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Abstract—Wireless IEEE 802.11 links operate in unlicensed
spectrum and so must accommodate other unlicensed transmitters
that generate pulsed interference. We propose a new approach
for detecting the presence of pulsed interference affecting 802.11
links and for estimating temporal statistics of this interference.
This approach builds on recent work on distinguishing collision
losses from noise losses in 802.11 links. When the intervals be-
tween interference pulses are i.i.d., the approach is not confined
to estimating the mean and variance of these intervals, but can
recover the complete probability distribution. The approach is a
transmitter-side technique that provides per-link information and
is compatible with standard hardware. We demonstrate the effec-
tiveness of the proposed approach using extensive experimental
measurements. In addition to applications to monitoring, manage-
ment, and diagnostics, the fundamental information provided by
our approach can potentially be used to adapt the frame durations
used in a network so as to increase capacity in the presence of
pulsed interference.

Index Terms—802.11, CSMA/CA, interference.

I. INTRODUCTION

W IRELESS IEEE 802.11 links operate in unlicensed
spectrum and so must accommodate other unlicensed

transmitters. These transmitters include not only other 802.11
WLANs, but also Bluetooth devices, Zigbee devices, domestic
appliances, etc. Importantly, the resulting interference is often
pulsed in nature. That is, the interference that consists of a
sequence of “ON” periods (or pulses) during which the inter-
ference power is high, interspersed by “OFF” periods where the
interference power is lower, illustrated schematically in Fig. 1.
The former might be thought of as corresponding to a packet
transmission by a hidden terminal, and the latter as the idle
times between these transmissions. For this type of interferer,
received signal strength indicator (RSSI)/signal-to-interfer-
ence-plus-noise ratio (SINR) measurements are of limited
assistance since the SINR measured for one packet may bear
little relation to the SINR experienced by other packets. A
further complicating factor is that, in 802.11 links, frame loss
due to collisions is a feature of normal operation in 802.11
WLANs, and thus we need to be careful to distinguish losses
due to collisions and losses due to channel impairment.
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Fig. 1. Illustrating a WLAN with interfering pulsed transmitter (e.g., 802.11
hidden terminal, Bluetooth device, microwave oven, baby monitor, etc.) in-
ducing packet loss.

In this paper, we propose a new approach for detecting the
presence of pulsed interference affecting 802.11 links and for
estimating temporal statistics of this interference under mild as-
sumptions. We use the observation that a packet transmission
can be thought of as sampling the channel conditions over an
interval of time equal to the duration of the packet transmis-
sion. By varying the packet transmit duration and observing the
corresponding change in packet loss rate, we can infer informa-
tion about the timing of pulsed interference. This approach is
a transmitter-side technique that provides per-link information
and is compatible with standard hardware. It significantly ex-
tends recent work in [1] and [2], which establishes a MAC/PHY
cross-layer technique capable of classifying lost transmission
opportunities into noise-related losses, collision induced losses,
hidden-node losses, and of distinguishing these losses from the
unfairness caused by exposed nodes and capture effects.
Detection and measurement of pulsed interference is partic-

ularly topical in view of the trend toward increasingly dense
wireless deployments. In addition to being of interest in their
own right for network monitoring, management, and diagnos-
tics, our temporal statistic measurements can be used to adapt
network parameters so as to significantly increase network ca-
pacity in the presence of pulsed interference. This is illustrated
in Fig. 2, which shows experimental measurements of packet
error rate (PER) versus modulation and coding scheme (MCS)
for an 802.11 network in the presence of a pulsed microwave
oven (MWO) interferer. Two curves are shown, one for each
fragment of a two-packet TXOP burst (below we discuss in
more detail our interest in using packet pairs). Observe that the
PER is lowest at a PHY rate of 18–24 Mb/s—importantly, the
PER rises not only for higher PHY rates, as is to be expected due
to the lower resilience to noise at higher rates, but also rises for
lower PHY rates. The increase in PER at lower PHY rates is due
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Fig. 2. Experimental measurements of PER versus MCS for an 802.11 net-
work operating on channel 9 and physically located near an operational MWO.
See Section IV-B for further details of the experimental setup. Two curves are
shown, one for each fragment of a two packet TXOP burst. Observe that the
PER is minimized around 18–24 Mb/s and rises at both lower and higher MCS
rates due to the pulsed nature of the interference.

to the pulsed nature of the interference—since the frame size in
our experiment is fixed, the time taken to transmit a frame in-
creases as the PHY rate is lowered, increasing the likelihood that
a frame “collides” with an interference burst. At a PHY rate of
1 Mb/s, the frame duration is longer than the maximum interval
between interference pulses and, as a result, the PER is close to
100%. We discuss this example in more detail in Section IV-B,
but it is clear the appropriate choice of PHY rate can lead to
significant throughput gains in such situations. We briefly note
that this type of MAC-layer adaptation complements proposed
PHY-layer interference avoidance techniques such as cognitive
radio [3].

