strobe
and data packet). Let Ttxr,l and Trxr,lc be the average times
spent by the radio in reception mode during transmissions
over link l and receptions over link lc [42]. The fraction of
time in receive mode for actual communication is

Drxc,n = Ftx ,n · Ttxr,l +
∑
c∈Cn

Farx ,lc · Trxr,lc (16)

In addition, n is in receive mode for Fcc = Ton/(Ton + Toff)
during channel checks, which leads to

Drx ,n = Drxc,n + (1−Drxc,n) · Fcc (17)

3.3.2 Receiver-initiated: LPP
Fig. 4 shows a successful unicast transmission in LPP.

Nodes periodically turn on their radio for Tl and transmit
a short probe 〈1〉 containing their own identifier. To send a
packet, a node turns on its radio 〈2〉 and listens for a probe
from the intended receiver 〈3〉, for at most Ton . Then the
sender transmits the data packet 〈4〉, waits for the d-ack
from the receiver 〈5〉, and goes back to sleep 〈6〉. After
sending the d-ack, the receiver keeps the radio on until a
timeout signals the end of the active phase 〈7〉. Between
two active phases nodes sleep for Toff . To send a broadcast,
the sender keeps its radio on for Tm = 2 ·Tl +Toff to receive
a probe from every neighbor, immediately replying to each
received probe with the data packet. We let pTunes adapt
the same set of LPP parameters c in (9) as for X-MAC (note
that Ton has now a different meaning as explained above).

Per-hop reliability. A single LPP unicast from node n to
its parent m succeeds if n receives a probe from m (with
probability ppr,l) and then successfully transmits the data
packet (with probability pl).

ps,l = ppr,l · pl (18)

The probability that n receives a probe is given by

ppr,l = 1− (1− pl)k (19)

where k = (Ton − Tpr)/T is the number of possible probe
receptions while node n listens for at most Ton . The term
T = Tl + Toff + Trm/2 denotes the LPP duty cycle period,
which is the sum of radio on-time, radio off-time, and a small
random quantity with uniform distribution {0, . . . , Trm} to
scatter probe transmissions.

Per-hop latency. We determine the time for a failed trans-
mission. If node n receives a probe after waiting for Tpw,l, it
sends the data packet and times out after Tout . Otherwise, n
listens for Ton . Node n retransmits after backing off for Tb .

Tftx ,l = (Tpw,l + Td + Tout)ppr,l + Ton (1− ppr,l) + Tb (20)

On average, node n receives a probe from its parent m after

Tpw,l = Tpr +

bkc+1∑
i=1

pi · Ti (21)

where pi is the probability that n receives the i-th probe,
and Ti is the expected time to await the i-th probe [42].

The time for a successful transmission includes the time
to wait for a probe and to send the data packet.

Tstx ,l = Tpw,l + Td (22)

Node lifetime. We determine the fractions of time in
transmit and receive mode. Both depend on the rate Farx ,lc

at which node n receives packets from child c over link lc

Farx ,lc = (Nrtx ,lc + 1) · Ftx ,c · ps,lc (23)

where Ftx ,c and ps,lc are given by (8) and (18).
Node n transmits a probe every duty cycle period T and

sends d-acks to child c with frequency Farx ,lc . Further, n is
in transmit mode for Ttxt,l to send packets to m [42].

Dtx ,n = Tpr/T + Tda

∑
c∈Cn

Farx ,lc + Ftx ,n · Ttxt,l (24)

Node n is in receive mode when the radio is turned on but
does not transmit probes or d-acks. Additionally, node n is
in receive mode for Ttxr,l during packet transmissions [42].

Drx ,n = (Tl − Tpr)/T − Tda

∑
c∈Cn

Farx ,lc + Ftx ,n · Ttxr,l (25)

4. SYSTEM SUPPORT
pTunes must tackle several system-level challenges to ob-

tain an efficient runtime operation. This section highlights
these challenges and presents the system support we design
to meet them. This includes a novel approach for collecting
network state information and disseminating new MAC pa-
rameters, and the techniques and tools we use to solve the
parameter optimization problem efficiently.

4.1 Challenges
Minimum disruption. pTunes must reduce the amount
of disruption perceived by the application, particularly with
respect to application data traffic, to avoid influencing its be-
havior beyond the adaptation of MAC parameters. This is in
itself a major challenge in low-power wireless networks [10].

Timeliness. Timely collection of accurate network state,
computation of optimized MAC parameters, and their reli-
able and rapid dissemination are fundamental to pTunes.

177

Only this way pTunes can provide MAC operating parame-
ters that do match the current network state. However, it is
difficult to perform the above operations in a timely manner,
especially when involving resource-constrained devices.

Consistency. pTunes requires consistent snapshots of net-
work state, possibly captured by all nodes at the same time.
Otherwise, optimizing MAC parameters based on informa-
tion different from the actual network conditions may even
negatively affect the system performance. Coordinating dis-
tributed sensor nodes to achieve consistency is challenging,
given their bandwidth and energy limitations.

Energy efficiency. pTunes must meet all the previous
challenges while introducing only a limited, possibly pre-
dictable, energy overhead at the sensor nodes. To be viable,
the overhead of pTunes must not outweigh the gains ob-
tained from adapting the MAC parameters.

4.2 Collection and Dissemination
pTunes uses Glossy network floods [16] to collect net-

work state information and disseminate MAC parameters.
In particular, pTunes exploits Glossy’s time synchroniza-
tion service to schedule and execute both operations within
short time frames, repeated every collection period Tc . Ev-
ery frame starts with a Glossy flood initiated by the sink,
which serves to time-synchronize the nodes and disseminate
new MAC parameters. Following the initial flood by the
sink, each of the other nodes initiates a flood in turn within
exclusive slots, reporting network state for the subsequent
trigger decision and parameter optimization.

The collection period Tc can range from a few tens of
seconds to several minutes depending on network dynamics
and application needs, and represents a trade-off between
the energy overhead of pTunes and its responsiveness to
changes in the network: a shorter Tc permits more frequent
parameter updates but increases the energy consumption of
the nodes. The efficiency of Glossy allows us to limit the
length of the periodic collection and dissemination frames,
thus keeping the energy overhead to a minimum. For in-
stance, we measure on a 44-node testbed an average duration
of 5.2 ms for a single flood, and an average radio duty cycle
of 0.35 % due to pTunes collection and dissemination for
Tc = 1 min, which reduces to about 0.07 % for Tc = 5 min.
Given that state-of-the-art low-power MAC protocols ex-
hibit duty cycles of 3–7 % in testbed settings comparable to
ours [13,18], the energy overhead of pTunes is marginal.

