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Abstract—This brief proposes a new automatic model parame-
ter selection approach for determining the optimal configuration
of high-speed analog-to-digital converters (ADCs) using a com-
bination of particle swarm optimization (PSO) and stochastic
gradient descent (SGD) algorithm. The proposed hybrid method
first initializes the PSO algorithm to search for optimal neural-
network configuration via the particles moving in finite search
space with coarse quantization. Using the PSO estimates, the SGD
algorithm then finds the global optimum solution. The global
search ability of the PSO algorithm and the local search ability
of the SGD are thus exploited to determine an optimal solution
that is close to the global optimum with reduced latency. Several
experiments were constructed to optimize the non-linearities in
Nyquist flash and pipeline ADC datasets to show that the neural
networks trained by the PSO-SGD algorithm outperform the
random search-based performance optimization. Comparative
resource analysis of the proposed algorithm is also conducted
against the state-of-the-art that highlights improved latencies and
performance with similar area and implementation complexity.

Index Terms—Analog-to-digital converter (ADC), stochastic
gradient descent (SGD), particle swarm optimization (PSO),
neural-network (NN), artificial intelligence, bias optimization.

I. INTRODUCTION

PROCESS, voltage and temperature (PVT) variations affect
the overall performance of many data converters leading to

severe degradation in their performance. Widely used numer-
ical optimization techniques such as gradient descent (GD)
[1]–[6] are targeted for a particular ADC architecture and
require some modification (minor or major) in the implemen-
tation, to be applied to another type of ADC architecture
in real-time. An intricate system-level understanding of the
ADC and its respective parameters is thus required to per-
form any kind of optimization. This necessitates the need of
a general-purpose ADC optimization technique. Further, there
is a need for multi-parameter optimization to overcome non-
linearities due to severe correlated effects which warrants the
use of a neural network architecture [3], [7]. Unlike existing
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schemes, NNs can optimize multiple system parameters
simultaneously, thus improving the system performance con-
siderably. Enabled by high-speed field-programmable gate
arrays (FPGAs), they also have a significantly faster closed
loop response [8]. However, empirical methods for model
parameter selection and weight matrix determination for NN
have been demonstrated mostly using GD algorithm [9], [10]
which is easily trapped in local optima during the optimization
of system-wide variables (such as signal-to-noise ratio, linear-
ity/dynamic range, gain, offset, timing mismatch, phase noise,
and jitter). This not only limits the use of NN optimization but
is further expected to get worse in advanced semiconductor
nodes with higher mismatches.

Prior works in generic ADC optimization have used look-
up-table (LUT) and integral non-linearity (INL) based cali-
bration techniques that are not adequate for multi-parameter
optimization of high-speed ADCs. In [11], a LUT-based fore-
ground calibration algorithm is proposed to correct memory-
less non-linear impairments in the amplifiers and comparators
and mismatches in the capacitors in time-interleaved (TI)
ADCs. However, the use of one LUT table per TI sub-ADC
channel does not sufficiently capture inter-channel dependen-
cies and is further limited by the LUT size. In [12], an INL
based black-box calibration mechanism for ADCs with strong
input-output discontinuities between the adjacent output codes
is proposed. This scheme uses internal ADC signals to esti-
mate static non-linear errors for multi-valued ADCs having
strong discontinuities between adjacent codes and overcomes
the limitation of histogram based INL calibration which incor-
rectly captures the non-linear ADC transfer characteristic,
thus, leading to miscalibration. This method, however, requires
complex matrix multiplications and a large training dataset to
achieve accurate calibration resulting in higher latencies.

Architecture-specific calibration techniques have also been
proposed for Nyquist ADCs. In [13], background calibra-
tion is proposed to correct the non-linearities in a pipeline
ADC comprising inter-stage amplifiers, DACs, buffers and
switches. It uses a single calibration bit per pipelined stage
to detect and correct any INL breaks and harmonic distortion
appearing in the sub-range (flash code) from the respec-
tive stages. This method is highly effective in mitigating
intermodulation components but its implementation is specific
to pipeline ADC.

