"ExerLink - Enabling Pervasive Social Exergames with Heterogeneous Exercise Devices"[†]

PRESENTED BY SALIKH BAGAVEYEV

⁺ Park, T., Hwang, I., Lee, U., Lee, S., Yoo, C., Lee, Y., Jang, H., Choe, S., Park, S., and Song, J. Exerlink: enabling pervasive social exergames with heterogeneous exercise devices. In Proceedings of the ACM MobiSys, ACM (2012), 15-28.

Introduction

Authors:

Taiwoo Park, Inseok Hwang, Uichin Lee⁺, Sunghoon Ivan Lee[‡], Chungkuk Yoo, Youngki Lee,

Hyukjae Jang, Sungwon Peter Choe, Souneil Park and Junehwa Song

Department of Computer Science, KAIST, [†]Department of Knowledge Service Engineering, KAIST and [‡]Computer Science Department, UCLA

Introduction

- Diverse pervasive devices as game interfaces. Exergames.
- Social exergames provide ubiquitous social interactions
- Focus on Repetetive-Individual-Aerobic exercises

Motivation

- Complement existing persuasive techniques relying on peer pressure and social recognition
- Existing approaches cannot be fully extended to pervasive social exergame scenarios
- Motivating Scenario: three friends prefer various exercises and cannot meet regularly
- Repetetive-Individual-Aerobic exercise benefits:
 - Popularity
 - Ease of access
 - Monotony
 - Long-lasting
 - Measurability
- Target Social Exergames

Exerlink Platform

Exerlink Platform

- Game Input Controller
- Voice Channel Manager
- Network Manager
- Exercise Information Manager

Providing Fair Gameplay: converting intensity into game input

Personalized Mapping

Providing Fair Gameplay: converting intensity into game input

Mapping functions

Providing Fair Gameplay: balancing heterogeneity

- Preferred range for balancing heterogeneity
- Create target rate for acceleration and deceleration
- Adjust acceleration and deceleration to target rate

Function: AccelerationBalancingInput: Vin is the original game input, t is current time, β is the target rateOutput: Vout is the converted game input
1. // detect acceleration
2. if $((Vin - Vin_old) / (t - t_old) > acceleration_threshold)$
3. if (current_state != ACCELERATING)
4. $current_state \leftarrow ACCELERATING$
5. $t_accel_begin \leftarrow t_old$
6. $Vin_accel_begin \leftarrow Vin_old$
7. // convert acceleration rate from the beginning of the current acceleration
8. $current_accel \leftarrow (Vin - Vin_accel_begin) / (t - t_accel_begin)$
9. $converted_accel \leftarrow \beta \cdot current_accel$
10. else
11. if (<i>current_state</i> == ACCELERATING)
12. $current_state \leftarrow ACCEL_END_WAIT$
13. if (<i>current_state</i> == ACCELERATING <i>current_state</i> == ACCEL_END_WAIT)
14. $Vout \leftarrow Vout_old + converted_accel \times (t - t_old)$
15. $Vin_old \leftarrow Vin$
16. $Vout_old \leftarrow Vout$
17. $t_old \leftarrow t$

Providing Fair Gameplay: balancing delay variation

- Dead reckoning to predict the state of another player
- Fair-ordering service: at the server side action messages should be properly ordered based on players' reaction times

Controller prototype: hula hoop

Controller prototype: hula hoop

Controller prototype: jump rope

Controller prototype: treadmill and stationary bike

Evaluation

- Point select task (Fitts' law tests)
- High and low intensity targets
- Collect movement times and error

Effects:

Movement time and learning

Effects:

Throughput and SD of errors

Effects:

Movement direction

Effects:

Gender

Case Study 1: Balancing and Fairness

	Homogeneous	Heterogeneous
	team	team
Playing time (sec)	86.30	86.35
# of acquired items	3.35	3.40
# of obstacle collisions	3.30	3.30
# of wins	11	9

Table 1: Game records of the 20 matches

Case Study 2: Social Interactions

Conclusion

- Disparate exercises can be turned into fun collaborative activities
- Fair game experiences are achievable
- Players with different exercises can effectively collaborate and compete well while playing the same game.
- Remote exergames did not hinder gaming process, yet promoted more engagement in conversation and exercise.