An alternative to our approach may be to piggyback net-
work state on application packets and to use a variant of
Trickle [25] to disseminate MAC parameters. We employed
this approach at an early stage of this work, but found it
inadequate for our purposes. For instance, running Trickle
concurrently with data collection increases contention, espe-
cially during parameter updates, which degrades application
data yield [10]. Moreover, piggybacking on data packets in-
duces a dependency on the rate and reliability of applica-
tion traffic. In low-rate applications, it may take a very long
time until network state from all nodes becomes available
for optimization. Packets may also be generated at different
times and experience varying end-to-end delays (e.g., due to
contention or routing loops), so the collected network state
is likely to be out-of-date and inconsistent. Our approach
avoids these problems by temporally decoupling collection
and dissemination from application tasks, and by leveraging

consistent network state snapshots taken with microsecond
accuracy at all nodes independently of application traffic.

In particular, pTunes collects three pieces of network
state from each node: (i) the node id and the id of the
routing parent, to allow pTunes to learn about the current
routing tree (N , M, L); (ii) the number of packets gener-
ated per second Fn, allowing pTunes to determine the traffic
volumes; and (iii) the ratio Hs,l/Ht,l of successful and total
number of link-layer handshakes over link l to the routing
parent. There are two handshakes in X-MAC, strobe/s-ack
and data/d-ack; LPP features only the latter (see Figs. 3
and 4). To account for parent switches and link dynamics,
a node maintains counters Hs,l and Ht,l in a way similar to
an exponentially weighted moving average (EWMA). Based
on their ratio received from each node and by taking the
square root, pTunes obtains estimates of the probability of
successful transmission pl of all links in the current routing
tree. The collected information totals 6 bytes per node.

4.3 Optimization Tools
Applying the optimization problem in (1) to our X-MAC

and LPP models in Sec. 3 leads to a mixed-integer nonlinear
program (MINLP) with non-convex objective and constraint
functions. To solve it efficiently, we use the ECLiPSe con-
straint programming system [1]. Its high-level programming
paradigm allows for a succinct modeling of our optimization
problem. We use modules to separate protocol-independent
from protocol-dependent code; the latter amounts to about
100 lines for each X-MAC and LPP.

We use the branch-and-bound algorithm coupled with a
complete search routine, both provided by the interval con-
straint (IC) solver of ECLiPSe. The running time of the op-
timization depends to a large extent on the size of the search
space. To reduce it, we exploit the fact that MAC protocols
are commonly implemented using hardware timers. The res-
olution of these timers determines the maximum required
granularity of the MAC timing parameters. We therefore
discretize the domains of Ton and Toff considered for adap-
tation, letting ECLiPSe determine values with millisecond
granularity. Based on the literature and our own experience,
we set the upper bounds of N and Toff to 10 retransmissions
and 1 s; Ton is chosen such that a node listens long enough
to overlap with exactly one receiver wake-up in LPP, and
with at least one but not more than three strobe transmis-
sions in X-MAC. For these settings and in the scenarios we
tested, representative of a large fraction of deployed sensor
networks, ECLiPSe finds optimized MAC parameters within
a few tens of seconds on a standard laptop computer. Com-
pared with our current approach, which leverages general-
purpose algorithms and off-the-shelf implementations, dedi-
cated solution techniques and implementations are likely to
improve significantly on this figure.

5. IMPLEMENTATION DETAILS
On the sensor nodes, we use Contiki 2.3. We extended the

existing X-MAC implementation with link-layer retransmis-
sions and an interface to adjust the parameters in (9) at
runtime. Since the existing LPP implementation suffered
from performance problems that could bias our results, we
re-implemented LPP within the Contiki stack and extended
it in the same way as X-MAC. For data collection we use
Contiki Collect, which maintains a tree-based routing topol-
ogy using expected transmissions (ETX) as cost metric.

178

The pTunes control application running on the base sta-
tion is implemented in Java. It retrieves collected network
state from the sink, starts the optimization process depend-
ing on the trigger decision, and transfers new MAC param-
eters back to the sink for dissemination.

An important decision for pTunes is when to trigger the
parameter optimization. In general, we want to optimize as
often as possible to make the MAC parameters closely match
the network state. At the same time, we want to minimize
the energy overhead for collection and dissemination, and
need to consider that running the solver takes time. There-
fore, pTunes provides three basic optimization triggers to
decide when to start the solver. Nevertheless, pTunes users
can implement their own application-specific triggers using
a set of basic interfaces we provide.

Among the triggers we provide, TimedTrigger optimizes
periodically, where the period is typically a multiple of the
collection period Tc . In this way, a TimedTrigger may launch
the solver immediately after the collection of network state,
and pTunes floods the new MAC parameters at the next dis-
semination. Nevertheless, depending on application-specific
requirements and performance goals, users may also combine
a TimedTrigger with one of the following two triggers.

A ConstraintTrigger uses the model to estimate the cur-
rent network performance based on the collected network
state, and launches the solver only if any of the constraints
in (1) is violated. A ConstraintTrigger may be implemented
to tolerate short-term violations of a constraint, or a vio-
lation within some threshold around the constraint. Alter-
natively, a NetworkStateTrigger can infer directly from the
network state if the MAC parameters should be updated.
For example, a NetworkStateTrigger may fire if it detects a
significant increase in traffic volume, thus starting the solver
to find MAC parameters that provide higher bandwidth.