Particle swarm optimization (PSO) is a typical stochastic
optimization algorithm that has shown impressive performance
for a broad range of parameter optimization in data convert-
ers. Proposed by Eberhart [14], PSO mimics the behavior of
a flock of birds or fish searching for food. Based on this
principle, PSO works by randomly spreading out multiple
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Fig. 1. Proposed black-box multi-parameter optimization.

particles in the range of probable solutions and each parti-
cle works to obtain the best possible solution. After every
iteration, all the particles communicate their respective posi-
tions and best solutions they have arrived at to the other
particles in the swarm, directing the other particles in the
direction of best solution. This algorithm thus works through
co-operation and competition amongst the individual particles.
Because multiple particles are spread out in the search space,
each trying to find an optimum solution, the probability of all
the particles getting stuck in local minima simultaneously is
negligible and it is almost certain that at least one particle in
the swarm would find the global minima. The PSO complex-
ity is independent of the dataset size which makes it readily
applicable for optimizing high-speed ADCs with large gen-
erated dataset as compared to size dependent SGD. In [15]
PSO is implemented off-chip to calibrate the inter-stage gains
for a pipelined ADC. The calibration method, however, does
not correct any non-linearities or mismatch and thus does not
utilize the full potential of PSO. In [16], these challenges are
overcome using an additional ADC for calibrating sub-ADC
stages hence consuming additional power and area.

We propose a hybrid approach that is computationally effi-
cient and has lower latency compared to the prior calibration
techniques. In addition, the proposed technique does not suf-
fer from local minima problems of SGD. The proposed work
leverages PSO to narrow down the optimization space, while
using GD to converge to the global minima at a much faster
rate. This provides us with the flexibility to tune a much larger
number of parameters in a smaller time, to get optimal ADC
performance. We implement this in a neural-network (NN)
with three layers – input layer, hidden layer, and an output
layer as shown in Fig. 1. Simulations are demonstrated on
a conventional 3-bit flash ADC and a 5-bit pipeline ADC,
modelled using the Python programming language with inten-
tional gain and offset errors. In [17], PSO has been used
to optimize the time-amplifier linearity and shows a 6.4dB
improvement in the pipeline TDC performance, thus demon-
strating that PSO has the potential to calibrate a wide set of
ADC non-linearities. The input layer of the NN uses time-
series data to compute instantaneous errors between the two
inputs. This difference is then applied to the hidden layer by
multiplying with 8-bit weighted vectors. The hidden layer in
this process now applies the weights from the SGD, PSO, and
the proposed PSO-SGD algorithm and provides its output to
the output layer. Output layer is connected to the bias con-
trols of the non-ideal ADC which will be tuned appropriately
to reach the desired transfer function. This completes the feed-
back loop and is used to achieve the most optimum values in
real-time.

Section II briefly describes the PSO and SGD optimization
techniques and their use in NN and then presents the
proposed PSO in combination with the SGD algorithm for

Fig. 2. Optimization using SGD algorithm.

multi-parameter bias optimization with NN in real-time.
Section III then presents the simulation results with the ADC
datasets followed by the conclusions in Section IV.

II. PROPOSED NN BASED MULTI-PARAMETER
OPTIMIZATION

The training phase in the GD requires considering the depth
and the number of hidden neurons which can be very influ-
ential in determining the optimization performance [9]. This
is further affected by the choice of model parameter config-
uration setup that initializes learning rate, decay, momentum,
dropout rate, and the number of hidden neurons. This conse-
quently affects the weights of the gradient vectors as well as
the variation amplitude of the parameters around the optimal
bias point, leading to sub-optimal optimization. Despite recent
works [10], [18] constructing a variety of empirical meth-
ods to improve the performance of NN-based optimization
approaches and the use of classical multi-layer perceptron-
based classifiers, GD cannot find the global minimum and
its search procedure can easily be trapped in local optima as
illustrated in Fig. 2. It is thus imperative to select the appropri-
ate learning rate which is further challenged due to the large
number of optimization variables in the analog front-end.

Because of the above limitations, PSO-based
optimization [19]–[21] have replaced GD to solve the
multi-parameter optimization problem. However, despite
many benefits of PSO, such as low-latency, and improved
performance in a multivariate optimization task without being
trapped in local minima, the PSO lags behind GD in achieving
a similar accuracy with the same hardware complexity [22].

