Publish/Subscribe Architecture for Mobile Ad hoc Networks

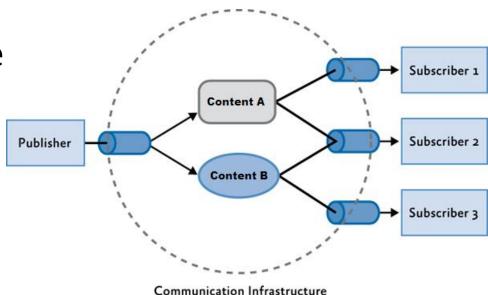
Authors: C. Rezend, B. Rocha and A. Loureiro

Presented by: Luis Oleas-Chávez

Publish/Subscribe – Concepts & Applications

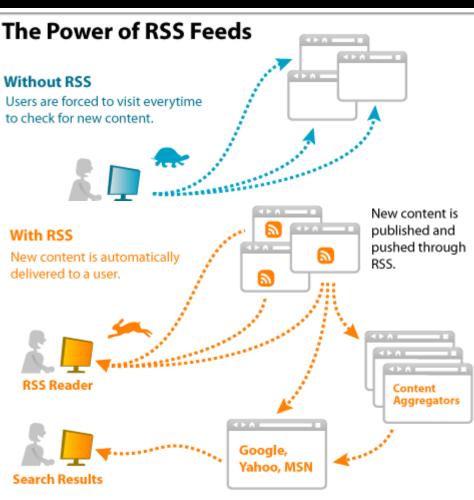
- Dissemination tree
- Beacon exchanges
- Gossip algorithm
- Related Work
- Architecture
 - Publication Buffer
 - Subscription Table
- Experiments and Results
 - Tuning
 - Performance Analysis
- Conclusions

Publish/Subscribe


- Publish/Subscribe is a one-to-many communication paradigm
- <u>Publisher</u>: Publishes structured events to an event service.
- <u>Subscribers</u>: Register their interest in an event, or pattern of events, and are asynchronously notified of events generated by publishers.
- <u>Event Notification Service</u>: Provides storage and management for subscriptions and efficient delivery of events.

Variants Publish/Subscribe

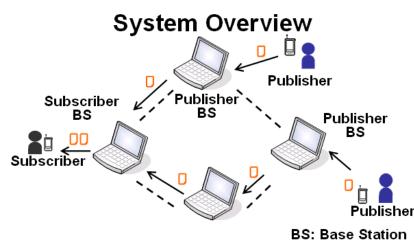
- <u>Topic-Based</u>: It is based in the notion of groups (many-to-many relationship).
- <u>Content-Based</u>: Subscriptions are related to specific information by specifying filters (many-to-one relationship).
- <u>Type-Based</u>: Events are filtered by their type. It provides guarantees such as type safety and encapsulation.


Publish/Subscribe (Cont'd)

- Key properties:
 Full decoupling of the communication entities
 - Space
 - Time
 - Synchronization

Applications

- Financial information systems
- Live feeds of realtime data (including RSS feeds)
- Cooperative working environments with many participants with shared interests in events
- Ubiquitous computing
- Monitoring applications


If optimized, RSS feeds can show on a search results page.

Mobile Ad hoc Network

- Publish/Subscribe architecture has been deeply studied and applied in wired networks.
- The incursion of a mobile Ad hoc Network (MANET) presents challenges which can be minimized using the nodes movement to disseminate publications to the whole network with a reduced number of transmissions.
- These nodes will be responsible for disseminating locally received publications to different areas of the network after they move

Related work

- Previous proposals that make reference to wireless networks, in fact were adaptations of existing wired networks architectures.
- Propagation techniques discarded:
 - Dissemination trees (Huang)
 - Beacons exchanges (Baehni)
 - Gossip-based algorithm

Architecture

- The purpose of this architecture is the use of mobility to notify interested subscribers of messages sent by publishers in a mobile ad hoc network using a minimum amount of broadcasts.
- The developed PSAMANET is based on signatures which describe the interested structured content and publications in a way that its content is readable.