6. EXPERIMENTAL RESULTS
This section uses measurements from a 44-node testbed to

study both the effectiveness of pTunes and the interactions
of MAC parameter adaptation with the routing protocol.
Our experiments reveal the following key findings:
• Validation against measurements shows that our X-MAC

and LPP models are highly accurate.
• pTunes automatically determines MAC parameters that

provide higher bandwidth when the traffic load increases.
This avoids the occurrence of queuing until the network
capacity attainable in our setting is fully exhausted.
• In the scenarios we tested, pTunes achieves up to three-

fold lifetime gains over static MAC parameters optimized
for peak traffic volumes.
• In a scenario where the packet rates vary across nodes

and fluctuate over time, pTunes satisfies given end-to-
end latency and reliability requirements at peak traffic
while extending the network lifetime at relaxed traffic.
• During phases of controlled wireless interference, pTunes

reduces packet loss by 80 % compared to static MAC pa-
rameters optimized for the applied traffic without interfer-
ence, satisfying given end-to-end reliability requirements.
• pTunes helps the routing protocol recover from critical

network changes, reducing the number of parent switches
and settling quickly on a stable routing topology. This
reduces packet loss by 70% in a scenario where multiple
core routing nodes fail simultaneously.

23

22 21

20

171819

14
13

15
12

11

4
3

27
26
25
24

28

32
31

34

33 37
36

35
38

39

40

41 43

42

44

10
8
792

1
Sink

Interferer

5 6

16
29

30

Figure 5: Testbed layout. Nodes 31 and 32 are located
outside on the rooftop; the interferer is only used in Sec. 6.6.

6.1 Setting and Metrics
Testbed. Our testbed spans one floor in an ETH build-
ing [3, 14]. Fig. 5 shows the positions of the 44 Tmote Sky
nodes distributed in several offices, passages, and storerooms;
two nodes are located outside on the rooftop. The sink is
connected to a laptop computer that acts as the base station.
Paths between nodes and sink are between 1 to 5 hops in
length. Nodes transmit at the highest power setting, using
channel 26 to limit the interference with co-located WiFi.

Metrics. Our evaluation uses the metrics defined in Sec. 3.1.
To measure network lifetime, we use Contiki’s energy pro-
filer to obtain the fractions of time the radio is in receive,
transmit, and idle mode. Then, we compute projected node
lifetimes using (7) and current draws from the CC2420 data
sheet, assuming batteries constantly supply 2000 mAh at
3 V. When pTunes is enabled, the measured network life-
time includes the energy overhead of pTunes collection and
dissemination, performed every Tc = 1 min in all experi-
ments. We measure end-to-end reliability based on sequence
numbers of data packets received at the sink. To measure
end-to-end latency, we exploit Glossy’s time synchronization
service and timestamp data packets at the source.

Requirements. We consider typical requirements of real-
world data collection applications: maximize network life-
time while providing a certain end-to-end reliability [7, 37].
We also enforce a constraint on end-to-end latency, account-
ing for applications that require timely delivery [8].

Maximize T (c)
Subject to R(c) ≥ 95 % and L(c) ≤ 1 s

(26)

pTunes solves (26) at runtime to determine optimized MAC
parameters. If there exists no solution because either con-
straint in (26) is unsatisfiable (e.g., due to extremely low link
qualities), pTunes maximizes R without constraints. This
policy serves to exemplify the capabilities of pTunes; other
application-specific policies can be implemented within the
pTunes optimization triggers.

Methodology. We compare pTunes with several static
MAC configurations optimized for a variety of different work-
loads and application requirements, as listed in Table 2. We
found these MAC configurations using pTunes and exten-
sive experiments on our testbed. Existing MAC adaptation
approaches, on the other hand, consider only per-link and
per-node metrics [5, 31] or focus solely on energy [9, 22, 28],
rendering the comparison against pTunes purposeless.

179

Name
Configuration Performance Trade-Off

[Ton , Toff , N] (R,L, T)
X

- M
A

C

S1 [16 ms, 100 ms, 8] (high, low, low)
S2 [11 ms, 250 ms, 5] (medium, medium, medium)
S3 [6 ms, 500 ms, 2] (low, high, high)
S4 [6 ms, 100 ms, 3] optimized for IPI = 30 s
S5 [11 ms, 350 ms, 2] optimized for IPI = 300 s
S6 [16 ms, 20 ms, 10] (very high, very low, very low)

L
P

P S7 [116 ms, 100 ms, 8] (high, low, low)
S8 [266 ms, 250 ms, 5] (medium, medium, medium)
S9 [516 ms, 500 ms, 2] (low, high, high)

Table 2: Static MAC configurations optimized for
different performance trade-offs and workloads.

6.2 Model Validation
Before evaluating pTunes under traffic fluctuations, wire-

less interference, and node failures, we validate our models
and assumptions from Sec. 3 on real nodes.

Scenario. We run experiments in which we let pTunes pe-
riodically estimate the application-level metrics based on the
collected network state, and compare the model estimation
e(Mi) against the actual measurement m(Mi) by computing
the absolute model error δ(Mi) = m(Mi) − e(Mi) for each
metric Mi ∈ {R,L, T}. Using δ we assess the model accu-
racy depending on MAC configuration and network state.

To evaluate the dependency on the former, we use three
static MAC configurations for each protocol (S1–S3 and S7–
S9 in Table 2). We also perform one run with pTunes en-
abled, using a TimedTrigger to adapt the MAC parameters
every 10 min. To evaluate the dependency on network state,
in each run we progressively decrease the inter-packet inter-
val (IPI) at all nodes, from 300 s to 180, 60, 30, 20, 10, 5, and
2 s. In this way, we also validate our models against differ-
ent probabilities of successful transmission pl: a shorter IPI
increases contention and thus lowers the link success rates.
We conduct repeatable experiments by enforcing the same
static routing topology across all runs.

Results. Table 3 lists average model errors in R, L, and T
for X-MAC and LPP. We see that both models are highly
accurate in all metrics. For example, with pTunes enabled,
our LPP models estimate R, L, and T with average absolute
errors of 0.41 %, 0.08 s, and -0.73 days. Note that node dwell
times, which are included in the measurements but ignored
in the model of L, introduce only a negligible error since
pTunes aims at avoiding packet queuing, as explained next.

6.3 Impact on Bandwidth and Queuing
Based on the experiments above, we study also the impact

of the MAC configuration on bandwidth and local packet
queuing. To this end, we analyze queuing statistics collected
from the nodes and the goodput measured at the sink (ap-
plication packets carry 69 bytes of data).