II. RELATED WORK

Previous work on estimating 802.11 channel conditions can
be classified into three categories. First are PHY link-level
approaches using SINR and bit error rate (BER). Second are
MAC approaches relying on throughput and delay statistics, or
frame loss statistics derived from transmitted frames that are
not ACKed and/or from signaling messages. Finally, we have
cross-layer MAC/PHY approaches that combine information at
both MAC and PHY layers.
Most work on PHY-layer approaches is based on SINR mea-

surements, e.g., [4]–[6]. The basic idea is to a priori map SINR
measures into link quality estimates. However, it is well known
that the correlation between SINR and actual packet delivery
rate can be weak due to time-varying channel conditions [7],
pulsed interference being one such example of a time-varying
channel. References [8] and [9] consider loss diagnosis by ex-
amining the error pattern within a physical-layer symbol, with
the aim of exposing statistical differences between collision and
weak signal-based losses. The cognitive radio literature con-
siders PHY-layer techniques for optimizing performance in the
presence of interference via joint spectral and temporal anal-
ysis [10]. There are some solutions tailored to the ISM band [3],
where customized hardware has been devised with the aim of
providing a synchronization signal based on periodic interfer-
ence. However, cognitive radio techniques are largely geared

toward interference avoidance and make use of nonstandard
hardware.
MAC approaches make up some of the most popular and

earliest rate control algorithms. Techniques such as ARF [11],
RBAR [12], and RRAA [13] attempt to use frame transmis-
sion successes and failures as a means to indirectly measure
channel conditions. However, these techniques cannot distin-
guish between noise, collision, or hidden noise sources of error.
In [14], rate control via loss differentiation is suggested via a
modified ARF algorithm; it was shown to greatly improve per-
formance via the inclusion of a NAK signal, but this requires
a modification to the 802.11 MAC. Use of RTS/CTS signals
has been proposed for distinguishing collisions from channel
noise losses, e.g., [15] and [16]. However, such approaches can
perform poorly in the presence of pulsed interference such as
hidden terminals [1].
With regard to combined MAC/PHY approaches, this paper

builds upon the packet pair approach proposed in [1] and [2]
for estimating the frame error rates due to collisions, noise, and
hidden terminals. See also the closely related work in [17]. Ref-
erences [1], [2], and [17] focus on time-invariant channels and
do not consider estimation of temporal statistics. Reference [18]
considers a similar problem to [1], but uses channel busy/idle
time information.
Some work has been done on packet length adaptation as

a means of exploiting a time-varying channel. Reference [19]
modifies the Gilbert–Elliott channel model to model bursty
channels. However, it does not consider the MAC layer.
There are many examples that use MAC frame error informa-
tion [20]–[24], but they lack the ability to distinguish between
noise and collisions. There has been some recent interesting
work on a cross-layer model for packet length adaptation
in [25], which relies on separation between noise errors and
collision errors as a means of tuning the packet length and
optimizing throughput.

III. PULSED INTERFERENCE TEMPORAL STATISTICS:
NONPARAMETRIC ESTIMATION

A. Basic Idea

We start with the observation that packet transmissions over
a time-varying wireless link can be thought of as sampling the
channel conditions. Each sample covers an extended interval of
time, equal to the duration of the packet transmission; see
Fig. 3. On a channel with pulsed interference, the frequency
with which packet transmissions overlap with interference
pulses (and so the level of packet loss) depends on the duration
of the packet transmissions relative to the intervals between
pulses, and on the durations of the pulses. For example, it is
easy to see that when the packet duration is larger than the
maximum time between interference pulses, then every packet
transmission overlaps with at least one interference pulse, and
we can expect to observe a high rate of packet loss. Conversely,
when the packet duration is much smaller than the time
between interference pulses, most of the packet transmissions
will not encounter an interference pulse, and we can expect a
much lower rate of packet loss. Hence, by varying the packet
transmit duration and observing the corresponding change in
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Fig. 3. Schematic illustrating “sampling” of a time-varying channel by data
packet transmissions. Since the data transmissions occupy an interval of time,
the sampling is of the channel conditions over that interval, rather than at a single
point in time. As the duration of the data transmissions increases, the chance that
a data transmission overlaps with an interference pulse also tends to increase.

packet loss rate, we can hope to infer information about the
timing of the interference pulses. We can make this intuitive
insight more precise as follows. Assume that the intervals
between pulses are i.i.d. so that they are characterized by a
probability distribution function. Then, we will shortly show
that the information contained in such packet loss information
is sufficient to fully reconstruct this distribution function. This,
somewhat surprising, result has important practical implica-
tions—namely, that even when the interference pulses are not
directly observable (which we expect to usually be the case), we
are nevertheless still able to reconstruct key temporal statistics
of the interference process from easily measured packet loss
statistics.

B. Mathematical Analysis

We now formalize these claims. Consider a sequence of in-
terference pulses indexed by , and let de-
note the start time of the th interference pulse with
, denote the duration of the th pulse, and

be the interval between the end of
th pulse and the start of the th pulse. Defining state
vector , , the sequence

forms a stochastic process with ,
, . We assume that the random

variables , are i.i.d. with finite mean. Then,
, where denotes equality in distribution, and let

. Similarly, we assume that the pulse

durations are i.i.d. with finite mean and .
Pick a sampling interval . This sampling interval

can be thought of as a packet transmission ending at time .
Define indicator function if interval
does not overlap with any interference pulse, and
otherwise. That is

for some
otherwise.