Architecture (Cont'd)

- The number of publications are predefined by a value R; thus, subscriptions are defined in a range of interested values [v_{min}, v_{max}].
- Subscriptions are sent to neighbors when:
 - A node has been created
 - A node stops after it had moved
- Publications are broadcast when:
 - A node has been created
 - A node stops
 - A node has a publication which matches a new incoming subscription
 - A node receives a publication which matches any stored and still valid subscription

Publication Buffer

- A PB is a FIFO queue that stores the incoming publications in every node.
- The PB stores the PB_{size} more recent received publications. PB_{size} is given by:
 - Increases the number of reached nodes
 - Impacts the number of messages sent
- PB considers an upper bound to the number of publications forwarded each time PB_{max} in the case more than PB_{max} publications have to be sent.

Subscription Table

- A node must hold no only the FIFO queue but also a subscription table which stores the nodes subscriptions.
- An important observation is that subscriptions do not stay for a long time in the ST. Then, two types of subscriptions are considered:
 - Own (ST is cleaned when it moves)
 - Foreign (Subscription valid for an amount of time ST_{ttl})
- Every time the ST is used, it first checks for expired subscriptions and remove them.
- Duplicate received publications are avoid with the help of S_{prob}. It reduced the amount of bandwidth and energy wasted

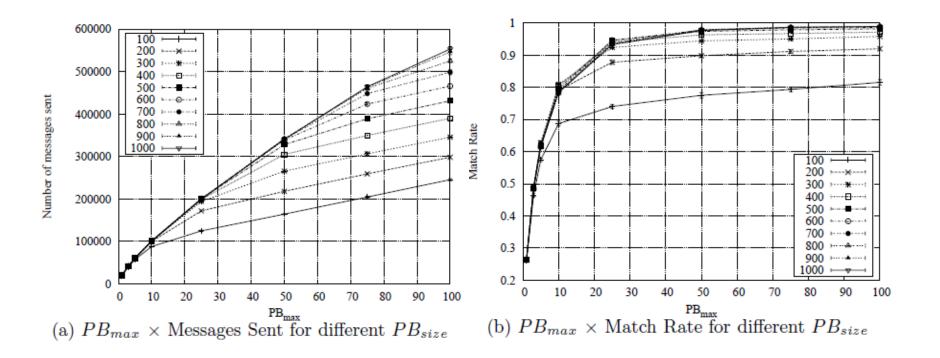
Experiments

- In the experiment, the density of the network is such that a node has an average of four neighbors. It was implemented on NS-2 simulator
- The movement used was Random Way Point.

Parameter	Value
Radio Propagation Model	FreeSpace
RXThresh_	7.69113e-08 (50m)
Routing	DumbAgent
Number of Nodes	200
Area	$600m \times 606m$
Simulation Time	3600s

Parameter	Value
Speed	[1.5,4.0]m/s (normally)
Pause	[0, 600]s (uniformly)

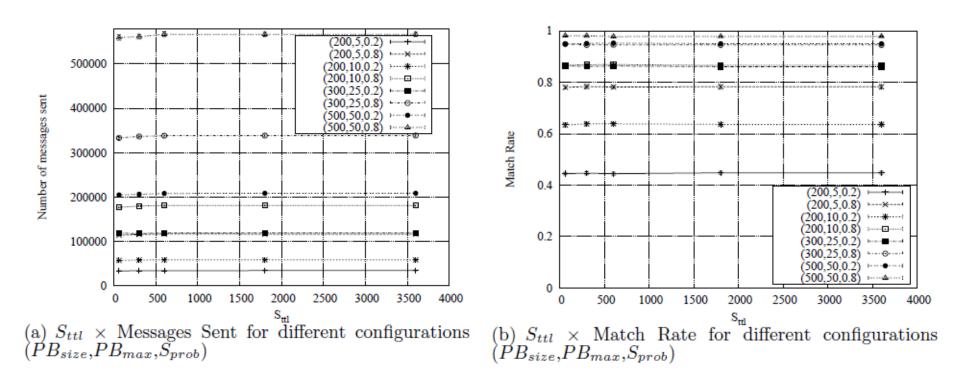
Experiments (cont'd)