Results. Fig. 6 plots total queue overflows and goodput
for X-MAC as the IPI decreases. We can see from Fig. 6(a)
that pTunes avoids queue overflows up to IPI = 2 s, whereas
S1–S3 fail to prevent overflows already at longer IPIs. The
increasing traffic requires more and more bandwidth, lead-
ing to local packet queuing and ultimately to queue over-
flows when the bandwidth becomes insufficient. Unlike S1–
S3, pTunes tolerates such increasing bandwidth demands
by automatically adjusting the MAC parameters to provide
higher bandwidth. By doing so, pTunes avoids the occur-
rence of queuing until even the MAC parameters providing

X-MAC LPP
S1 S2 S3 pTunes S7 S8 S9 pTunes

δ(R) [%] -0.68 -0.18 0.09 0.24 4.77 -0.22 0.49 0.41
δ(L) [s] 0.37 0.04 0.18 0.05 -0.12 0.07 0.04 0.08
δ(T) [d] 0.25 0.64 0.65 -0.50 0.37 -0.91 0.96 -0.73

Table 3: Average absolute errors of the network-
wide performance model in testbed experiments,
with pTunes and six static MAC configurations. Our
X-MAC and LPP models are highly accurate in all metrics.

0 0.5 1 1.5 2
10

0

10
1

10
2

10
3

10
4

10
5

20 s 10 s 5 s 2 s

Time [h]

T
o

ta
l
q

u
e

u
e

 o
v
e

rf
lo

w
s

PTUNES

S1

S2

S3

(a) Queue overflows.

0 0.5 1 1.5 2
0

2

4

6
20 s 10 s 5 s 2 s

Time [h]

G
o

o
d

p
u

t
[k

b
p

s
]

PTUNES

S1

S2

S3

(b) Goodput.

Figure 6: Queue overflows across all nodes and good-
put at the sink with X-MAC as the traffic increases,
using pTunes and three static MAC configurations.
pTunes triples the goodput and avoids the occurrence of local
packet queuing until the network capacity is fully exhausted.

the highest bandwidth (S6 in Table 2), based on the settings
and X-MAC implementation we use, are insufficient.

This is also confirmed by looking at the goodput, shown
in Fig. 6(b). First, we note that pTunes achieves a more
than three-fold increase in goodput over S1–S3 at IPI = 5 s.
When queuing occurs also with pTunes at IPI = 2 s, good-
put drops from 4.6 kbps to 3.1 kbps because increased con-
tention leads to more transmission failures and queue over-
flows. This confirms that the network capacity is fully ex-
hausted at this point. To keep satisfying the requirements in
such situations, an application needs to employ higher-layer
mechanisms, such as a rate-controlled transport layer that
reduces the transmission rate in response to congestion [30].

6.4 Lifetime Gain
In real deployments, it is common practice to overpro-

vision the MAC parameters based on the highest expected
traffic load [23]. The goal is to provide sufficient bandwidth
during periods of peak traffic, for example, when an impor-
tant event causes nodes to temporarily generate more sensor
data. However, because such traffic peaks are usually rare
and short compared to the total system lifetime, overprovi-
sioning results in a significant waste of resources [24]. We
now analyze how pTunes helps alleviate this problem.

Scenario. We conduct two experiments in which nodes
gradually increase the IPI from 10 s to 20 s, 30 s, 60 s, 3 min,
5 min, and 20 min. In the first experiment, we use pTunes
exactly once at the very beginning to determine MAC pa-
rameters optimized for the initial IPI of 10 s, and then keep
this overprovisioned MAC configuration until the end of the
experiment. In the second experiment, we let pTunes adapt
the MAC parameters, using a TimedTrigger with a period
of 10 min; pTunes maximizes T subject to R ≥ 95 % and no
constraint on L. We enforce the same static routing topology
in both experiments to factor out effects related to routing
topology changes, an aspect we consider in Secs. 6.5 and 6.7.
We then compute the lifetime gain as the ratio between the
measured network lifetime with and without pTunes.

Results. Table 4 lists lifetime gains for X-MAC and LPP,
including the energy overhead of pTunes collection and dis-

180

Fraction of time X-MAC LPP
at peak traffic Baseline IPI [min] Baseline IPI [min]
(IPI = 10 s) 1 3 5 20 1 3 5 20

75% 1.05 1.17 1.24 1.43 1.14 1.27 1.35 1.57
50% 1.14 1.36 1.50 1.88 1.24 1.50 1.65 2.08
25% 1.21 1.55 1.75 2.33 1.33 1.72 1.95 2.60
0% 1.29 1.74 2.01 2.77 1.42 1.94 2.24 3.11

Table 4: Lifetime gains of pTunes over static MAC
parameters optimized for peak traffic depending on
baseline traffic and fraction of time at peak traffic.
pTunes achieves up to three-fold lifetime gains in settings
with extremely rare traffic peaks and low baseline traffic.

semination phases. We see that the lifetime gain achieved by
pTunes increases as (i) the system spends less time at peak
traffic (75–0 % from top to bottom), and (ii) the difference
between the shortest, overprovisioned IPI of 10 s and the
longest, baseline IPI increases (1–20 min from left to right).
For instance, for a baseline traffic at IPI = 20 min and ex-
tremely rare traffic peaks at IPI = 10 s, the lifetime gain is
close to 2.77 for X-MAC and close to 3.11 for LPP compared
to static MAC parameters overprovisioned for peak traffic.

The above experimental results reveal that pTunes en-
ables significant lifetime gains, not least due to its energy-
efficient system support (see Sec. 4). The following sections
examine how pTunes trades possible gains in network life-
time for satisfying end-to-end reliability and latency require-
ments under varying network conditions.

6.5 Adaptation to Traffic Fluctuations
Traffic fluctuations are characteristic of many sensor net-

work applications, where the data rate often depends on
time-varying external stimuli. The following experiments
investigate the benefits pTunes brings to these applications.

Scenario. All nodes send packets with IPI = 5 min for 5 h.
However, during two periods of 30 min each, two clusters of
10 and 5 spatially close nodes (14–23 and 40–44 in Fig. 5)
send packets with IPI = 10 s, emulating the detection of an
important event that deserves reporting more sensor data.