(1)
Suppose we transmit a sequence of packets and let denote
the sequence of times when transmissions finish. Assume for

the moment that: 1) a packet is lost whenever it overlaps with
an interference pulse; and 2) the intervals between packet trans-
missions are exponentially randomly distributed and are inde-
pendent of the interference process. We will shortly relax these
assumptions. By assumption 1), equals 1 if the packet
transmitted at time is received successfully, and 0 otherwise.
Hence, the empirical estimate of the packet loss rate is

(2)

where is the number of packets transmitted in in-
terval [0, ]. Provided the packet duration is sufficiently
small relative to the mean time between packets, by assump-
tion 2) the transmit times effectively possess the Lack
of Anticipation property (the number of packet transmissions
in any interval , , is independent of ,

[26]). When this property holds, by [26, Theorem 1], we
almost surely have

where

That is, the packet loss rate estimator (2) provides an asymptot-
ically unbiased estimate of the mean value of .
Assumption 1) can be replaced by the weaker requirement

that the packet loss rate is higher when a packet transmission
overlaps with an interference pulse than when it does not. We
consider this in more detail later, in Section V. Assumption 2)
can be relaxed to any sampling approach that satisfies the Ar-
rivals See Time Averages (ASTA) property; see, for example,
[27] and [28].
It remains to show that statistic contains useful infor-

mation about the interference process. We begin by observing
that is a renewal process—since the

and are i.i.d., the start times of the interference
pulses are renewal times. The mean time between renewals is

. On each renewal interval , we have
that for duration , where equals
when , and 0 otherwise. The mean value of

over a renewal interval is therefore and, by
the strong law of large numbers

Since is a distribution function, it is differentiable almost
everywhere, and thus so is . At every point where
is differentiable, we have
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Provided is differentiable at , then

since , and so

(3)

Hence, knowledge of statistic as a function of is suf-
ficient to allow us to calculate not only the mean time between
interference pulses , but also the entire distribution
function of the interference pulse
interarrival times.
Note that while we can formally differentiate , its es-

timate will be noisy, and so differentiating is not
advisable. The formal differentiation step is merely used to gain
insight into the statistical information contained within ,
and there is no need to actually differentiate in order to
infer characteristics of the interference process (e.g., see the ex-
amples in the next section).

C. Two Simple Examples

We present two simple examples illustrating the use of
statistic and for which explicit calculations are straight-
forward.
1) Periodic Impulses: The first example is where the in-

terference consists of periodic impulses with period (so
) and packets are always lost when they

overlap with an interference pulse. In this case

That is, is a truncated line with slope . Fig. 4(a)
plots this theory line, along with the measured packet loss rate
obtained from simulations. The interference period can be
directly estimated from the slope of the measured line of packet
loss versus . The complementary cumulative distribution
function (ccdf) shown in Fig. 4(b) can be calculated
using (3) or deduced based on the interference period.
2) Poisson Interference: The second simple example is

where the interference pulses are Poisson impulses, with
rate . In this case

Fig. 4(c) shows the corresponding measured packet loss rate
obtained from simulations. Once again, the rate parameter
can be directly estimated from the measured curve of packet loss
versus (namely from the slope when is plotted on a

Fig. 4. Theory and simulation for periodic and Poisson interference. Packet
transmissions are Poisson with mean rate . (a) Periodic interference,
period ms. (b) ccdf of for periodic interference. (c) Poisson in-
terference, mean interarrival time ms. (d) ccdf of for Poisson
interference.

log scale versus ). The ccdf is also shown in Fig. 4(d) and
calculated as .

D. Distinguishing Collision and Interference Losses in 802.11

The foregoing analysis focuses on packet loss due to interfer-
ence and ignores other sources of packet loss. As already noted,
packet loss due to collisions is part of the proper operation of the
802.11 MAC. In even quite small wireless LANs, the loss rate
due to collisions can be significant (e.g., in a system with only
two users, the collision probability can approach 5% [29]), and
so it is essential to distinguish between packet loss due to colli-
sions and packet loss due to noise/inteference. To achieve this,
we borrow the packet-pair bursting idea first proposed in [1].
We make use of the following properties of the 802.11 MAC.
1) Time is slotted, with well-defined boundaries at which
frame transmissions by a station are permitted.

2) The standard data-ACK handshake means that a sender-
side analysis can reveal any frame loss.

3) Transmissions occurring before a DIFS are protected from
collisions. This is used, for example, to protect ACK trans-
missions, which are transmitted after a SIFS interval.

