Experiences with Performance Tradeoffs in Practical, Continuous Indoor Localization

Azeem Khan, Vikash Ranjan, Trung-Tuan Luong, Rajesh Balan and Archan Misra Singapore Management University

Presenter: Shervin Amini

Motivation

- Indoor localization of consumer mobile devices
- Previous works focuses on accuracy of the localization
- Less work on scalability and energy consumption
- Challenge: accuracy and energy consumption

Concepts

- Indoor localization is based on Wi-Fi-based positioning system
- Wi-Fi positioning uses access points (AP)
- Any localization technique measures the intensity of the signals (received signal strength)
- RSSI from different APs form radio map for a given area (probability of RSSI values for a location/fingerprinting)
- Comparing new RSSI values against fingerprint and estimate the location

Fingerprint map of a playground wrt. a particular landmark

System setup

- Using two dominant smart phone OS
 - Android on Samsung Galaxy S3 phone
 - iOS on iPhone 4 (does not have open API to scan Wi-Fi data)
- Public indoor locations
 - Mall (high visitor load on evenings and weekends)
 - SIS(campus building), high load during class times

	Mall	SMU
Number of Floors	7	5
Indoor/Outdoor	Fully-Indoor	Mixed Indoor+
		Outdoor (Floor 1&2)
Avg. Floor Area (sq.m)	5000 ¹	3000
Avg. Store/	8	3
Room Width (m)		
No. of Wi-Fi APs/floor	12	24
No. of Fingerprint	26 (floor 1)	67 (floor 2)
Landmarks	27 (floor 2)	76 (floor 4)

Contributions

- Localization strategy for Android and iOS
 - Combining Wi-Fi fingerprinting and motion
 estimation with Viterbi algorithm
 - Finding temporal sequence of locations
- Building characteristics (density, building structure) affects the accuracy

Wi-Fi Data Collections

- Offline collection of RF at known landmaks (AP_i, signature AP_i)
- Generating fingerprint maps
 - Android: using custom application for scanning Wi-Fi access points.

<timeStamp, RSSI, AP ID>

iOS: reverse fingerprinting

A server(controller) is responsible for measuring the signal to noise ratio (SNR) sent form iPhone

Localization Process

Fingerprinting on Android

Path Estimation (Viterbi)

 $P(L_m(t_i) \to L_n(t_{i+1})) = P(L_m(t_i)) * P(L_n(t_{i+1}) | L_m(t_i)) * P(L_n(t_{i+1}))$

Indoor localization accuracy

- On Android: having more number of APs does NOT lead to better accuracy (redundant measurements)
- On iOS: Having more number of APs helps for better location estimation(SNR queries are sent every 3 to 4 minues)

Density(impact on localization accuracy)

Higher densities leads to less movement **Less** accuracy

Energy versus Accuracy

	WI-FI	WI-FI + Viterbi
Power Consumption (mW)	14.538	251.842
Accuracy ± 1 landmark	77%	87 %

Experiments done on Samsung SII phone (over 20 minutes)
 Most of the energy is consumed by inertial sensors (237 mW)

My final project theme: improving the energy consumption while maintaining the accuracy/performance

Critique

- Strength
 - Using state-of-the-art mobile technologies for tracking large number of mobile devices
- Challenges
 - Proposed localization technology is not universal for individual indoor space
 - Localization techniques do not support continuous location tracking

Choosing Landmarks(backup)

b. Mall