We run three experiments with X-MAC and dynamic rout-
ing using Contiki Collect. In the first two experiments, we
use static MAC configurations S1 and S5: S1 provides high
bandwidth when nodes send more packets, and S5 extends
network lifetime at normal traffic (see Table 2). In the third
experiment, we let pTunes adapt the MAC parameters ac-
cording to (26). We couple a TimedTrigger with a Network-
StateTrigger as follows. When nodes transmit at low rate,
the TimedTrigger starts the solver every 10 min. As soon as
the NetworkStateTrigger detects the beginning of a traffic
peak, it starts the solver immediately and adapts the period
of the TimedTrigger to 5 min, setting it back to 10 min at
the end of a peak. In this way, pTunes reacts promptly
to traffic changes, and adapts more frequently during traffic
peaks when nodes report important sensor data.

Results. Fig. 7 plots performance over time in the three
experiments. We see that S5 approximately satisfies the re-
liability and latency requirements when nodes send at low
rate, achieving also a high projected network lifetime. How-
ever, as soon as the two node clusters start transmitting at
high rate, reliability drops significantly below 75 %. This is
because S5 does not provide sufficient bandwidth, leading to
high contention and ultimately to packet loss. Similarly, S5
violates the latency requirement during traffic peaks, mak-
ing L exceed 2 s due to queuing and retransmission delays.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
60

70

80

90

100

Traffic
peak

Traffic
peak

Time [h]

E
n

d
−

to
−

e
n

d
 r

e
lia

b
ili

ty
 R

 [
%

]

PTUNES

S1

S5

(a) End-to-end reliability, R ≥ 95 %.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3
Traffic
peak

Traffic
peak

Time [h]

E
n

d
−

to
−

e
n

d
 l
a

te
n

c
y
 L

 [
s
]

PTUNES

S1

S5

(b) End-to-end latency, L ≤ 1 s.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

60

80

100

120

140
Traffic
peak

Traffic
peak

Time [h]

P
ro

je
c
te

d
 n

e
tw

o
rk

 l
if
e

ti
m

e
 T

 [
d

]

PTUNES

S1

S5

(c) Projected network lifetime.
Figure 7: Performance of pTunes against two static
MAC configurations as the traffic volume changes.
pTunes satisfies the end-to-end requirements at high traffic
while extending network lifetime at low traffic. Static MAC
parameters optimized for a specific traffic load fail to meet
the application requirements as the traffic conditions change.

S1, instead, provides sufficient bandwidth and satisfies the
end-to-end requirements. However, network lifetime is al-
ways below 30 days: the higher bandwidth comes at a huge
energy cost, paid also when a lower bandwidth would suffice.

By contrast, pTunes satisfies the end-to-end requirements
under high and low rate. Moreover, when nodes transmit
at low rate, the projected network lifetime increases up to
90 days. By adapting the MAC parameters, pTunes always
provides a bandwidth sufficient to satisfy the end-to-end re-
quirements without sacrificing lifetime unnecessarily: at the
beginning of a traffic peak, pTunes reduces Toff from about
300 ms to 120 ms (and slightly adapts Ton and N), which ex-
plains why reliability stays up and latency is halved. Static
MAC configurations lack this flexibility; they can only be
optimized for a specific workload and thus fail to trade the
performance metrics as the traffic conditions change.

6.6 Adaptation to Changes in Link Quality
Unpredictable changes in link quality are characteristic of

low-power wireless [41]. Adapting the MAC parameters to
these changes is important but non-trivial, as we show next.

Scenario. We use the technique by Boano et al. to generate
controllable interference patterns [4], making the link quality
fluctuate in a repeatable manner. To this end, we deploy an
additional interferer node in a position where it affects the
communication links of at least one fourth of the nodes in
our testbed, as shown in Fig. 5. When active, the interferer
transmits a modulated carrier on channel 26 for 1 ms at the
highest power setting. Then, it sets the radio to idle mode
for 10 ms before transmitting the next carrier.

All nodes generate packets with IPI = 30 s for 4 h. The
interferer is active during two periods of 1 h each. In a first
experiment, we use static MAC configuration S4, optimized
for IPI = 30 s (see Table 2). We enable pTunes in a second

181

0 0.5 1 1.5 2 2.5 3 3.5 4
50

60

70

80

90

100

Interferer on Interferer on

Time [h]

E
n

d
−

to
−

e
n

d
 r

e
lia

b
ili

ty
 R

 [
%

]

PTUNES

S4

(a) End-to-end reliability, R ≥ 95 %.

0

5

10

15

Interferer on Interferer on

T
o

n
 [

m
s
]

PTUNES

S4

0

50

100

Interferer on Interferer on

T
o

ff
 [

m
s
]

PTUNES

S4

0 0.5 1 1.5 2 2.5 3 3.5 4
0

5

10

Interferer on Interferer on

Time [h]

N

PTUNES

S4

(b) Trace of X-MAC parameters.
Figure 8: End-to-end reliability and trace of X-MAC
parameters as the link quality changes. pTunes re-
duces packet loss by 80 % during periods of controlled wire-
less interference in comparison with static MAC parameters
optimized for the applied traffic load without interference.

experiment, using a TimedTrigger with a period of 1 min to
adapt the MAC parameters according to (26). We delib-
erately enforce a static routing tree to separate effects re-
lated to link quality changes from those related to topology
changes. We investigate the latter in detail in Sec. 6.7.

Results. Fig. 8 shows end-to-end reliability and the trace
of X-MAC parameters. Looking at Fig. 8(a), we see that S4
and pTunes satisfy the reliability requirement when the in-
terferer is off. When the interferer is on, reliability starts to
drop below 95 %. However, as soon as pTunes collects net-
work state, it detects a decrease in link quality and adapts
the X-MAC parameters accordingly. In particular, as shown
in Fig. 8(b), pTunes increases N from 3 or 4 to values be-
tween 6 and 10. Ton is also increased (from 6 ms to 10–16 ms)
to further help satisfy the reliability requirement. Moreover,
pTunes decreases Toff (from 100 ms to 20–90 ms) to provide
more bandwidth and combat increased channel contention,
which is a consequence of numerous retransmission attempts
over low-quality links. Indeed, these low-quality links make
(26) temporarily unsatisfiable (while Ton = 16 ms in the first
interference phase), triggering pTunes to instead maximize
R as explained in Sec. 6.1. As a result of these decisions,
pTunes achieves an average end-to-end reliability of 95.4 %
also in presence of interference.