Using property 3, when two frames are sent in a burst with
a SIFS between them, the first frame is subject to both colli-
sion and noise losses, but the second frame is protected from
collisions and only suffers from noise/interference losses. Such
packet-pair bursts can be generated in a number of ways (e.g.,
using the TXOP functionality in 802.11 e/n, or the packet frag-
mentation functionality available in all flavors of 802.11).
For 802.11 links, we therefore consider sampling the channel

using packet pair bursts rather than using single packets. For
simplicity, we will assume that the duration of both packets is
the same and equal to , although this can be relaxed. In the
remainder of this paper, we will often refer to the first packet in
a burst as , and the second packet as . It is important
to note that the 802.11 MAC only sends when an ACK
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is successfully received for . To retain the Lack of Antic-
ipation property, when no ACK is received for the first packet,
we introduce a virtual transmission of the second packet—i.e.,
no actual packet is transmitted, but the sender still pauses for
the time that it would have taken to send the second packet. In
practice, this is straightforward to implement by simply adding

to the interval between packet pairs when an ACK for the
first packet is not received. With this procedure, when the in-
tervals between the completion of one packet pair and the start
of the next packet pair form a Poisson process, the packet loss
statistics will satisfy the ASTA property. Assuming that packet
collisions occur independently of interference pulses, the packet
loss rate for the first packet in the pair is then an es-
timator for

where is the packet collision probability. Note that it is dif-
ficult to separate out the contribution due to collisions from
measurements of , as already discussed. The second
packet in a pair is only transmitted if the first packet was re-
ceived successfully (per the standard 802.11 TXOP and frag-
mentation semantics), and so the second packet measurement
data is censored. We therefore have that the packet loss rate for
the second packet in the pair is an estimator for

Combining the loss statistics and for
the first and second packets, we can recover our desired loss
statistic from

(4)

and in this way separate out the contribution to packet loss from
interference from the contribution due to collisions.

E. Carrier Sense

The 802.11 MAC uses carrier sense to distinguish between
busy and idle slots on the wireless medium. If the energy on the
channel is sensed above the carrier-sense threshold, then the
PHY_CCA.indicate(BUSY) signal will be issued by the PHY
to indicate to the MAC layer that the channel is busy. Conse-
quently, when an interference pulse is above the carrier-sense
threshold at the transmitter, packet transmissions will not start.
Instead, a packet waiting to be transmitted will be queued until
the channel is sensed idle (PHY_CCA.indicate(IDLE)), and
then transmitted. This means that the packet transmission times
are no longer independent of the interference process, and
the ASTA property is generally lost. In particular, the packet
loss rate is biased and tends to be underestimated since packet
transmissions that should have started during an interference
pulse (and so likely to have led to a packet loss) are deferred
until after the pulse finished (and so much less likely to be lost
since the time to the next interference pulse is then maximal).

When the duration of the interference pulses is short relative
to the time between pulses, then the magnitude of this bias can
be expected to be small. When the interference pulse duration is
larger, an approximate compensation for the bias can be carried
out as follows. Consider the indicator function

for some
otherwise.

This modifies (1) by lumping the time when the interference
pulse is active into the good window, roughly capturing the fact
that packet transmissions scheduled during a pulse will be de-
ferred until the pulse finishes. When the interference pulse on
and off times are i.i.d., this modified loss statistic is equal with
probability 1 to

(5)

where is the ccdf,
and is an approximation to the
estimation bias. Using integration by parts and that

, (5) can be rewritten as

(6)
Assuming that the measured packet loss rate approximates

, then given measurements of loss rate for a range of
-values, we can solve (6) to obtain an estimate for

and . This can be carried out in a number of ways—one
simple approach is to write as a weighted sum of

of orthogonal basis functions , and
select the weights and to minimize the square error
between the right-hand side (RHS) of (6) and the measurement
of the left-hand side (LHS). We illustrate use of this approach
in Fig. 5, which presents data generated using a simulation
with carrier sense and periodic interference. The on-time of
the interference pulses is ms, and the time between
pulses is ms. Fig. 5(a) plots the measured packet loss
rate versus , which is assumed to approximate . Also
shown is the loss rate when carrier sense is disabled.
The bias between and is clearly evident. Using
this biased data for and rectangular basis functions

, solving (6) yields the estimate shown in
Fig. 5(b). It can be seen that accurately estimates the true
distribution function [also marked in Fig. 5(b)], i.e., that
we have successfully compensated for the carrier-sense bias. In
particular, the sharp transition at 11 ms is accurately estimated.

IV. EXPERIMENTAL MEASUREMENTS

In this section, we present experimental measurements
demonstrating the power and practical utility of the proposed
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Fig. 5. Simulation example illustrating how the estimation bias introduced by
carrier sense can be largely removed using (6). Periodic interference, similar to
the microwave oven interference experimentally measured in Section IV-B (pe-
riod ms, pulse duration ms). (a) Packet loss rate versus packet
duration with and without carrier sense. (b) Estimate of distribution
function .

nonparametric estimation approach. We collected data in two
separate measurement campaigns. The first consists of mea-
surements on an 802.11 link affected by interference from
a domestic MWO. Such interference is common, and so of
considerable practical importance. The second shows measure-
ments from an 802.11 lab testbed, with two transmitting nodes
and a number of hidden nodes acting as the pulsed interference
source.