To overcome these limitations, first, the PSO algorithm will
be initialized to search for a network configuration that is
closer to the global minimum with coarse quantization. The
pseudo-code for this is as shown in Fig. 3. This will be fol-
lowed by GD that trains the NN using the PSO estimates and
fine tunes the learning rate to find the global optimum solution.
By exploiting the global search ability of the PSO algorithm
and the local search ability of the GD, an optimal solution that
is close to the global optimum with reduced latency can be
found. We next describe the cost function analysis using GD
and PSO used for the proposed optimization algorithm.

A. Cost Function Analysis With Stochastic GD Optimization

A cost function defines the performance of a system based
on its expected value and the actual output obtained through
the system. GD follows the gradient of this cost function to
arrive at the most optimum solution, which is the minimum
value the cost function can achieve. The system parameters
are updated after computing the mean squared error value of
a batch of samples, leading to averaging of the errors, and
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Fig. 3. Pseudo code for optimization.

Fig. 4. Implementation of SGD to calibrate flash-ADC.

thus more time for achieving minimum value [23]. Stochastic
GD (SGD) computes error value based on one sample point
per iteration and updates the system parameters after every
single iteration.

As a result, the errors are not averaged out and the func-
tion achieves minima faster [24]. In the case of high frequency
ADCs, the errors in the output bits might average out due to
a single bit flipping frequently, so it is of prime importance to
preserve the error information of each bit. This makes SGD
the obvious choice for such an optimization task. However,
as discussed earlier, the SGD algorithm suffers from the same
limitation as the GD and can converge to a local minima. The
cost function has been defined as the mean square difference
between the two concurrent bit values of the two data streams.
With a unity amplitude input signal, SGD is then applied in
the feedback loop to vary the threshold levels of the non-ideal
ADC to achieve the least possible error. The update mecha-
nism of the SGD optimization implemented in Fig. 4 is as
follows:

st+1 = st + 2 · µ · et.sgn(xt) (1)

where s represents the cost function, µ controls the accuracy,
and sgn(x) represents the signum function.

B. Cost Function Analysis With PSO Optimization

A similar cost function analysis for PSO is described in (2)
and (3). Equation (2) defines the particle velocity (vi). The
first term, w · vt represents the inertia factor accumulated
by the particle over the previous iterations. The second term
c1.rand(0, 1).{xt

pbest
− xt} represents the competition factor

driving the particle towards its individual best. The third
term c2.rand(0, 1).{xt

gbest
−xt} represents the push towards the

global best position discovered by any of the particles in the
swarm. Equation (3) further defines the displacement (xi) of
the particle based on the updated velocity value of the particle,
as shown in Fig. 5.

vt+1
i = w · vt + c1 · rand(0, 1) · {

xt
pbest − xt}

+ c2 · rand(0, 1) · {
xt

gbest − xt} (2)

xt+1
i = xt

i + vt+1
i (3)

Fig. 5. Optimization using Particle Swarm Optimization (PSO) algorithm.

Fig. 6. Error vs number of iterations run in PSO.

where w, c1 and c2 are scaling factors for the inertia, com-
petition and co-operation factors respectively. The function
rand(x, y) generates a random number between x and y.

C. Proposed Hybrid PSO and SGD Optimization

To overcome the limitations in PSO and SGD, we pro-
pose a hybrid algorithm, that achieves not only lower latencies
with significantly lower probability of getting stuck in a local
minima, but also achieving higher accuracy than PSO alone.

PSO optimization is done first. Once the mean squared error
is reduced to less than 5%, the partially optimized system
parameters act as the input to the SGD algorithm which further
optimizes the system to achieve an accuracy of less than 0.1%.
The empirically determined limits of transitioning from PSO to
SGD optimizations are to realize less computational time while
also avoiding getting stuck in the local minima. As shown
in Fig. 6, we observe that the convergence time increases
exponentially as we reduce the mean squared error (i.e.,
increase the accuracy of the PSO algorithm). The 5% error
provides an optimal transition point for the proposed experi-
ments. Another important factor is the step-size for the bias
variation controlling the ADC outputs. Unlike software-based
optimization, hardware realization imposes several constraints
on the algorithm, such as the size of each variable and the
fixed-point accuracy. For custom circuit design using mixed-
signal approaches, it translates to a large area overhead which
is undesirable. The accuracy has thus been limited to 8-bit
fixed-point sufficient for the targeted ADC models.