S4, instead, fails to satisfy the reliability requirement when
the interferer is active: reliability ranges between 70 % and
80 %, and never recovers while the interferer is on. In total,
2252 packets are lost with S4 during interference. pTunes
reduces this number to 418—a reduction of more than 80 %.

6.7 Interaction with Routing
Several studies emphasize the significance of cross-layer in-

teractions to the overall system performance [12]. We study
this aspect between best-effort tree routing and parameter

0 0.5 1 1.5 2 2.5 3 3.5 4
40

50

60

70

80

90

100

Nodes fail Nodes fail

Time [h]

E
n

d
−

to
−

e
n

d
 r

e
lia

b
ili

ty
 R

 [
%

]

PTUNES

S4

(a) End-to-end reliability, R ≥ 95 %.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

25

50

75

100

125

150 Nodes fail Nodes fail

Time [h]

N
u

m
b

e
r

o
f

p
a

re
n

t
s
w

it
c
h

e
s

PTUNES

S4

(b) Distribution of parent switches.
Figure 9: End-to-end reliability and distribution of
parent switches when eight core routing nodes fail
simultaneously. pTunes helps the routing protocol recover
from node failures by settling quickly on a stable routing
topology, thus reducing packet loss by 70 % compared with
static MAC parameters optimized for the applied traffic load.

adaptation of an underlying low-power MAC protocol with
pTunes. To do so, during each of the following experiments,
we temporarily remove multiple core routing nodes impor-
tant for forwarding packets. In this way, we emulate node
failures, which are common in deployed systems [2], and
force the routing protocol to find new routes.

Scenario. We run two 4-hour experiments with Contiki
Collect and X-MAC. After 30 min, we turn off eight nodes
within the sink’s neighborhood that forward most packets
in the network (1–8 in Fig. 5). We turn them on again
after 60 min, and repeat the on-off pattern after 1 h. Nodes
generate packets with IPI = 30 s. In the first experiment, we
use static MAC configuration S4, optimized for this traffic
load (see Table 2). In the second experiment, we enable
pTunes and use a TimedTrigger to solve (26) every minute.

Results. Fig. 9(a) shows end-to-end reliability over time,
accounting for packets from nodes that are currently turned
on. During the first 30 min, both S4 and pTunes satisfy the
reliability requirement. However, when nodes are removed,
reliability starts to drop below 70 %. Many packets are in-
deed lost since children of removed nodes fail to transmit
packets: the routing protocol needs to find new routes.

We see from Fig. 9(a) that end-to-end reliability recovers
much faster when pTunes is enabled. During the two pe-
riods when eight nodes are removed, S4 fails to deliver in
total 2673 packets from the remaining 35 nodes. pTunes
reduces this number to 813—a reduction of 70 %.

To further investigate this behavior, we plot in Fig. 9(b)
the distribution of parent switches. pTunes reduces the
total number of parent switches compared to S4 (from 631
to 165), and shifts them to the beginning of the periods in
which nodes are removed. At this point, pTunes quickly
realizes a significant drop in link quality, reported by nodes
whose parent disappeared. pTunes thus increases Ton and
N to improve reliability, and decreases Toff to provide more
bandwidth for retransmissions and route discovery.

As a result of increasing the maximum number of retrans-
missions per packet N , transmission attempts of nodes with
a dead parent fail with a higher number of retries. This
causes the corresponding ETX values to drop more severely
than with S4 (which has a lower N), and so nodes switch

182

much faster to a new parent. Moreover, the MAC param-
eters provided by pTunes help deliver packets over the re-
maining links. Delivering more packets also enables the
routing protocol to quickly detect route inconsistencies and
eventually settle on a stable topology. As the topology sta-
bilizes, pTunes gradually relaxes the MAC parameters (re-
duce Ton and N , increase Toff) to extend network lifetime.

These results demonstrate that, by adapting the MAC pa-
rameters, pTunes helps the routing protocol recover faster
from critical network changes. Protocols like CTP [18] and
Arbutus [33] also utilize feedback from unicast transmissions
to compute the ETX. In addition, CTP uses data path vali-
dation to detect possible loops based on ETX values embed-
ded in data packets [18]. Our findings with Contiki Collect,
which uses similar techniques, suggest that these protocols
could also benefit from pTunes.

Additionally, the results demonstrate the advantage of de-
coupling network state collection from application packet
routing, as we argue in Sec. 4.2. As long as the network re-
mains connected, Glossy provides up-to-date network state
to the base station with very high reliability [16]. Changes in
the routing tree do no affect network flooding: information
about faulty links is collected even when the routing pro-
tocol fails to deliver packets from nodes whose parent died,
allowing pTunes to react promptly and thus effectively.

7. DISCUSSION
Designing a MAC adaptation framework involves striking

a balance between goals typically at odds with each other.
We discuss in this section some of the trade-offs we make in
pTunes and the implications of our particular choices.

Feasibility vs. scalability. We adopt a centralized ap-
proach rather than a likely more scalable distributed solu-
tion; in return for this, pTunes allows users to express their
requirements in terms of network-wide metrics, which better
reflect the way domain experts are used to state performance
objectives compared to per-node or per-link metrics. In fact,
distributing the tasks of collecting global state information,
computing MAC parameters optimized for network-wide ob-
jectives, and coordinating the consistent installation of new
parameters would hardly be feasible, if at all, on resource-
constrained devices. Instead, pTunes exploits the better
resources of a central base station, which is already present
in many sensor network deployments [34], and achieves sim-
plicity of in-network functionality by moving most of its in-
telligence out of the nodes and into the base station.

Flexibility vs. optimality. We focus on existing MAC
protocols rather than on the design or adaptation of cross-
layer solutions (e.g., coupling link and network layer) which
may, in principle, achieve better performance; in return for
this, pTunes allows system designers to choose the MAC
and routing protocol independently from existing code bases.
In comparison, cross-layer solutions tend to enjoy little gen-
erality and flexibility, as they are often designed for very
specific scenarios (e.g., periodic, low-rate data collection [6]).