A. Hardware and Software

Asus 700 laptops equipped with Atheros 802.11 a/b/g
chipsets (radio 14.2, MAC 8.0, PHY 10.2) were used as client
stations, running Debian Lenny 2.6.26 and using a modified
Linux Madwifi driver based on 10.5.6 HAL and 0.9.4 driver.
A Fujitsu Lifebook P7010 equipped with a Belkin Wireless G
card using an Atheros 802.11 a/b/g chipset (AR2417, MAC
15.0, PHY 7.0) was used as the access point, running FreeBSD
8.0 with the RELEASE kernel and using the standard FreeBSD
ATH driver. The beacon period is set to the maximum value of
1 s. We disabled the Atheros’ Ambient Noise Immunity feature,
which has been reported to cause unwanted side effects [30].
Transmission power of the laptops is fixed, and antenna diver-
sity is disabled. Note that these cards do not possess microwave

TABLE I
SPECTRUM ANALYZER DETAILS AND SETUP FOR ZERO-SPAN MEASUREMENTS

over robustness features. In previous work, we have taken
considerable care to confirm that, with this hardware/software
setup, the wireless stations accurately follow the IEEE 802.11
standard and the packet pair measurement approach is correctly
implemented (see [1], [30], and [31] for further details).
A Rohde & Schwarz FSL-6 spectrum analyzer is used to

verify that the test channels are unoccupied and also to capture
the time-domain traces (see Table I for details).

B. Microwave Oven Interference

1) Experimental Setup: The experimental setup consisted
of one client station, the access point (AP), and a 700-W mi-
crowave oven. During the experiments, the MWO is operated at
maximum power to heat a 2-L bowl of water and is located ap-
proximately 1 m away from the client station and AP; the exact
geometry of the setup is not important since the MWO is close
enough to the laptops to disrupt communications. The antenna
connected to the spectrum analyzer is located such that the en-
ergy from each RF source is of similar magnitude.
The MWO operates in the 2.4-GHz ISM band, with signif-

icant overlap ( 50%) with the WiFi 20-MHz channels 6–13;
this was verified using the spectrum analyzer. Our 802.11 ex-
periments used channels 7 and 9 and took place in a room that
was cleared for co-channel interference before, during, and after
each experiment.
The client station transmits packets to the AP with the MTU,

FRAG, and packet size set to values that ensure that both
and are of nearly identical duration (the deviation of

is kept to below 1%). The packet duration is adjusted
by varying the packet size between 30 and 2110 B (yielding

from 1.4 to 18 ms). These packets are generated using the
standard ping command in a bash script. The interval between
each set of packet pairs is exponentially distributed with rate

packets per second, and the modulation and coding rate
is fixed at 1 Mb/s.
2) Inferring Interference Statistics From Packet Loss Mea-

surements: Fig. 6(a) presents the measured packet loss rate be-
tween the client station and the AP versus the packet dura-
tion . Each point is averaged over more than 10 observed
packets. Using this packet loss data, Fig. 6(b) plots the estimated
distribution function for interference pulse interarrival
times. We use the approach described in Section III-E to com-
pensate for the bias introduced by carrier sense at the client sta-
tion. It can be seen that exhibits a sharp transition around
11 ms, along with some residual probability mass between 11
and 15 ms. This indicates that the MWO interference is esti-
mated to be approximately periodic with period ms.
We confirm the accuracy of this inference independently using
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Fig. 6. Experimental measurements with MWO interference. Data frames are
transmitted at a PHY rate of 1-Mb/s rate, and the duration is varied by ad-
justing the packet size. Both and are equal-length . (a) Mea-
sured packet loss rate versus packet duration . Confidence intervals based
on the Clopper–Pearson method are displayed, but are small enough to be par-
tially obscured by the point markers. (b) Interarrival distribution of interference
pulses.

direct spectrum analyzer measurements of the MWO interfer-
ence in the next section; see Fig. 7.
Before proceeding, however, it is worth comparing the ex-

perimentally measured 802.11 loss data in Fig. 6(a) to the sim-
ulation data in Fig. 4(a). This comparison highlights the addi-
tional complexity introduced by carrier sense and the censoring
of second packet loss data. Nevertheless, our approach is able
to successfully disentangle these effects in a principled way and
thereby estimate .
3) Validation: Fig. 7(a) presents spectrum analyzer data

showing two interference pulses generated by the MWO. A
packet pair transmission by the client station can also be seen,
lying between the interference bursts (this particular packet
pair transmission is successfully received by the AP, verified by
noting the presence of MAC ACKs at the end of each packet).
From this and other data, we find that the MWO interference
is approximately periodic, with period ms, i.e.,
a frequency of 50 Hz, as expected due to the ac circuitry that
is driving the MWO. The profile of the interference bursts is,
however, not uniform. Fig. 7(b) shows a measured interference
burst of where the interference power is roughly constant over
the duration (approximately 9 ms) of the pulse. Fig. 7(c) shows
an interference pulse where the interference power dips during
the middle of the pulse, so as to effectively create two narrower