The non-linearities were then removed using the same
method as described above. For the flash ADC model, gain
non-linearities were introduced in the LSB and (LSB+1) bits,
while for the pipelined ADC, gain error and a random DC
offset was introduced in the MSB residue stage. The model of
a 5-bit pipelined ADC along with the MSB residue stage with
errors is shown in Fig. 7. The output of the first stage after the
introduction of these non-linearities is captured as follows:

Vresidue = Av · (V in − Vq) · NL1 − NL2 (4)

where NL1 and NL2 are gain and offset errors.
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TABLE I
COMPARISON OF COMPUTATIONAL COMPLEXITY OF PROPOSED ALGORITHM WITH PSO AND SGD (FLASH ADC)

Fig. 7. A 5-bit pipelined ADC model.

Fig. 8. Performance comparison before and after calibration using SGD.

Fig. 9. Performance comparison before and after calibration using PSO.

III. SIMULATION RESULTS

We design a 3-layer NN to compare the SGD and PSO
algorithms with the proposed PSO-SGD algorithm. The 3-bit
flash ADC with the NN-based feedback loop was first simu-
lated by applying SGD optimization as shown in Fig. 4. The
real-time optimization approach demonstrated a 5.34dB SNR
improvement with the transient data showing improved sinu-
soidal response (Fig. 8). The closed-loop model ADC was then
re-simulated with the NN configured to use PSO optimization
and a 5.24dB of SNR improvement was observed as shown
in Fig. 9. Finally, the proposed PSO-SGD hybrid optimization
was applied to this model (Fig. 10). Initial optimization with

Fig. 10. Performance comparison before and after calibration using proposed
algorithm (3-bit Flash ADC).

the PSO first yields a SNR of 18.76dB which improves to
19.34dB after SGD is ran using the global best position from
PSO regressions taken as the starting point. The relative SNR
improvement is 0.24dB and 0.34dB when compared to SGD
and PSO respectively.

The above experiments were repeated replacing the flash-
ADC with a traditional 5-bit pipeline ADC (Fig. 6). The SNR
improves significantly from 16.49dB to 28.95dB after PSO
as against the ideal SNR value of 31.76dB, while further
improving to 31.4dB using the proposed algorithm, showing
a 14.91dB improvement in SNR value as shown in Fig. 11.

It is also observed from these models that the SNR improve-
ment for PSO standalone was not observed to be as good as the
one with SGD standalone with similar hardware requirements.
However, there is a significant reduction in simulation time to
achieve the demonstrated performance, which was expected.
Based on the NN, the computational complexity of the PSO
algorithm is dominated by the number of iterations performed
to do the optimization and the number of swarm particles,
while the complexity of GD only depends on the length of
the dataset. For high-speed GHz range ADCs, the size of the
captured data rapidly increases to the order of 1010, while
requiring 4× computations for the GD to achieve a similar
performance as PSO. Further, as the number of times the
feedback loop runs scales quadratically with the data set size,
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Fig. 11. Performance comparison before and after calibration using proposed
algorithm (5-bit pipelined ADC).

it takes even larger (order of 1020) number of iterations to
calibrate the ADC for the targeted performance. These factors
combined have a direct impact on the computational hardware
requirements and the optimization latency (directly propor-
tional to the ADC calls) as shown in Table I. As seen from the
table, the proposed algorithm has significantly lower latency
than SGD while having lower number of computations than
PSO and providing better optimization results than either SGD
or PSO.

IV. CONCLUSION

This brief proposes a hybrid optimization algorithm
using stochastic gradient descent (SGD) and particle swarm
optimization (PSO) to overcome simultaneously the large
computational overhead of PSO, and the model parameter con-
vergence limitation and high latency in the SGD. Two different
architectures of a 3-bit flash and 5-bit pipeline ADC have
been modelled with gain and random offsets errors in multiple
stages. These models were then calibrated using the proposed
multi-parameter optimization to recover the lost performance.
The simulated flash performance improves by 5.58dB (0.63b
ENOB), while for the pipeline ADC, overall SNR improve-
ment of 14.91dB (2.18b ENOB) was observed showing the
effectiveness of the proposed approach. The outcome from this
brief will be especially useful for extreme high-speed data con-
verters that require multi-parameter optimization to overcome
both static and dynamic errors.
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