Robustness vs. optimality. We determine network-wide
parameters rather than per-node parameters, which may
better match the current role of a node in the routing tree
(e.g., with respect to traffic load); in return for this, the pa-
rameters pTunes provides are much more robust to changes
in the routing topology. It is not unlikely that, even in the
most benign environment, slight variations in the link qual-

ities trigger drastic changes in the routing topology. For
instance, Ceriotti et al. observe that nodes serving many
children suddenly become leaves in the routing tree [7]. In
such a case, per-node MAC parameters become inappro-
priate and must be quickly updated. Similar situations can
happen frequently, even several times per minute [19], which
would render per-node parameter adaptation impractical.

As a consequence of the design decisions above, pTunes
represents one particular point in a multi-dimensional de-
sign space. Corresponding to this point is a large fraction
of deployed low-power wireless networks comprising tens of
nodes, leveraging protocols such as X-MAC and LPP, and
yet failing to meet the application requirements often due to
communication issues ultimately related to inadequate MAC
parameter choices and lack of adaptiveness [23,34]. pTunes
is directly and immediately applicable in these settings.

8. RELATED WORK
pTunes uses a model to predict how changes in the MAC

parameters affect the network-wide performance given the
current network state. Based on iterative runtime optimiza-
tion, it selects MAC parameters such that the predicted per-
formance satisfies the application requirements. This ap-
proach is similar to the concept of model predictive con-
trol (MPC) [17], with the differences that pTunes computes
only the next step of the control law and uses no information
about past control steps or measured system responses.

Several recent systems incorporate centralized control in
their design, much like pTunes does. For example, Koala
implements a network-wide routing control plane, where the
base station computes end-to-end paths used for packet for-
warding [29]. RACNet uses centralized token passing to
sequence data downloads [26]. In RCRT, the sink detects
congestion and adapts the rates of individual sources [30].
PIP determines schedule and channel assignment for each
flow centrally at the base station [35]. Like pTunes, these
systems exploit global knowledge and ample resources of the
base station to achieve high performance and manageability.

Looking at the large body of prior work on adaptive low-
power MAC protocols, we find solutions embedding adap-
tivity or separating adaptivity from the protocol operation.

In the former category, for instance, Woo and Culler pro-
pose an adaptive rate control mechanism, where nodes inject
more packets if previous attempts were successful and fewer
packets if they failed [39]. Van Dam and Langendoen intro-
duce an adaptive listen period in T-MAC [11] to overcome
the drawbacks of the fixed duty cycle of S-MAC [40]. El-
Hoiydi and Decotignie adapt radio wake-ups in WiseMAC
to shorten the LPL preamble [15]. More recently, Hurni
and Braun propose MaxMAC, which schedules additional
X-MAC wake-ups at medium traffic and switches to pure
CSMA at high traffic [21]. Such hard-coded adaptivity mech-
anisms can be highly effective in specific scenarios, but lack
general applicability and bear no direct connection to the
high-level application demands. pTunes is more general by
adding parameter adaptation atop existing MAC protocols,
thus leveraging available implementations, and by explicitly
incorporating user-provided application requirements.

Polastre et al. instead separate adaptivity from the pro-
tocol operation and present a model of node lifetime for
B-MAC [32]. Jurdak et al. use this model to dynamically
recompute check interval and preamble length, showing sub-
stantial energy savings [22]. Buettner et al. demonstrate en-

183

ergy savings in X-MAC by adapting the wake-up interval to
traffic load for one sender-receiver pair [5]. Meier et al. [28]
and Challen et al. [9] extend network lifetime by adjusting
the wake-up interval to traffic load in a static routing tree.
Park et al. present numerical results that indicate the po-
tential of adaptation policies for IEEE 802.15.4 MAC proto-
cols, based on per-link and per-node metrics [31]. pTunes
builds on these foundations but extends them in several
ways. First, pTunes considers multiple network-wide met-
rics and adapts multiple MAC parameters. Second, our
modeling is more realistic by accounting for packet loss and
ARQ mechanisms, and more flexible by isolating protocol-
dependent from protocol-independent functionality. Third,
we evaluate pTunes in real-world scenarios, including dy-
namic routing trees, wireless interference, and node failures.

9. CONCLUSIONS
pTunes provides runtime parameter adaptation for low-

power MAC protocols, automatically translating application-
level requirements into MAC parameters that meet these re-
quirements and achieve very good performance across a vari-
ety of scenarios, ranging from low traffic to high traffic, from
good links to bad links, and wireless interference to node fail-
ures. pTunes thus greatly aids in meeting the requirements
of real-world sensor network applications by eliminating the
need for time-consuming, and yet error-prone, manual MAC
configuration when the network conditions change.

Acknowledgments. The authors thank Renato lo Cigno,
Kay Römer, Olga Saukh, and the anonymous reviewers for
their insightful comments. This work was supported by
Nano-Tera, the National Competence Center in Research
on Mobile Information and Communication Systems under
SNSF grant number 5005-67322, the Swedish Foundation for
Strategic Research, and the Cooperating Objects Network of
Excellence under contract number EU-FP7-2007-2-224053.

10. REFERENCES
[1] K. R. Apt and M. G. Wallace. Constraint Logic Programming

using Eclipse. Cambridge University Press, 2007.
[2] J. Beutel et al. PermaDAQ: A scientific instrument for

precision sensing and data recovery under extreme conditions.
In ACM/IEEE IPSN, 2009.

[3] J. Beutel et al. Poster abstract: The FlockLab testbed
architecture. In ACM SenSys, 2009.

[4] C. A. Boano, T. Voigt, N. Tsiftes, L. Mottola, K. Römer, and
M. Zuniga. Making sensornet MAC protocols robust against
interference. In EWSN, 2010.

[5] M. Buettner, G. V. Yee, E. Anderson, and R. Han. X-MAC: A
short preamble MAC protocol for duty-cycled wireless sensor
networks. In ACM SenSys, 2006.

[6] N. Burri, P. von Rickenbach, and R. Wattenhofer. Dozer:
Ultra-low power data gathering in sensor networks. In
ACM/IEEE IPSN, 2007.

[7] M. Ceriotti et al. Monitoring heritage buildings with wireless
sensor networks: The Torre Aquila deployment. In ACM/IEEE
IPSN, 2009.

[8] M. Ceriotti et al. Is there light at the ends of the tunnel?
Wireless sensor networks for adaptive lighting in road tunnels.
In ACM/IEEE IPSN, 2011.