Fig. 7. Spectrum analyzer measurements of MWO interference. (a) Packet pair
transmitted between two MWO bursts. The -axis grid is in 2-ms increments.
The packet pair is encoded at the 1-MB/s 802.11 rate, with both packets having
duration 4.36 ms. (b) Second packet in a pair suffering a collision with a MWO
burst; after theMWO burst has finished and carrier sense indicates the channel is
idle, the packet is retransmitted. The -axis grid is in 2-ms increments. (c) Packet
pair and a MWO burst. The -axis grid is in 2-ms increments. The resolution
bandwidth is set to 20 MHz, and thus captures about 99% of the WLAN signal.
The MWO burst has a dip in the middle, which is attributed to frequency insta-
bility in the MWO cavity magnetron.

pulses spaced approximately 4 ms apart. This variation in
burst energy profile is attributed to frequency instability of the
MWO cavity magnetron, a known effect in MWOs [32]. Our
measurements indicate that the MWO interference consists of
pulses with mean interval of 11 ms between pulses, with some
deviation [Fig. 6(b)]. These direct measurements are therefore
in good agreement with the estimated distribution function,
which was derived indirectly using packet loss measurements.
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C. 802.11 Network With Hidden Nodes

1) Experimental Setup: This testbed consists of a WLAN
formed from two client stations and an access point, plus three
additional stations configured as hidden nodes (HNs). These
HNs are created by modifying the Madwifi driver such that
the carrier sense is disabled (using the technique as detailed
in [33]) and setting the NAV to zero for all packets—this ef-
fectively makes the HNs unresponsive to any packets that they
decode from the client or to energy that may trigger a phys-
ical carrier sense. A script generates ping traffic on the hidden
nodes having exponentially distributed intervals between packet
transmissions, with a mean interval of 50 ms. The ping packets
sent are of duration 4.5 ms (verified via the spectrum analyzer).
Since the transmissions by each HN are Poisson with intensity

packets/s, the aggregate interference is also Poisson
and with intensity packets/s. The experiments used
channel 13 of the ISM band and took place in a room that was
cleared for co-channel interference before, during, and after the
experiments.
2) Inferring Interference Statistics From Packet Loss Mea-

surements: Fig. 8(a) plots the measured packet loss rate in the
WLAN versus the packet duration. Note that this loss rate in-
cludes a contribution due to collisions between the two client
stations in the WLAN and a contribution due to interference
from the hidden nodes. Nevertheless, using our packet pair ap-
proach, we are able to disentangle these two sources of packet
loss. Fig. 8(b) plots the resulting distribution of interference
pulse interarrival times estimated using this packet loss data.
The data plotted in Fig. 8(b) is the estimate of and is
displayed using a logarithmic -axis. Also plotted in Fig. 8(b) is
the theory line corresponding to Poisson
distributed interference with rate packets/s. It can be
seen that the estimated data is approximately linear on this log
scale, as expected for a Poisson distribution, and that the slope
is close to the expected value of . The offset between the
Poisson theory line and the estimated line is explained by the
presence of a baseline packet loss rate of approximately 5% in
our experimental setup—this baseline loss rate is confirmed by
separate measurements (not shown here).

V. PULSED INTERFERENCE TEMPORAL STATISTICS:
PARAMETRIC ESTIMATION

Thus far, we have considered estimating the interference
distribution function in a nonparametric manner. By making
stronger structural assumptions about the interference process,
we can alternatively parameterize the distribution function,
and our task then becomes one of estimating these model
parameters. A fairly direct tradeoff in effort is involved here,
which is why it is important to consider both nonparametric
and parametric approaches. Namely, we have the bias–variance
tradeoff whereby nonparametric approaches make only weak
assumptions about the interference process, but require more
measurement data, whereas parametric approaches make strong
assumptions, but require less measurement data for the same
estimation accuracy (assuming that the model structure is
accurate).
In this section, we present a parametric estimation approach

for one class of model. The model is related to the two-state

Fig. 8. Experimental measurements; primary network has two nodes trans-
mitting to AP, interference network has three hidden nodes. (a) Measured
packet loss rate versus packet duration . Confidence intervals based on the
Clopper–Pearson method are displayed, but are small enough to be partially
obscured by the point markers. (b) Interarrival distribution of interference
pulses.

Gilbert–Elliot channel model [34], which is popular for ana-
lyzing communication channels with bursty losses, extended to
incorporate carrier sensing and the packet transmission process.
Although simple, this model is useful, and we demonstrate its
effectiveness for estimating hidden terminal interference. A
number of extensions are possible, including to a multistate
interference model [35], correlated losses [36], fast fading [37],
and so on, but we leave consideration of these extensions to
future work.

A. Parametric Packet Loss Model

1) Interference: We model pulsed interference as switching
randomly between two states, “good” and “bad” , with
exponentially distributed dwell times in each state. Formally, let

denote the set of interference states

(7)

and

(8)

Let be a sequence of random vari-
ables taking values in and representing the evolving state,
with

(9)
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TABLE II
MARKOV MODEL STATE TRANSITIONS

With our the choice of , the flip back and forth between the
and states so that is of the form .