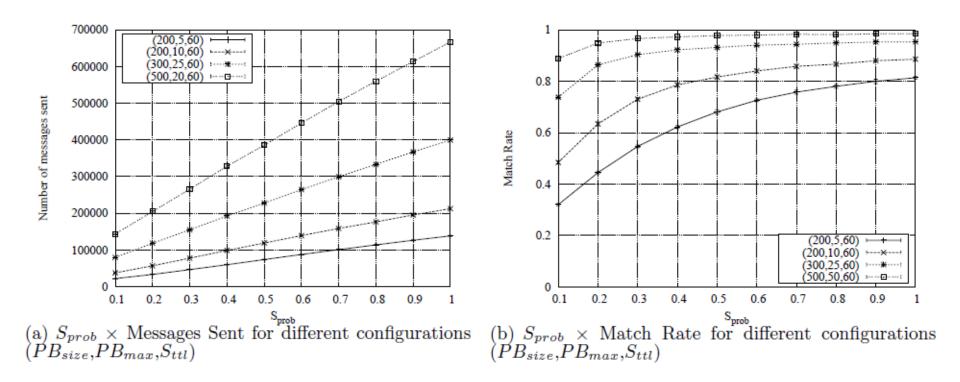

- Each node subscribe to two different ranges which are generated randomly.
 - S_{range}: Set to a value which makes a publication to be of the interest to 20% of nodes (R/400)
 - *v_{min}*: Positive number smaller or equal to R
 - *v_{max}*: Minimum value plus a constant range S_{range}
 - Total number of publications: 1000
- Experiment phases:
 - Tuning (PB_{size}, PB_{max}, S_{ttl} and S_{prob})
 - Performance analysis

Tuning

Initial values

- PB_{size}: influences how long a publication lasts in the network
- PB_{max}: how many times a publication is sent
- S_{ttl}: 300
- Sprob: 0.4
- There are 1000 publications during each simulation
 - PB_{size}: 1000 (unlimited buffer)


Tuning (cont'd)


Tuning (cont'd)

- Evaluate configurations with a small number of messages and others with high match rates.
- Subscriptions parameters with four PB configurations with (PB_{max}, PB_{size}).
 - (5, 200), (10, 200), (25, 300), and (50, 500)
 - Foreign subscriptions last for 6o sec.
- The first observation was that the S_{ttl} does not have a great impact on the number of messages sent nor on the match rate.

Tuning (cont'd) S_{ttl}

Tuning (cont'd) S_{prob}

Performance Analysis PSAMANET vs. Gossip-based

- This experiment was tested against a gossipbased routing algorithm for ad hoc networks, where every subscriber stores its subscriptions.
- The publisher broadcasts its publications and whenever a node receives any publication it has a probability of G_{prob} to forward it.

Performance Analysis (cont'd) PSAMANET vs. Gossip-based

					match rate messages sent							1	
						messa	ges sei	nt ⊦×	Şi			1	
				0.8									
Configuration	Messages Sent	Match Rate		0.0								, ,	/
I	$37,869 \pm 234$	0.4896 ± 0.0036		0.6)	¥
II	$99,375 \pm 632$	0.7892 ± 0.0032	Rate	0.0								7	
III	$195,729 \pm 991$	0.8774 ± 0.0033	Match Rate								3	1	
IV	$119,013 \pm 931$	0.8659 ± 0.0035	W	0.4				<u> </u>					£
V	$193,974 \pm 1,181$	0.9242 ± 0.0024								د ا	$\langle \rangle$	\sim	
VI	$207,611 \pm 1,508$	0.9539 ± 0.0020		0.2							<u> </u>	İ	
VII	$330,740 \pm 2,137$	0.9741 ± 0.0017			-						-		
			-	0	f	-							

0.1

0.2

0.3 0.4

0.5 0.6

Gprob

0.7

0.8

0.9

120000

100000

80000

60000

40000

20000

0

Conclusions

- This work presents a solution to the problem of developing a PSAMANET which properly adapts to the highly dynamic topology of such networks using nodes' movement to disseminate publications.
- It considers a totally asynchronous communication in such a way that end-to-end delays of minutes are not a problem and moving nodes can connect distant regions of the network with fewer transmissions.
- The results showed a much better performance than the Gossip algorithm. For instance, it was possible to reach a 46% higher match rate sending 10% less messages.

Future Work

- To analyze of PSAMANET behavior as a complex network to observe properties like degree distribution and diameter.
- To study the Publisher/Subscriber paradigm in MANETs for real-time applications and also try to use mobility without incurring in a high delay.