[9] G. W. Challen, J. Waterman, and M. Welsh. IDEA: Integrated
distributed energy awareness for wireless sensor networks. In
ACM MobiSys, 2010.

[10] J. Choi, M. Kazandjieva, M. Jain, and P. Levis. The case for a
network protocol isolation layer. In ACM SenSys, 2009.

[11] T. Dam and K. Langendoen. An adaptive energy-efficient MAC
protocol for wireless sensor networks. In ACM SenSys, 2003.

[12] S. R. Das, C. E. Perkins, and E. M. Royer. Performance
comparison of two on-demand routing protocols for ad hoc
networks. In IEEE INFOCOM, 2000.

[13] P. Dutta, S. Dawson-Haggerty, Y. Chen, C.-J. Liang, and
A. Terzis. Design and evaluation of a versatile and efficient

receiver-initiated link layer for low-power wireless. In ACM
SenSys, 2010.

[14] M. Dyer et al. Deployment support network: A toolkit for the
development of WSNs. In EWSN, 2007.

[15] A. El-Hoiydi and J.-D. Decotignie. WiseMAC: An ultra low
power MAC protocol for multi-hop wireless sensor networks. In
ALGOSENSORS, 2004.

[16] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh. Efficient
network flooding and time synchronization with Glossy. In
ACM/IEEE IPSN, 2011.

[17] C. E. Garciá, D. M. Prett, and M. Morari. Model predictive
control: Theory and practice—a survey. Automatica, 25(3),
1989.

[18] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis.
Collection tree protocol. In ACM SenSys, 2009.

[19] O. Gnawali, L. Guibas, and P. Levis. A case for evaluating
sensor network protocols concurrently. In ACM WiNTECH,
2010.

[20] Y. Y. Haimes, L. S. Lasdon, and D. A. Wismer. On a
bicriterion formulation of the problems of integrated system
identification and system optimization. IEEE Trans. Syst.,
Man, Cybern., 1(3), 1971.

[21] P. Hurni and T. Braun. MaxMAC: A maximally traffic-adaptive
MAC protocol for wireless sensor networks. In EWSN, 2010.

[22] R. Jurdak, P. Baldi, and C. V. Lopes. Adaptive low power
listening for wireless sensor networks. IEEE Trans. Mobile
Comput., 6, 2007.

[23] R. Kuntz, A. Gallais, and T. Noel. Medium access control
facing the reality of WSN deployments. ACM SIGCOMM
Comp. Comm. Rev., 39(3), 2009.

[24] K. Langendoen and A. Meier. Analyzing MAC protocols for low
data-rate applications. ACM Trans. on Sens. Netw., 7(2),
2010.

[25] P. Levis et al. Trickle: A self-regulating algorithm for code
propagation and maintenance in wireless sensor networks. In
USENIX NSDI, 2004.

[26] C.-J. M. Liang, J. Liu, L. Luo, A. Terzis, and F. Zhao.
RACNet: A high-fidelity data center sensing network. In ACM
SenSys, 2009.

[27] R. Madan and S. Lall. Distributed algorithms for maximum
lifetime routing in wireless sensor networks. IEEE Trans.
Wireless Commun., 5(8), 2006.

[28] A. Meier, M. Woehrle, M. Zimmerling, and L. Thiele. ZeroCal:
Automatic MAC protocol calibration. In IEEE DCOSS, 2010.

[29] R. Musaloiu-E., C.-J. M. Liang, and A. Terzis. Koala:
Ultra-low power data retrieval in wireless sensor networks. In
ACM/IEEE IPSN, 2008.

[30] J. Paek and R. Govindan. RCRT: Rate-controlled reliable
transport for wireless sensor networks. In ACM SenSys, 2007.

[31] P. Park, C. Fischione, and K. Johansson. Adaptive IEEE
802.15.4 protocol for energy efficient, reliable and timely
communications. In ACM/IEEE IPSN, 2010.

[32] J. Polastre, J. Hill, and D. Culler. Versatile low power media
access for wireless sensor networks. In ACM SenSys, 2004.

[33] D. Puccinelli and M. Haenggi. Reliable data delivery in
large-scale low-power sensor networks. ACM Trans. on Sens.
Netw., 6(4), 2010.

[34] B. Raman and K. Chebrolu. Censor networks: A critique of
”sensor networks” from a systems perspective. ACM
SIGCOMM Comp. Comm. Rev., 38(3), 2008.

[35] B. Raman, K. Chebrolu, S. Bijwe, and V. Gabale. PIP: A
connection-oriented, multi-hop, multi-channel TDMA-based
MAC for high throughput bulk transfer. In ACM SenSys, 2010.

[36] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and
D. Culler. An analysis of a large scale habitat monitoring
application. In ACM SenSys, 2004.

[37] G. Tolle et al. A macroscope in the redwoods. In ACM SenSys,
2005.

[38] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and
M. Welsh. Fidelity and yield in a volcano monitoring sensor
network. In USENIX OSDI, 2006.

[39] A. Woo and D. Culler. A transmission control scheme for media
access in sensor networks. In ACM MobiCom, 2001.

[40] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient MAC
protocol for wireless sensor networks. In IEEE INFOCOM,
2002.

[41] J. Zhao and R. Govindan. Understanding packet delivery
performance in dense wireless sensor networks. In ACM
SenSys, 2003.

[42] M. Zimmerling, F. Ferrari, L. Mottola, T. Voigt, and L. Thiele.
pTunes: Runtime parameter adaptation for low-power MAC
protocols. Technical Report 325, ETH Zurich, 2012.

184

	Introduction
	Optimization Problem
	Modeling Framework
	Application-level Metrics
	Protocol-independent Modeling
	Protocol-specific Modeling
	Sender-initiated: X-MAC
	Receiver-initiated: LPP

	System Support
	Challenges
	Collection and Dissemination
	Optimization Tools

	Implementation Details
	Experimental Results
	Setting and Metrics
	Model Validation
	Impact on Bandwidth and Queuing
	Lifetime Gain
	Adaptation to Traffic Fluctuations
	Adaptation to Changes in Link Quality
	Interaction with Routing

	Discussion
	Related Work
	Conclusions
	References