Let index the subsequence of states in . Let denote
the dwell time in the th state and the dwell time in the
following state. The dwell times and are independent
exponential random variables having, respectively, mean
and . The sequence is the sequence
of jump times at which the interference enters state .
2) Packet Transmissions: The wireless station performing

measurements transmits a sequence of packets to a destination
station, with exponentially distributed pauses between trans-
missions. Similar to the foregoing interference model, we let

be the two transmitter states, where corresponds
to transmission of a packet. Let denote a
sequence of random variables that flip back and forth between
the and states. The dwell time in the state is a con-
stant , and the dwell times in the state are independent
exponential random variables with mean . We index the
subsequence of states by packet numbers in , and let
denote the time when transmission of packet starts.
3) Carrier Sense: The interference state at the packet

transmit time is , where . Let

where and is the probability that
the interference is in state . In the following, we consider
two limiting situations. First is where the carrier-sense threshold
lies above the noise level in both interference states, in which
case the packet transmission times are decoupled from the in-
terference state and . Second is where the carrier-sense
threshold lies above the noise level in interference state , but
below the noise level in state , in which case .
4) Packet Loss: Packets are discarded when they fail a

checksum test at the receiver. Hence, we treat the channel as
an erasure channel. Let denote a random variable that takes
value 1 when packet is erased, and value 0 otherwise. Let
denote the time that the channel spends in state during

the transmission of packet . In general, we expect that the
probability that packet is erased depends on
. Nevertheless, to streamline the presentation, we make the

simplifying assumption that whenever
, and otherwise, where and

are channel packet loss rate parameters in the and states,
respectively. We also assume that packet erasures occur inde-
pendently, i.e., the random variables are independent
for .

Fig. 9. Slotted-time Markov chain.

5) Packet Error Rate Analysis: To determine the packet error
rate as a function of the packet transmit duration, we need to an-
alyze two coupled stochastic processes, namely the channel and
transmission processes. The joint process takes state values in

. Since our interest is in counting the fre-
quency of packet losses, observe that we can lump the
and states together since we know that no packet loss
can occur in these states. Also, when the system first
enters state , then a packet loss occurs, and we do not
need to keep count of the number of subsequent transitions be-
tween and . We can therefore partition time
into slots, with each slot being of three possible types: (cor-
responding to the lumped states), (corresponding
to lumping of states , and after the first tran-
sition from to ) and (corre-
sponding to a dwell time in state ). The transitions be-
tween these slots are as shown in Fig. 9 and Table II.
The transition matrix of this slotted time Markov chain is

(10)

where . The stationary state dis-
tribution satisfies , where ,

, and . Solving yields
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Fig. 10. Packet error rate versus packet duration ; , variable ,
, , , s.

The packet error probability for the first packet in a pair is

(11)

The first term in the expression for corresponds to the
event where the interference stays in state throughout a packet
transmission and a packet loss occurs. The second term corre-
sponds to the event that a packet transmission starts with the
interference in state , but the interference changes to state
during the course of the transmission and a packet loss occurs.
The third term corresponds to the event that a packet transmis-
sion starts with the interference in state and a packet loss
occurs.
Conditioned on the first packet transmission being successful,

the packet error probability for the second packet in a pair is

(12)

where the factor accounts for the event that the
interference is in the state upon starting transmission of .

B. Model Parameters

Equations (11) and (12) together form a parametric model of
the packet pair loss process, which is described by parameters
, , , and . Before proceeding, we briefly illustrate

how the model parameters , , , and affect the ob-
served packet loss versus curves. Our aim is to: 1) illustrate
the types of loss curves that the model is able to capture; and
2) gain some intuitive insight into the role of the various model
parameters. Fig. 10 shows the impact of , which produces
a horizontal shift in the loss curves. Fig. 11 shows the impact
of , which determines the right-hand asymptote of the loss
curves. Fig. 12 shows the impact of the carrier-sense param-
eter (by varying ), which produces a vertical shift in the

Fig. 11. Packet error rate versus packet duration ; , ,
, variable , , s.

Fig. 12. Packet error rate versus packet duration ; , ,
, , variable (by varying ), s.

left-hand asymptote. Although not shown, the impact of also
produces a vertical shift in the left-hand asymptote.

C. Maximum Likelihood Parameter Estimation

Our objective is to estimate the model parameters , ,
, and from measurements of packet loss. The empirical

estimators for loss probabilities and are

where is the number of first packets, the number of
second packets, is the indicator function that equals 1 when
the th first packet is lost, and 0 otherwise, and similarly for
second packets. Collecting packet loss measurements for a se-
quence of packet durations and stacking the cor-
responding loss probability estimates, we have

...
...

(13)

where denotes the estimation error in the packet loss estimates.
For sufficiently large, the estimation error is close to
being Gaussian distributed. The maximum likelihood estimates
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Fig. 13. Experimental measurements and model fit for WLAN with hidden
node interference. Data points are for experiments using one and three inter-
ferers, with each interferer having a packet transmission rate of . Ini-
tial values for the parameter estimator are , , , and

. Model parameters are given in Table III.

TABLE III
DETAILS OF THE MAXIMUM LIKELIHOOD PARAMETER ESTIMATES FOR

MEASUREMENT DATA IN FIG. 13

for parameters , , , and are then the values that min-
imize the square error between the LHS and RHS in (13).

D. Experimental Measurements

1) Experimental Setup: We revisit the WLAN experimental
setup discussed in Section IV-C, but now change the setup
slightly so that only a single wireless client (rather than two
clients) transmits in the WLAN. This change is introduced
because, for simplicity, we have not included packet collisions
in our parametric model.
2) Packet Loss Measurements: Fig. 13 shows the measured

packet loss rate versus the packet duration . Note that the
range of packet durations that we can use is constrained by the
maximum 802.11 frame size of 2272 B to lie in the interval
1.4–18 ms. Two sets of results are shown, for one and for three
hidden nodes active. Each experimental point is calculated as
the average of more than packet transmissions. Also
shown are the maximum likelihood fits to this data using para-
metric model (11) and (12); the corresponding model parameter
estimates are given in Table III, obtained using an interior-point
solver.
3) Validation: The model parameters that need to be esti-

mated are , , , and . In our experiments, we control
the hidden terminal transmitters, and so we know the true value
of . Namely, the hidden node interferers each make transmis-
sions with exponentially distributed idle time between packets
so that the mean transmit rate is 20 packets/s. When one inter-
ferer is active, we expect , and when three interferers
are active, we expect . It can be seen from Table III that
the model estimates are close to these predictions. The value of
(the packet loss probability when there are no interference

transmissions) is determined by the physical channel properties.

Fig. 14. Convergence of estimates of versus the number of packets ob-
served. denotes the estimate using packet observations and
denotes the estimate obtained using the full measurement trace. For each ,
we take 100 random subsamples of packets from the full measurement trace,
calculate for each subsample, and average this value
over the 100 subsamples to obtain the curves shown. Data is shown for both
parametric and nonparametric estimates. The data set used is from the three in-
terferer experiment; see Fig. 13.

We performed separate measurements without interference and
found the packet loss rate to be less than 1%, and it can be
seen from Table III that the model estimate for is in good
agreement with this (i.e., agrees to within experimental error).
The parameter values that we do not fully validate are and
. However, we note that they are obtained as part of a cou-

pled model, which means that the values obtained are consis-
tent with the accurate estimates obtained for the remaining pa-
rameters. Additionally, the estimate of was partially vali-
dated using separate experimental tests where we operated the
hidden terminals at a high send rate and measured the fraction of
packets lost and obtained results consistent with the estimated
values of . Observe that increases with the number of
hidden terminals—we believe that this increase is genuine and
occurs due to the additive nature of the hidden terminal trans-
missions, i.e., with three transmitters, there is some chance now
that two or even three pulses from individual transmitters will
overlap/coincide, creating a greater level of packet loss on the
measured link.
4) Parametric Versus Nonparametric Estimation: A para-

metric model makes strong structural assumptions that allow the
loss curves to be parameterized using a small number of param-
eters. Since there are fewer parameters, we expect to be able
to estimate their values with less data, but at the cost of intro-
ducing a bias if the structural assumptions turn out to be incor-
rect. Fig. 14 plots versus the number
of observed packets for both the parametric and nonpara-
metric approaches, where is the estimate of ob-
tained using observations and is the estimate using
all observations. For the parametric model, the pa-
rameter estimates are fed back into the model (11) and (12),
and the resulting parameterized curves are used to calcu-
late . This provides a rough indication of how estimates
converge as the amount of data is increased. It can be seen that
the parametric solution converges to within 5% of the asymp-
totic estimate after packets and to within 2.5% after

packets, while the nonparametric solution requires
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Fig. 15. Spectrum analyzer snapshot of hidden terminal interferers in time. The
-axis grid is in 2-ms increments. Interferer burst durations are fixed at 4.5 ms,
with arrivals at 10, 19, 80, 83, and 89 ms. Since each interferer has a different
path to the spectrum analyzer antenna, the pulses are at different power levels.
The third and fourth pulses collide, resulting in a stepped feature.

and packets, respectively, to achieve
the same level of estimation accuracy.
5) Discussion: It is interesting to note that, despite its sim-

plicity, the parametric model used here is remarkably effective
at capturing the behavior in a complex physical environment.
For example, the model ignores the fact that the interference
power will depend on the number of hidden node transmissions
taking place at the same time. This effect can be seen in the
spectrum analyzer measurements in Fig. 15, where overlapping
transmissions by interferers leads to a stepped interference pulse
profile. The model also assumes that the duration of interference
pulses is exponentially distributed, but this will not be the case
in our experimental setup. More complex parametric models are
also possible and, in particular, can leverage the wealth of re-
search on bursty communications channels, but we leave this to
future work.

VI. CONCLUSION

In this paper, we propose a new approach for detecting the
presence of pulsed interference affecting 802.11 links and for es-
timating temporal statistics of this interference. Our approach is
a transmitter-side technique that provides per-link information
and is compatible with standard hardware. This significantly ex-
tends recent work in [1] and [2], which establishes a MAC/PHY
cross-layer technique capable of classifying lost transmission
opportunities into noise-related losses, collision induced losses,
and hidden-node losses and of distinguishing these losses from
the unfairness caused by exposed nodes and capture effects.
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